


Table B.4 Register names and numbers

Name
Register 
Number Use

zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0 –2 x5 –7 Temporary registers
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
a0 –1 x10 –11 Function arguments / Return values
a2 –7 x12 –17 Function arguments
s2 –11 x18–27 Saved registers
t3-6 x28–31 Temporary registers Figure B.2 RISC-V compressed (16-bit) instruction formats

Table B.6 RVC: RISC-V compressed (16-bit) instructions

op instr15:10 funct2 Type RVC Instruction 32-Bit Equivalent
00 (0) 000– – – – CIW c.addi4spn rd', sp, imm addi rd',  sp,  ZeroExt(imm)*4
00 (0) 001– – – – CL c.fld   fd',    imm(rs1') fld  fd',  (ZeroExt(imm)*8)(rs1')
00 (0) 010– – – – CL c.lw    rd',    imm(rs1') lw   rd',  (ZeroExt(imm)*4)(rs1')
00 (0) 011– – – – CL c.flw   fd',    imm(rs1') flw  fd',  (ZeroExt(imm)*4)(rs1')
00 (0) 101– – – – CS c.fsd   fs2',   imm(rs1') fsd  fs2', (ZeroExt(imm)*8)(rs1')
00 (0) 110– – – – CS c.sw    rs2',   imm(rs1') sw   rs2', (ZeroExt(imm)*4)(rs1')
00 (0) 111– – – – CS c.fsw   fs2',   imm(rs1') fsw  fs2', (ZeroExt(imm)*4)(rs1')
01 (1) 000000 – CI c.nop                 (rs1=0,imm=0) nop
01 (1) 000– – – – CI c.addi  rd,     imm addi rd,   rd,  SignExt(imm)
01 (1) 001– – – – CJ c.jal   label jal  ra,   label
01 (1) 010– – – – CI c.li    rd,     imm addi rd,   x0,  SignExt(imm)
01 (1) 011– – – – CI c.lui   rd,     imm lui  rd,   {14{imm5}, imm}
01 (1) 011– – – – CI c.addi16sp sp,  imm addi sp,   sp,  SignExt(imm)*16

01 (1) 100 – 00 – CB' c.srli  rd',    imm srli rd',  rd', imm
01 (1) 100 – 01 – CB' c.srai  rd',    imm srai rd',  rd', imm
01 (1) 100 – 10 – CB' c.andi  rd',    imm andi rd',  rd', SignExt(imm)
01 (1) 100011 00 CS' c.sub   rd',    rs2' sub  rd',  rd', rs2'
01 (1) 100011 01 CS' c.xor   rd',    rs2' xor  rd',  rd', rs2'
01 (1) 100011 10 CS' c.or    rd',    rs2' or   rd',  rd', rs2'
01 (1) 100011 11 CS' c.and   rd',    rs2' and  rd',  rd', rs2'
01 (1) 101– – – – CJ c.j     label jal  x0,   label
01 (1) 110– – – – CB c.beqz  rs1',   label beq  rs1', x0,  label
01 (1) 111– – – – CB c.bnez  rs1',   label bne  rs1', x0,  label
10 (2) 000– – – – CI c.slli  rd,     imm slli rd,   rd,  imm
10 (2) 001– – – – CI c.fldsp fd,     imm fld  fd,   (ZeroExt(imm)*8)(sp)
10 (2) 010– – – – CI c.lwsp  rd,     imm lw   rd,   (ZeroExt(imm)*4)(sp)
10 (2) 011– – – – CI c.flwsp fd,     imm flw  fd,   (ZeroExt(imm)*4)(sp)
10 (2) 1000– – – CR c.jr    rs1           (rs1≠0,rs2=0) jalr x0,   rs1, 0
10 (2) 1000– – – CR c.mv    rd,     rs2   (rd ≠0,rs2≠0) add  rd,   x0,  rs2
10 (2) 1001– – – CR c.ebreak              (rs1=0,rs2=0) ebreak
10 (2) 1001– – – CR c.jalr  rs1           (rs1≠0,rs2=0) jalr ra,   rs1, 0
10 (2) 1001– – – CR c.add   rd,     rs2   (rs1≠0,rs2≠0) add  rd,   rd,  rs2
10 (2) 101– – – – CSS c.fsdsp fs2,    imm fsd  fs2,  (ZeroExt(imm)*8)(sp)
10 (2) 110– – – – CSS c.swsp  rs2,    imm sw   rs2,  (ZeroExt(imm)*4)(sp)
10 (2) 111– – – – CSS c.fswsp fs2,    imm fsw  fs2,  (ZeroExt(imm)*4)(sp)

rs1', rs2', rd': 3-bit register designator for registers 8 –15: 0002 = x8 or f8, 0012 = x9 or f9, etc.

Table B.5 RVM: RISC-V multiply and divide instructions

op funct3 funct7 Type Instruction Description Operation
0110011 (51) 000 0000001 R mul    rd, rs1, rs2 multiply rd = (rs1 * rs2)31:0
0110011 (51) 001 0000001 R mulh   rd, rs1, rs2 multiply high signed signed rd = (rs1 * rs2)63:32
0110011 (51) 010 0000001 R mulhsu rd, rs1, rs2 multiply high signed unsigned rd = (rs1 * rs2)63:32
0110011 (51) 011 0000001 R mulhu  rd, rs1, rs2 multiply high unsigned unsigned rd = (rs1 * rs2)63:32
0110011 (51) 100 0000001 R div    rd, rs1, rs2 divide (signed) rd =  rs1 / rs2
0110011 (51) 101 0000001 R divu   rd, rs1, rs2 divide unsigned rd =  rs1 / rs2
0110011 (51) 110 0000001 R rem    rd, rs1, rs2 remainder (signed) rd =  rs1 % rs2
0110011 (51) 111 0000001 R remu   rd, rs1, rs2 remainder unsigned rd =  rs1 % rs2

funct4 rd/rs1 rs2 op CR-Type

CI-Type

CSS-Type

CIW-Type

CL-Type

CS-Type

CB-Type

CJ-Type

funct3 rd/rs1 imm opimm

funct3 rs2 opimm

funct3 rd' opimm

funct3 rs1' imm opimm rd'

funct3 rs1' imm opimm rs2'

funct3 rs1' imm opimm

funct3 opimm

CS'-Typefunct6 funct2 oprs2'

CB'-Typefunct3 rd'/rs1' imm opimm funct

rd'/rs1'

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 bits 3 bits 2 bits 3 bits 2 bits3 bits



Table B.7 RISC-V pseudoinstructions 

Pseudoinstruction RISC-V Instructions Description Operation
nop addi  x0,  x0,  0 no operation
li   rd,  imm11:0 addi  rd,  x0,  imm11:0 load 12-bit immediate rd =  SignExtend(imm11:0)

li   rd,  imm31:0 lui   rd,  imm31:12
*

addi  rd,  rd,  imm11:0
load 32-bit immediate rd =  imm31:0

mv   rd,  rs1 addi  rd,  rs1, 0 move (also called “register copy”) rd =  rs1

not  rd,  rs1 xori  rd,  rs1, —1 one’s complement rd = ~rs1

neg  rd,  rs1 sub   rd,  x0,  rs1 two’s complement rd = —rs1

seqz rd,  rs1 sltiu rd,  rs1, 1 set if = 0 rd = (rs1 == 0)

snez rd,  rs1 sltu  rd,  x0,  rs1 set if ≠ 0 rd = (rs1 ≠  0)

sltz rd,  rs1 slt   rd,  rs1, x0 set if < 0 rd = (rs1 <  0)

sgtz rd,  rs1 slt   rd,  x0,  rs1 set if > 0 rd = (rs1 >  0)

beqz rs1, label beq   rs1, x0,  label branch if = 0 if (rs1 == 0)   PC = label

bnez rs1, label bne   rs1, x0,  label branch if ≠ 0 if (rs1 ≠  0)   PC = label

blez rs1, label bge   x0,  rs1, label branch if ≤ 0 if (rs1 ≤  0)   PC = label

bgez rs1, label bge   rs1, x0,  label branch if ≥ 0 if (rs1 ≥  0)   PC = label

bltz rs1, label blt   rs1, x0,  label branch if < 0 if (rs1 <  0)   PC = label

bgtz rs1, label blt   x0,  rs1, label branch if > 0 if (rs1 >  0)   PC = label

ble  rs1, rs2, label bge   rs2, rs1, label branch if ≤ if (rs1 ≤  rs2) PC = label

bgt  rs1, rs2, label blt   rs2, rs1, label branch if > if (rs1 >  rs2) PC = label

bleu rs1, rs2, label bgeu  rs2, rs1, label branch if ≤ (unsigned) if (rs1 ≤  rs2) PC = label

bgtu rs1, rs2, label bltu  rs2, rs1, offset branch if > (unsigned) if (rs1 >  rs2) PC = label

j    label jal   x0,  label jump PC = label

jal  label jal   ra,  label jump and link PC = label,       ra = PC + 4

jr   rs1 jalr  x0,  rs1, 0 jump register PC = rs1

jalr rs1 jalr  ra,  rs1, 0 jump and link register PC = rs1,         ra = PC + 4

ret jalr  x0,  ra,  0 return from function PC = ra

call label jal   ra,  label call nearby function PC = label,       ra = PC + 4

call label auipc ra,  offset31:12
*

jalr  ra,  ra, offset11:0

call far away function PC = PC + offset, ra = PC + 4

la       rd,  symbol auipc rd,  symbol31:12
*

addi  rd,  rd,  symbol11:0
load address of global variable rd =  PC + symbol

l{b|h|w} rd,  symbol auipc    rd,  symbol31:12
*

l{b|h|w} rd,  symbol11:0(rd)
load global variable rd = [PC + symbol]

s{b|h|w} rs2, symbol, rs1 auipc    rs1, symbol31:12
*

s{b|h|w} rs2, symbol11:0(rs1)
store global variable [PC + symbol] = rs2

csrr rd,  csr csrrs rd,  csr, x0 read  CSR rd = csr

csrw csr, rs1 csrrw x0,  csr, rs1 write CSR csr = rs1

op funct3 Type Instruction Description Operation
1110011 (115) 000 I ecall transfer control to OS                  (imm=0)
1110011 (115) 000 I ebreak transfer control to debugger         (imm=1)
1110011 (115) 000 I uret return from user exception           (rs1=0,rd=0,imm=2) PC = uepc

1110011 (115) 000 I sret return from supervisor exception  (rs1=0,rd=0,imm=258) PC = sepc

1110011 (115) 000 I mret return from machine exception     (rs1=0,rd=0,imm=770) PC = mepc

1110011 (115) 001 I csrrw  rd,csr,rs1 CSR read/write                             (imm=CSR number) rd = csr,csr = rs1

1110011 (115) 010 I csrrs  rd,csr,rs1 CSR read/set                                 (imm=CSR number) rd = csr,csr = csr |   rs1

1110011 (115) 011 I csrrc  rd,csr,rs1 CSR read/clear                              (imm=CSR number) rd = csr,csr = csr & ~rs1

1110011 (115) 101 I csrrwi rd,csr,uimm CSR read/write immediate            (imm=CSR number) rd = csr,csr = ZeroExt(uimm)

1110011 (115) 110 I csrrsi rd,csr,uimm CSR read/set immediate                (imm=CSR number) rd = csr,
csr = csr |   ZeroExt(uimm)

1110011 (115) 111 I csrrci rd,csr,uimm CSR read/clear immediate             (imm=CSR number) rd = csr, 
csr = csr & ~ZeroExt(uimm)

Table B.8 Privileged / CSR instructions

* If bit 11 of the immediate / offset / symbol is 1, the upper immediate is incremented by 1. symbol and offset are the 32-bit PC-relative addresses of a label 
  and a global variable, respectively.

For privileged / CSR instructions,  the 5-bit unsigned immediate, uimm, is encoded in the rs1 field.
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Preface

This book is unique in its treatment in that it presents digital logic 
design from the perspective of computer architecture, starting at 
the beginning with 1’s and 0’s and leading through to the design of a 
microprocessor.

We believe that building a microprocessor is a special rite of passage  
for engineering and computer science students. The inner workings 
of a processor seem almost magical to the uninitiated yet prove to be 
straightforward when carefully explained. Digital design in and of itself 
is a powerful and exciting subject. Assembly language programming 
unveils the inner language spoken by the processor. Microarchitecture is 
the link that brings it all together.

The first two versions of this increasingly popular text cover 
the MIPS and ARM architectures. As one of the original Reduced 
Instruction Set Computing architectures, MIPS is clean and excep-
tionally easy to understand and build. MIPS remains an important 
architecture, as it has inspired many of the subsequent architectures, 
including RISC-V. The ARM architecture has exploded in popu-
larity over the past several decades because of its efficiency and rich 
ecosystem. More than 50 billion ARM processors have been shipped, 
and more than 75% of humans on the planet use products with ARM 
processors.

Over the past decade, RISC-V has emerged as an increasingly 
important architecture, both pedagogically and commercially. As the 
first widely used open-source computer architecture, RISC-V offers 
the simplicity of MIPS with the flexibility and features of modern 
processors.

Pedagogically, the learning objectives of the MIPS, ARM, and 
RISC-V editions are identical. The RISC-V architecture has a number of 
features, including extendibility and compressed instructions, that con-
tribute to its efficiency but add a small amount of complexity. The three 
microarchitectures are also similar, with MIPS and RISC-V architectures 
sharing many similarities. We expect to offer MIPS, ARM, and RISC-V 
editions as long as the market demands.
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feaTUreS
Side-by-Side coverage of SystemVerilog and VHDL

Hardware description languages (HDLs) are at the center of modern 
digital design practices. Unfortunately, designers are evenly split between 
the two dominant languages, SystemVerilog and VHDL. This book 
introduces HDLs in Chapter 4 as soon as combinational and sequential 
logic design has been covered. HDLs are then used in Chapters 5 and 
7 to design larger building blocks and entire processors. Nevertheless, 
Chapter 4 can be skipped and the later chapters are still accessible for 
courses that choose not to cover HDLs.

This book is unique in its side-by-side presentation of SystemVerilog 
and VHDL, enabling the reader to learn the two languages. Chapter 4 
describes principles that apply to both HDLs, and then provides language- 
specific syntax and examples in adjacent columns. This side-by-side 
treatment makes it easy for an instructor to choose either HDL and 
for the reader to transition from one to the other, either in a class or in  
professional practice.

rISc-V architecture and Microarchitecture

Chapters 6 and 7 offer in-depth coverage of the RISC-V architecture and 
microarchitecture. RISC-V is an ideal architecture because it is a real 
architecture shipped in an increasing number of commercial products, yet 
it is streamlined and easy to learn. Moreover, because of its popularity  
in the commercial and hobbyist worlds, simulation and development 
tools exist for the RISC-V architecture.

real-World Perspectives

In addition to the real-world perspective in discussing the RISC-V 
architecture, Chapter 6 illustrates the architecture of Intel x86 pro-
cessors to offer another perspective. Chapter 9 (available as an online 
supplement) also describes peripherals in the context of SparkFun’s 
RED-V RedBoard, a popular development board that centers on SiFive’s 
Freedom E310 RISC-V processor. These real-world perspective chapters 
show how the concepts in the chapters relate to the chips found in many 
PCs and consumer electronics.

accessible Overview of advanced Microarchitecture

Chapter 7 includes an overview of modern high-performance micro-
architectural features, including branch prediction, superscalar, and 
out-of-order operation, multithreading, and multicore processors. The 
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treatment is accessible to a student in a first course and shows how the 
microarchitectures in the book can be extended to modern processors.

end-of-chapter exercises and Interview Questions

The best way to learn digital design is to do it. Each chapter ends with 
numerous exercises to practice the material. The exercises are followed 
by a set of interview questions that our industrial colleagues have asked 
students who are applying for work in the field. These questions pro-
vide a helpful glimpse into the types of problems that job applicants will 
typically encounter during the interview process. Exercise solutions are 
available via the book’s companion and instructor websites.

ONLINe SUPPLeMeNTS
Supplementary materials are available online at ddcabook.com or 
the publisher’s website: https://www.elsevier.com/books-and-journals/ 
book-companion/9780128200643. These companion sites (accessible to all 
readers) include the following:

▸ Links to video lectures

▸ Solutions to odd-numbered exercises

▸ Figures from the text in PDF and PPTX formats

▸ Links to professional-strength computer-aided design (CAD) tools 
from Intel®

▸ Instructions on how to use PlatformIO (an extension of Visual 
Studio Code) to compile, assemble, and simulate C and assembly 
code for RISC-V processors

▸ Hardware description language (HDL) code for the RISC-V processor

▸ Intel’s Quartus helpful hints

▸ Lecture slides in PowerPoint (PPTX) format

▸ Sample course and laboratory materials

▸ List of errata

The instructor site (accessible to instructors who register at https://
inspectioncopy.elsevier.com) includes the following:

▸ Solutions to all exercises

▸ Laboratory solutions

edX MOOc

This book also has a companion Massive Open Online Course (MOOC) 
through EdX. The course includes video lectures, interactive practice 

https://ddcabook.com
https://www.elsevier.com/books-and-journals/book-companion/9780128200643
https://www.elsevier.com/books-and-journals/book-companion/9780128200643
https://inspectioncopy.elsevier.com
https://inspectioncopy.elsevier.com
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problems, and interactive problem sets and labs. The MOOC is divided 
into two parts: Digital Design (ENGR 85A) and Computer Architecture 
(ENGR85B) offered by HarveyMuddX (on EdX, search for “Digital 
Design HarveyMuddX” and “Computer Architecture HarveyMuddX”). 
EdX does not charge for access to the videos but does charge for the inter-
active exercises and certificate. EdX offers discounts for students with 
financial need.

HOW TO USe THe SOfTWare TOOLS IN a cOUrSe
Intel’s Quartus Software

The Quartus software, either Web or Lite Edition, is a free version of 
Intel’s professional-strength Quartus™ FPGA design tools. It allows 
students to enter their digital designs in schematic or using either the 
SystemVerilog or the VHDL hardware description language (HDL). 
After entering the design, students can simulate their circuits using the 
ModelSim™-Intel FPGA Edition or Starter Edition, which is available 
with Intel’s Quartus software. Quartus also includes a built-in logic  
synthesis tool that supports both SystemVerilog and VHDL.

The difference between the Web or Lite Edition and the Pro Edition 
is that the Web or Lite Edition supports a subset of the most common 
Altera FPGAs. The free versions of ModelSim degrade performance 
for simulations with more than 10,000 lines of HDL, whereas the  
professional version of ModelSim does not.

PlatformIO

PlatformIO, which is an extension of Visual Studio Code, serves as a soft-
ware development kit (SDK) for RISC-V. With the explosion of SDKs for 
each new platform, PlatformIO has streamlined the process of program-
ming and using various processors by providing a unified interface for a 
large number of platforms and devices. It is available as a free download 
and can be used with SparkFun’s RED-V RedBoard, as described in the 
labs provided on the companion website. PlatformIO provides access 
to a commercial RISC-V compiler and allows students to write both C 
and assembly programs, compile them, and then run and debug them on 
SparkFun’s RED-V RedBoard (see Chapter 9 and the accompanying labs).

Venus rISc-V assembly Simulator

The Venus Simulator (available at: https://www.kvakil.me/venus/) is a 
web-based RISC-V assembly simulator. Programs are written (or copy/
pasted) in the Editor tab and then simulated and run in the Simulator 
tab. Registers and memory contents can be viewed as the program runs.

https://www.kvakil.me/venus/
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LaBS
The companion site includes links to a series of labs that cover topics 
from digital design through computer architecture. The labs teach stu-
dents how to use the Quartus tools to enter, simulate, synthesize, and 
implement their designs. The labs also include topics on C and assem-
bly language programming using PlatformIO and SparkFun’s RED-V 
RedBoard.

After synthesis, students can implement their designs using the 
Altera DE2, DE2-115, DE0, or other FPGA board. The labs are written 
to target the DE2 or DE-115 boards. These powerful and competitively 
priced boards are available from de2-115.terasic.com. The board con-
tains an FPGA that can be programmed to implement student designs. 
We provide labs that describe how to implement a selection of designs 
on the DE2-115 board using the Quartus software.

To run the labs, students will need to download and install 
Intel’s Quartus Web or Lite Edition and Visual Studio Code with the 
PlatformIO extension. Instructors may also choose to install the tools 
on lab machines. The labs include instructions on how to implement the 
projects on the DE2/DE2-115 board. The implementation step may be 
skipped, but we have found it of great value. We have tested the labs on 
Windows, but the tools are also available for Linux.

rVfpga
RISC-V FPGA, also referred to as RVfpga, is a free two-course sequence 
that can be completed after learning the material in this book. The first 
course shows how to target a commercial RISC-V core to an FPGA, pro-
gram it using RISC-V assembly or C, add peripherals to it, and analyze 
and modify the core and memory system, including adding instructions 
to the core. This course uses the open-source SweRVolf system-on-chip 
(SoC) (https://github.com/chipsalliance/Cores-SweRVolf), which is based 
on Western Digital’s open-source commercial SweRV EH1 core (https://
www.westerndigital.com/company/innovations/risc-v). The course also 
shows how to use Verilator, an open-source HDL simulator, and Western 
Digital’s Whisper, an open-source RISC-V instruction set simulator (ISS). 
RVfpga-SoC, the second course, shows how to build an SoC based on 
SweRVolf using building blocks such as the SweRV EH1 core, inter-
connect, and memories. The course then guides the user in loading and 
running the Zephyr operating system on the RISC-V SoC. All neces-
sary software and system source code (Verilog/SystemVerilog files) are 
free, and the courses may be completed in simulation, so no hardware 
is required. RVfpga materials are freely available with registration from 
the Imagination Technologies University Programme: https://university.
imgtec.com/rvfpga/.

http://de2-115.terasic.com
https://github.com/chipsalliance/Cores-SweRVolf
https://www.westerndigital.com/company/innovations/risc-v
https://www.westerndigital.com/company/innovations/risc-v
https://university.imgtec.com/rvfpga/
https://university.imgtec.com/rvfpga/


 Prefacexxiv

BUGS
As all experienced programmers know, any program of significant com-
plexity undoubtedly contains bugs. So, too, do books. We have taken 
great care to find and squash the bugs in this book. However, some 
errors undoubtedly do remain. We will maintain a list of errata on the 
book’s webpage.

Please send your bug reports to ddcabugs@gmail.com. The first  
person to report a substantive bug with a fix that we use in a future 
printing will be rewarded with a $1 bounty!
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1.1  THE GAME PLAN
Microprocessors have revolutionized our world during the past three 
decades. A laptop computer today has far more capability than a 
room-sized mainframe of yesteryear. A luxury automobile contains 
about 100 microprocessors. Advances in microprocessors have made 
cell phones and the Internet possible, have vastly improved medicine, 
and have transformed how war is waged. Worldwide semiconductor 
industry sales have grown from US $21 billion in 1985 to $400 billion 
in 2020, and microprocessors are a major segment of these sales. 
We believe that microprocessors are not only technically, economi-
cally, and socially important, but are also an intrinsically fascinating 
human invention. By the time you finish reading this book, you will 
know how to design and build your own microprocessor. The skills 
you learn along the way will prepare you to design many other digital 
systems.

We assume that you have a basic familiarity with electricity, some 
prior programming experience, and a genuine interest in understanding 
what goes on under the hood of a computer. This book focuses on the 
design of digital systems, which operate on 1’s and 0’s. We begin with 
digital logic gates that accept 1’s and 0’s as inputs and produce 1’s and 
0’s as outputs. We then explore how to combine logic gates into more 
complicated modules, such as adders and memories. Then, we shift gears 
to programming in assembly language, the native tongue of the micro-
processor. Finally, we put gates together to build a microprocessor that 
runs these assembly language programs.

A great advantage of digital systems is that the building blocks are 
quite simple: just 1’s and 0’s. They do not require grungy mathematics or 
a profound knowledge of physics. Instead, the designer’s challenge is to 
combine these simple blocks into complicated systems. A microprocessor 
may be the first system that you build that is too complex to fit in your 

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

10.1016/B978-0-12-820064-3.00001-5


From Zero to OneCHAPTER ONE2

head all at once. One of the major themes woven through this book is 
how to manage complexity.

1.2  THE ART OF MANAGING COMPLEXITY
One of the characteristics that separates an engineer or computer scien-
tist from a layperson is a systematic approach to managing complexity. 
Modern digital systems are built from millions or billions of transistors. 
No human being could understand these systems by writing equations 
describing the movement of electrons in each transistor and solving all 
of the equations simultaneously. You will need to learn to manage com-
plexity to understand how to build a microprocessor without getting 
mired in a morass of detail.

1 . 2 . 1   Abstraction

The critical technique for managing complexity is abstraction: hid-
ing details when they are not important. A system can be viewed from 
many different levels of abstraction. For example, American politicians 
abstract the world into cities, counties, states, and countries. A county 
contains multiple cities and a state contains many counties. When a 
politician is running for president, the politician is mostly interested in 
how the state as a whole will vote rather than how each county votes, so 
the state is the most useful level of abstraction. On the other hand, the 
Census Bureau measures the population of every city, so the agency must 
consider the details of a lower level of abstraction.

Figure 1.1 illustrates levels of abstraction for an electronic computer  
system, along with typical building blocks at each level. At the lowest 
level of abstraction is the physics, the motion of electrons. The behav-
ior of electrons is described by quantum mechanics and Maxwell’s 
equations. Our system is constructed from electronic devices such as 
transistors (or vacuum tubes, once upon a time). These devices have 
well-defined connection points called terminals and can be modeled by 
the relationship between voltage and current as measured at each termi-
nal. By abstracting to this device level, we can ignore the individual elec-
trons. The next level of abstraction is analog circuits, in which devices 
are assembled to create components such as amplifiers. Analog circuits 
input and output a continuous range of voltages. Digital circuits, such as 
logic gates, restrict the voltages to discrete ranges, which we will use to 
indicate 0 and 1. In logic design, we build more complex structures, such 
as adders or memories, from digital circuits.

Microarchitecture links the logic and architecture levels of abstrac-
tion. The architecture level of abstraction describes a computer from 
the programmer’s perspective. For example, the Intel x86 architecture 

Figure 1.1 Levels of abstraction 
for an electronic computing 
system
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31.2 The Art of Managing Complexity

used by microprocessors in most personal computers (PCs) is defined 
by a set of instructions and registers (memory for temporarily storing 
variables) that the programmer is allowed to use. Microarchitecture 
involves combining logic elements to execute the instructions defined 
by the architecture. A particular architecture can be implemented by 
one of many different microarchitectures with different price/perfor-
mance/power trade-offs. For example, the Intel Core i7, the Intel 80486, 
and the AMD Athlon all implement the x86 architecture with different 
microarchitectures.

Moving into the software realm, the operating system handles 
low-level details, such as accessing a hard drive or managing memory. 
Finally, the application software uses these facilities provided by the 
operating system to solve a problem for the user. Thanks to the power of 
abstraction, your grandmother can surf the Web without any regard for 
the quantum vibrations of electrons or the organization of the memory 
in her computer.

This book focuses on the levels of abstraction from digital circuits 
through computer architecture. When you are working at one level of 
abstraction, it is good to know something about the levels of abstraction 
immediately above and below where you are working. For example, a 
computer scientist cannot fully optimize code without understanding the 
architecture for which the program is being written. A device engineer 
cannot make wise trade-offs in transistor design without understanding 
the circuits in which the transistors will be used. We hope that by the 
time you finish reading this book, you can pick the level of abstraction 
appropriate to solving your problem and evaluate the impact of your 
design choices on other levels of abstraction.

1 . 2 . 2   Discipline

Discipline is the act of intentionally restricting your design choices so 
that you can work more productively at a higher level of abstraction. 
Using interchangeable parts is a familiar application of discipline. One 
of the famous early examples of interchangeable parts was in automo-
bile manufacturing. Although the modern gas-powered car dates back to 
the German Benz Patent-Motorwagen of 1886, early cars were hand-
crafted by skilled tradesmen, a time-consuming and expensive process. 
Henry Ford made a key advance in 1908 by focusing on mass produc-
tion with interchangeable parts and moving assembly lines.

The discipline of interchangeable parts revolutionized the indus-
try. By limiting the components to a standardized set with well-defined 
tolerances, cars could be assembled and repaired much faster and with 
less skill. The car builder no longer concerned himself with lower lev-
els of abstraction, such as fitting a door to a nonstandardized opening. 

Each chapter in this book 
begins with an abstraction 
icon indicating the focus of 
the chapter in deep blue, with 
secondary topics shown in 
lighter shades of blue. 

Ford launched the Model T 
with a bold manifesto:

I will build a motor car for 
the great multitude. It will be 
large enough for the family, 
but small enough for the 
individual to run and care 
for. It will be constructed of 
the best materials, by the best 
men to be hired, after the 
simplest designs that modern 
engineering can devise. But 
it will be so low in price that 
no man making a good salary 
will be unable to own one—
and enjoy with his family the 
blessing of hours of pleasure 
in God’s great open spaces. 
[My Life and Work, by 
Samuel Crowther and Henry 
Ford, 1922] 
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The Model T Ford became the most-produced car of its era, selling over  
15 million units. Another example of discipline was Ford’s famous say-
ing: “Any customer can have a car painted any color that he wants so 
long as it is black.”

In the context of this book, the digital discipline will be very import-
ant. Digital circuits use discrete voltages, whereas analog circuits use 
continuous voltages. Therefore, digital circuits are a subset of analog cir-
cuits and in some sense must be capable of less than the broader class 
of analog circuits. However, digital circuits are much simpler to design. 
By limiting ourselves to digital circuits, we can easily combine compo-
nents into sophisticated systems that ultimately outperform those built 
from analog components in many applications. For example, digital tele-
visions, compact disks (CDs), and cell phones are replacing their analog 
predecessors.

1 . 2 . 3   The Three -Y’s

In addition to abstraction and discipline, designers use the three “-y’s” to 
manage complexity: hierarchy, modularity, and regularity. These princi-
ples apply to both software and hardware systems.

▸ Hierarchy involves dividing a system into modules, then fur-
ther subdividing each of these modules until the pieces are easy to 
understand.

▸ Modularity states that modules have well-defined functions and 
interfaces so that they connect easily without unanticipated side 
effects.

▸ Regularity seeks uniformity among modules. Common modules are 
reused many times, reducing the number of distinct modules that 
must be designed.

To illustrate these “-y’s,” we return to the example of automobile 
manufacturing. A car was one of the most intricate objects in common 
use in the early 20th century. Using the principle of hierarchy, we can 
break the Model T Ford into components, such as the chassis, engine, 
and seats. The engine, in turn, contained four cylinders, a carburetor, a 
magneto, and a cooling system. The carburetor contained fuel and air 
intakes, a choke and throttle, a needle valve, and so forth, as shown in 
Figure 1.2. The fuel intake was made from a threaded elbow and a cou-
pling nut. Thus, the complex system is recursively broken down into 
simple interchangeable components that can be mass produced.

Modularity teaches that each component should have a well-defined 
function and interface. For example, the coupling nut has a function of 
holding the fuel feed line to the intake elbow in a way that does not 

Model T Ford Photo from 
https://commons.wikimedia.
org/wiki/File: TModel_
launch_Geelong.jpg.

https://commons.wikimedia.org/wiki/File: TModel_launch_Geelong.jpg
https://commons.wikimedia.org/wiki/File: TModel_launch_Geelong.jpg
https://commons.wikimedia.org/wiki/File: TModel_launch_Geelong.jpg
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leak yet can be easily removed when the feed line needs replacement. 
It is of a standardized diameter and thread pitch, tightened to a stan-
dardized torque by a standardized wrench. A car maker can buy the nut 
from many different suppliers, as long as the correct size is specified. 
Modularity dictates that there should be no side effects: the coupling nut 
should not deform the elbow and should preferably be located where it 
can be tightened or removed without taking off other equipment in the 
engine.

Regularity teaches that interchangeable parts are a good idea. With 
regularity, a leaking carburetor can be replaced by an identical part. The 
carburetors can be efficiently built on an assembly line instead of being 
painstakingly handcrafted.

We will return to these principles of hierarchy, modularity, and regu-
larity throughout the book.

1.3  THE DIGITAL ABSTRACTION
Most physical variables are continuous. For example, the voltage on a 
wire, the frequency of an oscillation, or the position of a mass are all 
continuous quantities. Digital systems, on the other hand, represent 
information with discrete-valued variables—that is, variables with a 
finite number of distinct values.

An early digital system using variables with ten discrete values was 
Charles Babbage’s Analytical Engine. Babbage labored from 1834 to 
1871, designing and attempting to build this mechanical computer. The 
Analytical Engine used gears with ten positions labeled 0 through 9, 
much like a mechanical odometer in a car. Figure 1.3 shows a prototype 
of the Analytical Engine, in which each row processes one digit. Babbage 
chose 25 rows of gears, so the machine has 25-digit precision.

Unlike Babbage’s machine, most electronic computers use a binary 
(two-valued) representation in which a high voltage indicates a “1” and 

Charles Babbage, 1791–1871
Attended Cambridge University 
and married Georgiana 
Whitmore in 1814. Invented 
the Analytical Engine, the 
world’s first mechanical 
computer. Also invented the 
cowcatcher and the universal 
postage rate. Interested in lock 
picking, but abhorred street 
musicians (image courtesy of 
Fourmilab Switzerland, www.
fourmilab.ch). 

Figure 1.2 Cutaway view of 
Model T fuel system, showing fuel 
supply on left and carburetor on 
right. (https://en.wikipedia.org/
wiki/Ford_Model_T_engine#/
media/File:Pagé_1917_Model_T_
Ford_Car_Figure_14.png)

http://www.fourmilab.ch
http://www.fourmilab.ch
https://en.wikipedia.org/wiki/Ford_Model_T_engine%23/media/File:Pagé_1917_Model_T_Ford_Car_Figure_14.png
https://en.wikipedia.org/wiki/Ford_Model_T_engine%23/media/File:Pagé_1917_Model_T_Ford_Car_Figure_14.png
https://en.wikipedia.org/wiki/Ford_Model_T_engine%23/media/File:Pagé_1917_Model_T_Ford_Car_Figure_14.png
https://en.wikipedia.org/wiki/Ford_Model_T_engine%23/media/File:Pagé_1917_Model_T_Ford_Car_Figure_14.png
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a low voltage indicates a “0,” because it is easier to distinguish between 
two voltages than ten.

The amount of information D in a discrete valued variable with N 
distinct states is measured in units of bits as

 D N= log bits2
 (1.1)

A binary variable conveys log22 = 1 bit of information. Indeed, the 
word bit is short for binary digit. Each of Babbage’s gears carried log210 = 
3.322 bits of information because it could be in one of 23.322 = 10 unique 
positions. A continuous signal theoretically contains an infinite amount 
of information because it can take on an infinite number of values. In 
practice, noise and measurement error limit the information to only 10 
to 16 bits for most continuous signals. If the measurement must be made 
rapidly, the information content is lower (e.g., 8 bits).

This book focuses on digital circuits using binary variables: 1’s and 
0’s. George Boole developed a system of logic operating on binary vari-
ables that is now known as Boolean logic. Each of Boole’s variables 
could be TRUE or FALSE. Electronic computers commonly use a pos-
itive voltage to represent “1” and zero volts to represent “0.” In this 
book, we will use the terms “1,” “TRUE,” and “HIGH” synonymously. 
Similarly, we will use “0”, “FALSE,” and “LOW” interchangeably.

The beauty of the digital abstraction is that digital designers can 
focus on 1’s and 0’s, ignoring whether the Boolean variables are physically 
represented with specific voltages, rotating gears, or even hydraulic fluid 
levels. A computer programmer can work without needing to know the 
intimate details of the computer hardware. On the other hand, under-
standing the details of the hardware allows the programmer to optimize 
the software better for that specific computer.

George Boole, 1815–1864
Born to working-class parents 
and unable to afford a formal 
education, Boole taught 
himself mathematics and 
joined the faculty of Queen’s 
College in Ireland. He wrote 
An Investigation of the Laws 
of Thought (1854), which 
introduced binary variables 
and the three fundamental logic 
operations: AND, OR, and 
NOT (image courtesy of the 
American Institute of Physics). 

Figure 1.3 Babbage’s Analytical 
Engine, under construction at the 
time of his death in 1871 (image 
courtesy of Science Museum/
Science and Society Picture 
Library)
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An individual bit doesn’t carry much information. In the next sec-
tion, we examine how groups of bits can be used to represent numbers. 
In later chapters, we will also use groups of bits to represent letters and 
programs.

1.4  NUMBER SYSTEMS
You are accustomed to working with decimal numbers. In digital sys-
tems consisting of 1’s and 0’s, binary or hexadecimal numbers are often 
more convenient. This section introduces the various number systems 
that will be used throughout the rest of the book.

1 . 4 . 1   Decimal Numbers

In elementary school, you learned to count and do arithmetic in  
decimal. Just as you (probably) have ten fingers, there are ten decimal 
digits: 0, 1, 2, …, 9. Decimal digits are joined together to form longer  
decimal numbers. Each column of a decimal number has ten times the 
weight of the previous column. From right to left, the column weights 
are 1, 10, 100, 1000, and so on. Decimal numbers are referred to as 
base 10. The base is indicated by a subscript after the number to pre-
vent confusion when working in more than one base. For example, 
Figure 1.4 shows how the decimal number 974210 is written as the 
sum of each of its digits multiplied by the weight of the correspond-
ing column.

An N-digit decimal number represents one of 10N possibilities: 0, 1, 
2, 3, …, 10N − 1. This is called the range of the number. For example, 
a three-digit decimal number represents one of 1000 possibilities in the 
range of 0 to 999.

1 . 4 . 2   Binary Numbers

Bits represent one of two values, 0 or 1, and are joined together to form 
binary numbers. Each column of a binary number has twice the weight 
of the previous column, so binary numbers are base 2. In binary, the col-
umn weights (again, from right to left) are 1, 2, 4, 8, 16, 32, 64, 128, 

974210 = 9 × 103 + 7 × 102 + 4 × 101 + 2 × 100

nine
thousands

10's colum
n

100's colum
n

1000's colum
n

seven
hundreds

four
tens

two
ones

1's colum
n Figure 1.4 Representation of a 

decimal number
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256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, and so on. If 
you work with binary numbers often, you’ll save time if you remember 
these powers of two up to 216.

An N-bit binary number represents one of 2N possibilities: 0, 1, 2, 
3, …, 2N − 1. Table 1.1 shows 1-, 2-, 3-, and 4-bit binary numbers and 
their decimal equivalents.

Table 1.1 Binary numbers and their decimal equivalent

1-Bit  
Binary  

Numbers

2-Bit  
Binary  

Numbers

3-Bit  
Binary  

Numbers

4-Bit  
Binary  

Numbers
Decimal 

Equivalents

0 00 000 0000 0

1 01 001 0001 1

10 010 0010 2

11 011 0011 3

100 0100 4

101 0101 5

110 0110 6

111 0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Example 1.1 BINARY TO DECIMAL CONVERSION

Convert the binary number 101102 to decimal.

Solution Figure 1.5 shows the conversion. 
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1 . 4 . 3   Hexadecimal Numbers

Writing long binary numbers becomes tedious and prone to error. A group 
of four bits represents one of 24 = 16 possibilities. Hence, it is sometimes 
more convenient to work in base 16, called hexadecimal. Hexadecimal 
numbers use the digits 0 to 9 along with the letters A to F, as shown in 
Table 1.2. Columns in base 16 have weights of 1, 16, 162 (or 256), 163 
(or 4096), and so on.

Hexadecimal, a term coined 
by IBM in 1963, derives from 
the Greek hexi (six) and Latin 
decem (ten). A more proper 
term would use the Latin 
sexa (six), but sexadecimal 
sounded too risqué. 

Figure 1.5 Conversion of a binary 
number to decimal

101102 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21+ 0 × 20 = 2210
one

sixteen

1's colum
n

no
eight

one
four

one
two

no
one

2's colum
n

4's colum
n

8's colum
n

16's colum
n

Example 1.2 DECIMAL TO BINARY CONVERSION

Convert the decimal number 8410 to binary.

Solution Determine whether each column of the binary result has a 1 or a 0. We 
can do this starting at either the left or the right column.

Working from the left, start with the largest power of 2 less than or equal to 
the number (in this case, 64). 84 ≥ 64, so there is a 1 in the 64’s column, leaving  
84 − 64 = 20. 20 < 32, so there is a 0 in the 32’s column. 20 ≥ 16, so there is a 1 
in the 16’s column, leaving 20 − 16 = 4. 4 < 8, so there is a 0 in the 8’s column.  
4 ≥ 4, so there is a 1 in the 4’s column, leaving 4 − 4 = 0. Thus, there must be 0 s 
in the 2’s and 1’s column. Putting this all together, 8410 = 10101002.

Working from the right, repeatedly divide the number by 2. The remainder goes in 
each column. 84/2 = 42, so 0 goes in the 1’s column. 42/2 = 21, so 0 goes in the 
2’s column. 21/2 = 10 with the remainder of 1 going in the 4’s column. 10/2 = 5, 
so 0 goes in the 8’s column. 5/2 = 2 with the remainder of 1 going in the 16’s  
column. 2/2 = 1, so 0 goes in the 32’s column. Finally, 1/2 = 0 with the remain-
der of 1 going in the 64’s column. Again, 8410 = 10101002. 

Example 1.3 HEXADECIMAL TO BINARY AND DECIMAL CONVERSION

Convert the hexadecimal number 2ED16 to binary and to decimal.

Solution Conversion between hexadecimal and binary is easy because each hexa-
decimal digit directly corresponds to four binary digits. 216 = 00102, E16 = 11102 
and D16 = 11012, so 2ED16 = 0010111011012. Conversion to decimal requires 
the arithmetic shown in Figure 1.6. 



From Zero to OneCHAPTER ONE10

Table 1.2 Hexadecimal number system

Hexadecimal Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Figure 1.6 Conversion of a 
hexadecimal number to decimal 2ED16 = 2 × 162 + E × 161 + D × 160 = 74910

two
two hundred

fifty six's 

1's colum
n

fourteen
sixteens

thirteen
ones

16's colum
n

256's colum
n

Example 1.4 BINARY TO HEXADECIMAL CONVERSION

Convert the binary number 11110102 to hexadecimal.

Solution Again, conversion is easy. Start reading from the right. The four least signifi-
cant bits are 10102 = A16. The next bits are 1112 = 716. Hence, 11110102 = 7A16. 
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1 . 4 . 4   Bytes, Nibbles, and All That Jazz

A group of eight bits is called a byte. It represents one of 28 = 256 pos-
sibilities. The size of objects stored in computer memories is customarily 
measured in bytes rather than bits.

A group of four bits, or half a byte, is called a nibble. It represents 
one of 24 = 16 possibilities. One hexadecimal digit stores one nibble and 
two hexadecimal digits store one full byte. Nibbles are no longer a com-
monly used unit, but the term is cute.

Microprocessors handle data in chunks called words. The size 
of a word depends on the architecture of the microprocessor. When 
this chapter was written in 2021, most computers had 64-bit proces-
sors, indicating that they operate on 64-bit words. At the time, older  
computers handling 32-bit words were also widely available. Simpler 
microprocessors, especially those used in gadgets such as toasters, use 
8- or 16-bit words.

Within a group of bits, the bit in the 1’s column is called the 
least significant bit (lsb), and the bit at the other end is called the 
most significant bit (msb), as shown in Figure 1.7(a) for a 6-bit 
binary number. Similarly, within a word, the bytes are identified as 
least significant byte (LSB) through most significant byte (MSB), as 
shown in Figure 1.7(b) for a 4-byte number written with eight hexa-
decimal digits.

By handy coincidence, 210 = 1024 ≈ 103. Hence, the term kilo 
(Greek for thousand) indicates 210. For example, 210 bytes is one  

A microprocessor is a 
processor built on a single 
chip. Until the 1970’s, 
processors were too 
complicated to fit on one 
chip, so mainframe processors 
were built from boards 
containing many chips. 
Intel introduced the first 
4-bit microprocessor, called 
the 4004, in 1971. Now, 
even the most sophisticated 
supercomputers are built 
using microprocessors. 
We will use the terms 
microprocessor and processor 
interchangeably throughout 
this book. 

Example 1.5 DECIMAL TO HEXADECIMAL AND BINARY CONVERSION

Convert the decimal number 33310 to hexadecimal and binary.

Solution Like decimal to binary conversion, decimal to hexadecimal conversion 
can be done from the left or the right.

Working from the left, start with the largest power of 16 less than or equal to 
the number (in this case, 256). 256 goes into 333 once, so there is a 1 in the 
256’s column, leaving 333 − 256 = 77. 16 goes into 77 four times, so there is a 
4 in the 16’s column, leaving 77 − 16 × 4 = 13. 1310 = D16, so there is a D in the 
1’s column. In summary, 33310 = 14D16. Now it is easy to convert from hexadec-
imal to binary, as in Example 1.3. 14D16 = 1010011012.

Working from the right, repeatedly divide the number by 16. The remainder 
goes in each column. 333/16 = 20, with the remainder of 1310 = D16 going in the 
1’s column. 20/16 = 1, with the remainder of 4 going in the 16’s column. 1/16 = 0, 
with the remainder of 1 going in the 256’s column. Again, the result is 14D16. 
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kilobyte (1 KB). Similarly, mega (million) indicates 220 ≈ 106, and giga  
(billion) indicates 230 ≈ 109. If you know 210 ≈ 1 thousand, 220 ≈ 1 mil-
lion, 230 ≈ 1 billion, and remember the powers of two up to 29, it is easy 
to estimate any power of two in your head. 

To distinguish between powers 
of ten and powers of two, a 
naming convention specific to 
powers of two has emerged: 210 
is called a kibi (Ki), 220 mebi 
(Mi), 230 gibi (Gi), 240 tebi (Ti), 
250 pebi (Pi), 260 exbi (Ei), and 
so on. For example, 230 bytes is 
a gibibyte (GiB). 

Figure 1.7 Least and most 
significant bits and bytes

101100
least

significant
bit

most
significant

bit
(a) (b)

DEAFDAD8
least

significant
byte

most
significant

byte

Figure 1.8 Addition examples 
showing carries: (a) decimal  
(b) binary

1011
0011+
1110

11carries
4277
5499+
9776

11

(a) (b)

Example 1.6 ESTIMATING POWERS OF TWO

Find the approximate value of 224 without using a calculator.

Solution Split the exponent into a multiple of ten and the remainder.

224 = 220 × 24. 220 ≈ 1 million. 24 = 16. So, 224 ≈ 16 million. Technically, 224 = 
16,777,216, but 16 million is close enough for marketing purposes. 

1024 bytes is called a kilobyte (KB) or kibibyte (KiB). 1024 bits is 
called a kilobit (Kb or Kbit) or kibibit (Kib or Kibit). Similarly, MB / MiB, 
Mb / Mib, GB /GiB, and Gb /Gib are used for millions and billions of bytes and 
bits. Memory capacity is usually measured in bytes. Communication speed 
is usually measured in powers of ten bits /second. For example, the maximum 
speed of a dial-up modem is usually 56 kbits/sec, which is 56,000 bits/sec. 

1 . 4 . 5   Binary Addition

Binary addition is much like decimal addition but easier, as shown in 
Figure 1.8. As in decimal addition, if the sum of two numbers is greater 
than what fits in a single digit, we carry a 1 into the next column. Figure 
1.8 compares addition of decimal and binary numbers. In the rightmost 
column of Figure 1.8(a), 7 + 9 = 16, which cannot fit in a single digit 
because it is greater than 9. So, we record the 1’s digit, 6, and carry the 
10’s digit, 1, over to the next column. Likewise, in binary, if the sum of 
two numbers is greater than 1, we carry the 2’s digit over to the next 
column. For example, in the rightmost column of Figure 1.8(b), the sum 

On-chip memory and RAM 
is measured in powers of two, 
but hard drives are measured 
in powers of ten. For example, 
32 GB (GiB) of RAM is 
actually 34,359,738,368 bytes 
of memory, whereas 32 GB 
on a hard drive is 32,000,000 
bytes of memory. 
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Digital systems usually operate on a fixed number of digits. Addition is said 
to overflow if the result is too big to fit in the available digits. A 4-bit number, 
for example, has the range [0, 15]. 4-bit binary addition overflows if the result 
exceeds 15. The fifth bit of the sum is discarded, producing an incorrect result in 
the remaining four bits. Overflow can be detected by checking for a carry out of 
the most significant column.

1 . 4 . 6   Signed Binary Numbers

So far, we have considered only unsigned binary numbers that represent 
positive quantities. We will often want to represent both positive and 
negative numbers, requiring a different binary number system. Several 
schemes exist to represent signed binary numbers. The two most widely 
employed are called sign/magnitude and two’s complement.

Sign/Magnitude Numbers
Sign/magnitude numbers are intuitively appealing because they match 
our custom of writing negative numbers with a minus sign followed 
by the magnitude. An N-bit sign/magnitude number uses the most 

Example 1.7 BINARY ADDITION

Compute 01112 + 01012.

Solution Figure 1.9 shows that the sum is 11002. The carries are indicated in 
blue. We can check our work by repeating the computation in decimal. 01112 = 
710. 01012 = 510. The sum is 1210 = 11002. 

Figure 1.9 Binary addition 
example

0111
0101+
1100

111

Example 1.8 ADDITION WITH OVERFLOW

Compute 11012 + 01012. Does overflow occur?

Solution Figure 1.10 shows that the sum is 100102. This result overflows the 
range of a 4-bit binary number. If it must be stored as four bits, the most signif-
icant bit is discarded, leaving the incorrect result of 00102. If the computation 
had been done using numbers with five or more bits, the result 100102 would 
have been correct. 

Figure 1.10 Binary addition 
example with overflow

1101
0101+

10010

11 1

1 + 1 = 210 = 102 cannot fit in a single binary digit. So, we record the 1’s 
digit (0) and carry the 2’s digit (1) of the result to the next column. In 
the second column, the sum is 1 + 1 + 1 = 310 = 112. Again, we record 
the 1’s digit (1) and carry the 2’s digit (1) to the next column. For obvi-
ous reasons, the bit that is carried over to the neighboring column is 
called the carry bit.
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significant bit as the sign and the remaining N − 1 bits as the magnitude 
(absolute value). A sign bit of 0 indicates positive and a sign bit of 1 
indicates negative.

The $7 billion Ariane 5 rocket, 
launched on June 4, 1996, 
veered off course 40 seconds 
after launch, broke up, and 
exploded. The failure was 
caused when the computer 
controlling the rocket 
overflowed its 16-bit range 
and crashed.

The code had been extensively 
tested on the Ariane 4 rocket. 
However, the Ariane 5 had a 
faster engine that produced larger 
values for the control computer, 
leading to the overflow.

Photograph courtesy of ESA/
CNES/ARIANESPACE-
Service Optique CS6. 

Example 1.9 SIGN/MAGNITUDE NUMBERS

Write 5 and −5 as 4-bit sign/magnitude numbers.

Solution Both numbers have a magnitude of 510 = 1012. Thus, 510 = 01012 and 
−510 = 11012. 

Unfortunately, ordinary binary addition does not work for sign/
magnitude numbers. For example, using ordinary addition on −510 + 510 
gives 11012 + 01012 = 100102, which is nonsense.

An N-bit sign/magnitude number spans the range [−2N−1 + 1, 2N−1 − 1]. 
Sign/magnitude numbers are slightly odd in that both +0 and −0 exist. 
Both indicate zero. As you may expect, it can be troublesome to have 
two different representations for the same number.

Two’s Complement Numbers
Two’s complement numbers are identical to unsigned binary num-
bers except that the most significant bit position has a weight of −2N−1 
instead of 2N−1. They overcome the shortcomings of sign/magnitude 
numbers: zero has a single representation, and ordinary addition works.

In two’s complement representation, zero is written as all zeros: 
00…0002. The most positive number has a 0 in the most signif icant 
position and 1’s elsewhere: 01…1112 = 2N−1 − 1. The most negative  
number has a 1 in the most significant position and 0’s elsewhere: 
10…0002 = −2N−1. And −1 is written as all ones: 11…1112.

Notice that positive numbers have a 0 in the most significant posi-
tion and negative numbers have a 1 in this position, so the most signif-
icant bit can be viewed as the sign bit. However, the overall number is 
interpreted differently for two’s complement numbers and sign/magni-
tude numbers.

The sign of a two’s complement number is reversed (e.g., from +5 to 
−5 or from −17 to +17) by inverting the bits in the number and then 
adding 1 to the least significant bit position. This process is called the 
reversing the sign method. It is useful in finding the representation of a 
negative number or determining the magnitude of a negative number.

The result of inverting the 
bits in a number is called the 
one’s complement of that 
number. For example, the 
one’s complement of 0110111 
is 1001000. It is called the 
one’s complement because 
when you add the numbers 
together, you get all 1’s. For 
example, 0110111 + 1001000 
= 1111111. 

Example 1.10  TWO’S COMPLEMENT REPRESENTATION  
OF A NEGATIVE NUMBER

Find the representation of −210 as a 4-bit two’s complement number.
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Two’s complement numbers have the compelling advantage that 
addition works properly for both positive and negative numbers. Recall 
that when adding N-bit numbers, the carry out of the Nth bit (i.e., the  
N + 1th result bit) is discarded.

The process of reversing the 
sign has historically been 
called “taking the two’s 
complement.” However, 
we have found that this 
terminology sometimes makes 
people think that they always 
have to “take the two’s 
complement” when working 
with two’s complement 
numbers, but that is not true! 
This process of reversing the 
sign is only sometimes used 
when working with negative 
two’s complement numbers. 

Solution Start by representing the magnitude: +210 = 00102. To get −210, reverse 
the sign by inverting the bits and adding 1. Inverting 00102 produces 11012. 
11012 + 1 = 11102. So, −210 is 11102. 

Example 1.11 VALUE OF NEGATIVE TWO’S COMPLEMENT NUMBERS

Find the decimal value of the 4-bit two’s complement number 0x9 (i.e., 10012).

Solution 10012 has a leading 1, so it must be negative. To find its magnitude, 
reverse the sign by inverting the bits and adding 1. Inverting 10012 = 01102. 
01102 + 1 = 01112 = 710. Hence, 10012 = −710. 

Example 1.12 ADDING TWO’S COMPLEMENT NUMBERS

Compute (a) −210 + 110 and (b) −710 + 710 using two’s complement numbers.

Solution (a) −210 + 110 = 11102 + 00012 = 11112 = −110. (b) −710 + 710 = 10012 +  
01112 = 100002. The fifth bit is discarded, leaving the correct 4-bit result 00002. 

Subtraction is performed by taking the two’s complement of the sec-
ond number, then adding.

Two’s complement numbers 
earned their name from the  
fact that creating the complement  
(negative) of a number is found  
by subtracting it from 2N 
(referred to by its base: two’s)— 
thus, the two’s complement. 
For example, to create the 
4-bit complement of 7 (i.e., −7),  
we perform: 24 − 7 = 10000 −  
0111 = (1111 + 1) − 0111 =  
(1111 − 0111) + 1 = 1000 +  
1 = 1001. This is the 4-bit  
two’s complement representation  
of −7. Notice that the final 
step was the same as the 
reversing the sign method, 
that is, invert the bits of 0111 
(to 1000) and add 1. 

Example 1.13 SUBTRACTING TWO’S COMPLEMENT NUMBERS

Compute (a) 510 − 310 and (b) 310 − 510 using 4-bit two’s complement numbers.

Solution (a) 310 = 00112. Take its two’s complement to obtain −310 = 11012. 
Now, add 510 + (−310) = 01012 + 11012 = 00102 = 210. Note that the carry out 
of the most significant position is discarded because the result is stored in four 
bits. (b) Take the two’s complement of 510 to obtain −510 = 1011. Now, add 310 + 
(−510) = 00112 + 10112 = 11102 = −210. 

The two’s complement of 0 is found by inverting all the bits  
(producing 11…1112) and adding 1, which produces all 0’s, disregarding 
the carry out of the most significant bit position. Hence, zero is always 
represented with all 0’s. Unlike the sign/magnitude system, the two’s 
complement system has no separate −0. Zero is considered positive 
because its sign bit is 0.
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Like unsigned numbers, N-bit two’s complement numbers represent 
one of 2N possible values. However, the values are split between positive 
and negative numbers. For example, a 4-bit unsigned number represents 
16 values: 0 to 15. A 4-bit two’s complement number also represents 
16 values: −8 to 7. In general, the range of an N-bit two’s complement 
number spans [−2N−1, 2N−1 − 1]. It should make sense that there is one 
more negative number than positive number because there is no −0. The 
most negative number 10…0002 = −2N−1 is sometimes called the weird 
number. Its two’s complement is found by inverting the bits (producing 
01…1112) and adding 1, which produces 10…0002, the weird number, 
again. Hence, this negative number has no positive counterpart.

Adding two N-bit positive numbers or negative numbers may cause 
overflow if the result is greater than 2N−1 − 1 or less than −2N−1. Adding 
a positive number to a negative number never causes overflow. Unlike 
unsigned numbers, a carry out of the most significant column does not 
indicate overflow. Instead, overflow occurs if the two numbers being 
added have the same sign bit and the result has the opposite sign bit.

Example 1.14  ADDING TWO’S COMPLEMENT NUMBERS  
WITH OVERFLOW

Compute 410 + 510 using 4-bit two’s complement numbers. Does the result 
overflow?

Solution 410 + 510 = 01002 + 01012 = 10012 = −710. The result overflows the 
range of 4-bit positive two’s complement numbers, producing an incorrect neg-
ative result. If the computation had been done using five or more bits, the result 
010012 = 910 would have been correct. 

When a two’s complement number is extended to more bits, the sign 
bit must be copied into the most significant bit positions. This process is 
called sign extension. For example, the numbers 3 and −3 are written as 
4-bit two’s complement numbers 0011 and 1101, respectively. They are 
sign-extended to seven bits by copying the sign bit into the three new 
upper bits to form 0000011 and 1111101, respectively, which are 7-bit 
representations of 3 and –3.

Comparison of Number Systems
The three most commonly used binary number systems are unsigned, 
two’s complement, and sign/magnitude. Table 1.3 compares the range 
of N-bit numbers in each of these three systems. Two’s complement 
numbers are convenient because they represent both positive and neg-
ative integers and because ordinary addition works for all numbers. 
Subtraction is performed by negating the second number (i.e., reversing 
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the sign), and then adding. Unless stated otherwise, assume that all 
signed binary numbers use two’s complement representation.

Figure 1.11 shows a number line indicating the values of 4-bit num-
bers in each system. Unsigned numbers span the range [0, 15] in reg-
ular binary order. Two’s complement numbers span the range [−8, 7]. 
The nonnegative numbers [0, 7] share the same encodings as unsigned 
numbers. The negative numbers [−8, −1] are encoded such that a larger 
unsigned binary value represents a number closer to 0. Notice that the 
weird number, 1000, represents −8 and has no positive counterpart. 
Sign/magnitude numbers span the range [−7, 7]. The most significant 
bit is the sign bit. The positive numbers [1, 7] share the same encodings 
as unsigned numbers. The negative numbers are symmetric but have the 
sign bit set. 0 is represented by both 0000 and 1000. Thus, N-bit sign/
magnitude numbers represent only 2N − 1 integers because of the two 
representations for 0. N-bit unsigned binary or two's complement num-
bers represent 2N integers.

1.5  LOGIC GATES
Now that we know how to use binary variables to represent information, 
we explore digital systems that perform operations on these binary vari-
ables. Logic gates are simple digital circuits that take one or more binary 
inputs and produce a binary output. Logic gates are drawn with a symbol 
showing the input (or inputs) and the output. Inputs are usually drawn 

Table 1.3 Range of N-bit numbers

System Range

Unsigned [0, 2N – 1]

Two’s Complement [–2N–1, 2N–1 – 1]

Sign/Magnitude [–2N–1 + 1, 2N–1 – 1]

Figure 1.11 Number line and 4-bit binary encodings

–8

1000 1001

–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 Two's Complement

1000
1001101010111100110111101111

0000
0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 11110000 0001 0010 0011 0100 0101 0110 0111

Sign / Magnitude

Unsigned
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on the left (or top) and outputs on the right (or bottom). Digital design-
ers typically use letters near the beginning of the alphabet for gate inputs 
and the letter Y for the gate output. The relationship between the inputs 
and the output can be described with a truth table or a Boolean equation. 
A truth table lists inputs on the left and the corresponding output on the 
right. It has one row for each possible combination of inputs. A Boolean 
equation is a mathematical expression using binary variables.

1 . 5 . 1   NOT Gate

A NOT gate has one input, A, and one output, Y, as shown in Figure 1.12. 
The NOT gate’s output is the inverse of its input. If A is FALSE, then Y 
is TRUE. If A is TRUE, then Y is FALSE. This relationship is summarized 
by the truth table and Boolean equation in the figure. The line over A in 
the Boolean equation is pronounced NOT, so Y A=  is read “Y equals 
NOT A.” The NOT gate is also called an inverter.

Other texts use a variety of notations for NOT, including Y = A′,  
Y = ¬A, Y = !A, or Y = ~A. We will use Y A=  exclusively, but don’t be 
puzzled if you encounter another notation elsewhere.

1 . 5 . 2   Buffer

The other one-input logic gate is called a buffer and is shown in  
Figure 1.13. It simply copies the input to the output.

From the logical point of view, a buffer is no different from a wire, 
so it might seem useless. However, from the analog point of view, the 
buffer might have desirable characteristics, such as the ability to deliver 
large amounts of current to a motor or the ability to quickly send its 
output to many gates. This is an example of why we need to consider 
multiple levels of abstraction to fully understand a system; the digital 
abstraction hides the real purpose of a buffer.

The triangle symbol indicates a buffer. A circle on the output is 
called a bubble and indicates inversion, as was seen in the NOT gate 
symbol of Figure 1.12.

1 . 5 . 3   AND Gate

Two-input logic gates are more interesting. The AND gate shown in 
Figure 1.14 produces a TRUE output, Y, if and only if both A and B are 
TRUE. Otherwise, the output is FALSE. By convention, the inputs are 
listed in the order 00, 01, 10, 11, as if you were counting in binary. The 
Boolean equation for an AND gate can be written in several ways:  
Y = A • B, Y = AB, or Y = A ∩ B. The ∩ symbol is pronounced “intersec-
tion” and is preferred by logicians. We prefer Y = AB, read “Y equals  
A and B,” because we are lazy.

According to Larry Wall, 
inventor of the Perl 
programming language, “the 
three principal virtues of a 
programmer are Laziness, 
Impatience, and Hubris.” 

Figure 1.12 NOT gate

NOT

Y = A 

A Y
0 1
1 0

A Y

Figure 1.13 Buffer

BUF

Y = A 

A Y
0 0
1 1

A Y

Figure 1.14 AND gate

AND

Y = AB 

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y
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1 . 5 . 4   OR Gate

The OR gate shown in Figure 1.15 produces a TRUE output, Y, if either 
A or B (or both) are TRUE. The Boolean equation for an OR gate is 
written as Y = A + B or Y = A ∪ B. The ∪ symbol is pronounced union 
and is preferred by logicians. Digital designers normally use the + nota-
tion, Y = A + B is pronounced “Y equals A or B.”

1 . 5 . 5   Other Two-Input Gates

Figure 1.16 shows other common two-input logic gates. XOR (exclusive 
OR, pronounced “ex-OR”) is TRUE if A or B, but not both, are TRUE. 
The XOR operation is indicated by ⊕, a plus sign with a circle around 
it. Any gate can be followed by a bubble to invert its operation. The 
NAND gate performs NOT AND. Its output is TRUE unless both inputs 
are TRUE. The NOR gate performs NOT OR. Its output is TRUE if nei-
ther A nor B is TRUE. An N-input XOR gate is sometimes called a par-
ity gate and produces a TRUE output if an odd number of inputs are 
TRUE. As with two-input gates, the input combinations in the truth 
table are listed in counting order.

A silly way to remember the 
OR symbol is that its input 
side is curved like Pacman’s 
mouth, so the gate is hungry 
and willing to eat any TRUE 
inputs it can find!

 

Figure 1.15 OR gate

OR

Y = A + B 

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y

Figure 1.16 More two-input logic gates

Y = A + BY = A  + B

XOR
A
B Y

Y = AB 

NAND
A
B Y

NOR
A
B Y

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Example 1.15 XNOR GATE

Figure 1.17 shows the symbol and Boolean equation for a two-input XNOR (pro-
nounced ex-NOR) gate that performs the inverse of an XOR. Complete the truth table.

Solution Figure 1.18 shows the truth table. The XNOR output is TRUE if both 
inputs are FALSE or both inputs are TRUE. The two-input XNOR gate is some-
times called an equality gate because its output is TRUE when the inputs are equal. 

1 . 5 . 6   Multiple-Input Gates

Many Boolean functions of three or more inputs exist. The most com-
mon are AND, OR, XOR, NAND, NOR, and XNOR. An N-input AND Figure 1.17 XNOR gate

XNOR

Y = A  + B

A B Y
0 0
0 1
1 0
1 1

A
B Y
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gate produces a TRUE output when all N inputs are TRUE. An N-input 
OR gate produces a TRUE output when at least one input is TRUE.

Figure 1.18 XNOR truth table

A B Y
0 0
0 1
1 0
1 1

1
0
0
1 Example 1.16 THREE-INPUT NOR GATE

Figure 1.19 shows the symbol and Boolean equation for a three-input NOR 
gate. Complete the truth table.

Solution Figure 1.20 shows the truth table. The output is TRUE only if none of 
the inputs are TRUE. 

Example 1.17 FOUR-INPUT AND GATE

Figure 1.21 shows the symbol and Boolean equation for a four-input AND gate. 
Create a truth table.

Solution Figure 1.22 shows the truth table. The output is TRUE only if all of the 
inputs are TRUE. 

1.6  BENEATH THE DIGITAL ABSTRACTION
A digital system uses discrete-valued variables. However, the variables 
are represented by continuous physical quantities, such as the voltage on 
a wire, the position of a gear, or the level of fluid in a cylinder. Hence, 
the designer must choose a way to relate the continuous value to the 
discrete value.

For example, consider representing a binary signal A with a voltage 
on a wire. Let 0 volts (V) indicate A = 0 and 5 V indicate A = 1. Any real 
system must tolerate some noise, so 4.97 V probably ought to be inter-
preted as A = 1 as well. But what about 4.3 V? Or 2.8 V? Or 2.500000 V?

1 . 6 . 1   Supply Voltage

Suppose the lowest voltage in the system is 0 V, also called ground or 
GND. The highest voltage in the system comes from the power supply 
and is usually called VDD. In 1970’s and 1980’s technology, VDD was 
generally 5 V. As chips have progressed to smaller transistors, VDD has 
dropped to 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, or even lower to save power 
and avoid overloading the transistors.

1 . 6 . 2   Logic Levels

The mapping of a continuous variable onto a discrete binary variable is 
done by defining logic levels, as shown in Figure 1.23. The first gate is 
called the driver and the second gate is called the receiver. The output of 

Figure 1.19 Three-input NOR gate
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Figure 1.20 Three-input NOR 
truth table
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Figure 1.21 Four-input AND gate
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the driver is connected to the input of the receiver. The driver produces 
a LOW (0) output in the range of 0 to VOL or a HIGH (1) output in the 
range of VOH to VDD. If the receiver gets an input in the range of 0 to 
VIL, it will consider the input to be LOW. If the receiver gets an input 
in the range of VIH to VDD, it will consider the input to be HIGH. If, 
for some reason such as noise or faulty components, the receiver’s input 
should fall in the forbidden zone between VIL and VIH, the behavior of 
the gate is unpredictable. VOH, VOL, VIH, and VIL are called the output 
and input high and low logic levels.

1 . 6 . 3   Noise Margins

If the output of the driver is to be correctly interpreted at the input of 
the receiver, we must choose VOL < VIL and VOH > VIH. Thus, even if 
the output of the driver is contaminated by some noise, the input  
of the receiver will still detect the correct logic level. The noise margin 
(NM) is the amount of noise that could be added to a worst-case output 
such that the signal can still be interpreted as a valid input. As can be 
seen in Figure 1.23, the low and high noise margins are, respectively,

 NM V VL IL OL= −  (1.2)

 NM V VH OH IH= −  (1.3)

VDD stands for the voltage on 
the drain of a metal-oxide-
semiconductor transistor, 
used to build most modern 
chips. The power supply 
voltage is also sometimes 
called VCC, standing for the 
voltage on the collector of a 
bipolar junction transistor 
used to build chips in an 
older technology. Ground 
is sometimes called VSS 
because it is the voltage on 
the source of a metal-oxide-
semiconductor transistor. 
See Section 1.7 for more 
information on transistors. 

Figure 1.22 Four-input AND truth 
table

C D Y
0 0 0
0 1 0
1 0 0
1 1 0

B
0
0
0
0

0 0 0
0 1 0
1 0 0
1 1 0

1
1
1
1

A

0 0 0
0 1 0
1 0 0
1 1 0

0
0
0
0

0 0 0
0 1 0
1 0 0
1 1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

Figure 1.23 Logic levels and noise margins
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Example 1.18 CALCULATING NOISE MARGINS

Consider the inverter circuit of Figure 1.24. VO1 is the output voltage of inverter 
I1, and VI2 is the input voltage of inverter I2. Both inverters have the following 
characteristics: VDD = 5 V, VIL = 1.35 V, VIH = 3.15 V, VOL = 0.33 V, and VOH = 
3.84 V. What are the inverter low and high noise margins? Can the circuit toler-
ate 1 V of noise between VO1 and VI2?
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Solution The inverter noise margins are: NML = VIL – VOL = (1.35 V − 0.33 V) = 
1.02 V, NMH = VOH − VIH = (3.84 V − 3.15 V) = 0.69 V. The circuit can tolerate 
1 V of noise when the output is LOW (NML = 1.02 V) but not when the output 
is HIGH (NMH = 0.69 V). For example, suppose the driver, I1, outputs its worst-
case HIGH value, VO1 = VOH = 3.84 V. If noise causes the voltage to droop by 
1 V before reaching the input of the receiver, VI2 = (3.84 V − 1 V) = 2.84 V. This 
is less than the acceptable input HIGH value, VIH = 3.15 V, so the receiver may 
not sense a proper HIGH input. 

1 . 6 . 4   DC Transfer Characteristics

To understand the limits of the digital abstraction, we must delve into 
the analog behavior of a gate. The DC transfer characteristics of a gate 
describe the output voltage as a function of the input voltage when the 
input is changed slowly enough that the output can keep up. They are 
called transfer characteristics because they describe the relationship 
between input and output voltages.

An ideal inverter would have an abrupt switching threshold at VDD/2, as 
shown in Figure 1.25(a). For V(A) < VDD/2, V(Y) = VDD. For V(A) > VDD/2, 
V(Y) = 0. In such a case, VIH = VIL = VDD/2. VOH = VDD and VOL = 0.

A real inverter changes more gradually between the extremes, as 
shown in Figure 1.25(b). When the input voltage V(A) is 0, the output 
voltage V(Y) = VDD. When V(A) = VDD, V(Y) = 0. However, the tran-
sition between these endpoints is smooth and may not be centered at 
exactly VDD/2. This raises the question of how to define the logic levels.

A reasonable place to choose the logic levels is where the slope 
of the transfer characteristic dV(Y)/dV(A) is −1. These two points are 
called the unity gain points. Choosing logic levels at the unity gain 
points usually maximizes the noise margins. If VIL were reduced, VOH 
would only increase by a small amount. But if VIL were increased, VOH 
would drop precipitously.

1 . 6 . 5   The Static Discipline

To avoid inputs falling into the forbidden zone, digital logic gates are 
designed to conform to the static discipline. The static discipline requires 
that, given logically valid inputs, every circuit element will produce logi-
cally valid outputs.

By conforming to the static discipline, digital designers sacrifice 
the freedom of using arbitrary analog circuit elements in return for 

DC indicates behavior when 
an input voltage is held 
constant or changes slowly 
enough for the rest of the 
system to keep up. The term’s 
historical root comes from 
direct current, a method of 
transmitting power across a 
line with a constant voltage. 
In contrast, the transient 
response of a circuit is the 
behavior when an input 
voltage changes rapidly. 
Section 2.9 explores transient 
response further. 

Figure 1.24 Inverter circuit
I1 I2

Noise

VO1 VI2
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the simplicity and robustness of digital circuits. They raise the level of 
abstraction from analog to digital, increasing design productivity by  
hiding needless detail.

The choice of VDD and logic levels is arbitrary, but all gates that 
communicate must have compatible logic levels. Therefore, gates are 
grouped into logic families such that all gates in a logic family obey the 
static discipline when used with other gates in the family. Logic gates in 
the same logic family snap together like Legos in that they use consistent 
power supply voltages and logic levels.

Four major logic families that predominated from the 1970’s through 
the 1990’s are Transistor-Transistor Logic (TTL), Complementary Metal-
Oxide-Semiconductor Logic (CMOS, pronounced sea-moss), Low 
Voltage TTL Logic (LVTTL), and Low Voltage CMOS Logic (LVCMOS). 
Their logic levels are compared in Table 1.4. Since then, logic fami-
lies have balkanized with a proliferation of even lower power supply  
voltages. Appendix A.6 revisits popular logic families in more detail.

Figure 1.25 DC transfer characteristics and logic levels
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Table 1.4 Logic levels of 5 V and 3.3 V logic families

Logic Family VDD VIL VIH VOL VOH

TTL 5 (4.75−5.25)   0.8   2.0   0.4   2.4

CMOS 5 (4.5−6) 1.35 3.15 0.33 3.84

LVTTL 3.3 (3−3.6)   0.8   2.0   0.4   2.4

LVCMOS 3.3 (3−3.6)   0.9   1.8 0.36   2.7
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1.7  CMOS TRANSISTORS*
This section and other sections marked with a * are optional and are not 
necessary to understand the main flow of the book.

Babbage’s Analytical Engine was built from gears, and early elec-
trical computers used relays or vacuum tubes. Modern computers use 
transistors because they are cheap, small, and reliable. Transistors are 
electrically controlled switches that turn ON or OFF when a voltage or 
current is applied to a control terminal. The two main types of transis-
tors are bipolar junction transistors and metal-oxide-semiconductor field 
effect transistors (MOSFETs or MOS transistors, pronounced “moss-
fets” or “M-O-S”, respectively).

In 1958, Jack Kilby at Texas Instruments built the first integrated 
circuit containing two transistors. In 1959, Robert Noyce at Fairchild 
Semiconductor patented a method of interconnecting multiple transis-
tors on a single silicon chip. At the time, transistors cost about $10 each.

Thanks to more than three decades of unprecedented manufacturing 
advances, engineers can now pack roughly one billion MOSFETs onto a 
1-cm2 chip of silicon, and these transistors cost less than 10 microcents 
apiece. The capacity and cost continue to improve by an order of mag-
nitude every 8 years or so. MOSFETs are now the building blocks of 

Robert Noyce, 1927–1990
Born in Burlington, Iowa. 
Received a B.A. in physics 
from Grinnell College and a 
Ph.D. in physics from MIT. 
Nicknamed “Mayor of Silicon 
Valley” for his profound 
influence on the industry.

Cofounded Fairchild 
Semiconductor in 1957 and 
Intel in 1968. Coinvented 
the integrated circuit. Many 
engineers from his teams 
went on to found other 
seminal semiconductor 
companies (photograph  
© 2006, Intel Corporation. 
Reproduced by permission). 

Table 1.5 Compatibility of logic families

Receiver
Driver TTL CMOS LVTTL LVCMOS

TTL OK NO: VOH < VIH MAYBEa MAYBEa

CMOS OK OK MAYBEa MAYBEa

LVTTL OK NO: VOH < VIH OK OK

LVCMOS OK NO: VOH < VIH OK OK

aAs long as a 5 V HIGH level does not damage the receiver input

Example 1.19 LOGIC FAMILY COMPATIBILITY

Which of the logic families in Table 1.4 can communicate with each other 
reliably?

Solution Table 1.5 lists which logic families have compatible logic levels. Note 
that a 5 V logic family such as TTL or CMOS may produce an output voltage 
as HIGH as 5 V. If this 5 V signal drives the input of a 3.3 V logic family such as 
LVTTL or LVCMOS, it can damage the receiver unless the receiver is specially 
designed to be “5-volt compatible.” 
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almost all digital systems. In this section, we will peer beneath the digital 
abstraction to see how logic gates are built from MOSFETs.

1 . 7 . 1   Semiconductors

MOS transistors are built from silicon, the predominant atom in rock 
and sand. Silicon (Si) is a group IV atom, so it has four electrons in its 
valence shell and forms bonds with four adjacent atoms, resulting in a 
crystalline lattice. Figure 1.26(a) shows the lattice in two dimensions for 
ease of drawing, but remember that the lattice actually forms a cubic 
crystal. In the figure, a line represents a covalent bond. By itself, sili-
con is a poor conductor because all the electrons are tied up in covalent 
bonds. However, it becomes a better conductor when small amounts of 
impurities, called dopant atoms, are carefully added. If a group V dop-
ant such as arsenic (As) is added, the dopant atoms have an extra elec-
tron that is not involved in the bonds. That electron can easily move 
about the lattice, leaving an ionized dopant atom (As+) behind, as shown 
in Figure 1.26(b). The electron carries a negative charge, so we call arse-
nic an n-type dopant. On the other hand, if a group III dopant such as 
boron (B) is added, the dopant atoms are missing an electron, as shown 
in Figure 1.26(c). This missing electron is called a hole. An electron from 
a neighboring silicon atom may move over to fill the missing bond, 
forming an ionized dopant atom (B−) and leaving a hole at the neighbor-
ing silicon atom. In a similar fashion, the hole can migrate around the 
lattice. The hole is a lack of negative charge, so it acts like a positively 
charged particle. Hence, we call boron a p-type dopant. Because the con-
ductivity of silicon changes over many orders of magnitude depending 
on the concentration of dopants, silicon is called a semiconductor.

1 . 7 . 2   Diodes

The junction between p-type and n-type silicon is called a diode. The 
p-type region is called the anode and the n-type region is called the cath-
ode, as illustrated in Figure 1.27. When the voltage on the anode rises 

Figure 1.26 Silicon lattice and 
dopant atomsSi SiSi
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above the voltage on the cathode, the diode is forward biased, and cur-
rent flows through the diode from the anode to the cathode. But when 
the anode voltage is lower than the voltage on the cathode, the diode is 
reverse biased, and no current flows. The diode symbol intuitively shows 
that current only flows in one direction.

1 . 7 . 3   Capacitors

A capacitor consists of two conductors separated by an insulator. When 
a voltage V is applied to one of the conductors, the conductor accumu-
lates electric charge Q and the other conductor accumulates the opposite 
charge −Q. The capacitance C of the capacitor is the ratio of charge to 
voltage: C = Q/V. The capacitance is proportional to the size of the con-
ductors and inversely proportional to the distance between them. The 
symbol for a capacitor is shown in Figure 1.28.

Capacitance is important because charging or discharging a conduc-
tor takes time and energy. More capacitance means that a circuit will be 
slower and require more energy to operate. Speed and energy will be  
discussed throughout this book.

1 . 7 . 4   nMOS and pMOS Transistors

A MOSFET is a sandwich of several layers of conducting and insulating 
materials. MOSFETs are built on thin, flat wafers of silicon of about 15 
to 30 cm in diameter. The manufacturing process begins with a bare 
wafer. The process involves a sequence of steps in which dopants are 
implanted into the silicon, thin films of silicon dioxide and silicon are 
grown, and metal is deposited. Between each step, the wafer is patterned 
so that the materials appear only where they are desired. Because tran-
sistors are a fraction of a micron1 in length and the entire wafer is pro-
cessed at once, it is inexpensive to manufacture billions of transistors at 
a time. Once processing is complete, the wafer is cut into rectangles 
called chips or dice that contain thousands, millions, or even billions of 
transistors. The chip is tested, then placed in a plastic or ceramic pack-
age with metal pins to connect it to a circuit board.

The MOSFET sandwich consists of a conducting layer called the 
gate on top of an insulating layer of silicon dioxide (SiO2) on top of the 
silicon wafer, called the substrate. Historically, the gate was constructed 
from metal, hence the name metal-oxide-semiconductor. Modern  
manufacturing processes use polycrystalline silicon for the gate because 
it does not melt during subsequent high-temperature processing steps. 
Silicon dioxide is better known as glass and is often simply called oxide 

1 1 μm = 1 micron = 10−6 m.

Technicians in an Intel clean 
room wear Gore-Tex bunny 
suits to prevent particulates 
from their hair, skin, and 
clothing from contaminating 
the microscopic transistors 
on silicon wafers (photograph 
© 2006, Intel Corporation. 
Reproduced by permission). 

A 40-pin dual-inline package 
(DIP) contains a small chip 
(scarcely visible) in the center 
that is connected to 40 metal 
pins, 20 on a side, by gold 
wires thinner than a strand 
of hair (photograph by Kevin 
Mapp. © Harvey Mudd 
College). 

Figure 1.27 The p-n junction 
diode structure and symbol

p-type n-type

anode cathode

Figure 1.28 Capacitor symbol

C
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in the semiconductor industry. The metal-oxide-semiconductor sandwich 
forms a capacitor, in which a thin layer of insulating oxide called a 
dielectric separates the metal and semiconductor plates.

There are two flavors of MOSFETs: nMOS and pMOS (pronounced 
“n-moss” and “p-moss”). Figure 1.29 shows cross-sections of each type, 
made by sawing through a wafer and looking at it from the side. The 
n-type transistors, called nMOS, have regions of n-type dopants adja-
cent to the gate called the source and the drain and are built on a p-type 
semiconductor substrate. The pMOS transistors are just the opposite, 
consisting of p-type source and drain regions in an n-type substrate.

A MOSFET behaves as a voltage-controlled switch in which the 
gate voltage creates an electric field that turns ON or OFF a connection 
between the source and drain. The term field effect transistor comes 
from this principle of operation. Let us start by exploring the operation 
of an nMOS transistor. 

The substrate of an nMOS transistor is normally tied to GND, the 
lowest voltage in the system. First, consider the situation when the gate is 
also at 0 V, as shown in Figure 1.30(a). The diodes between the source or 
drain and the substrate are reverse biased because the source or drain 
voltage is nonnegative. Hence, there is no path for current to flow 
between the source and drain, so the transistor is OFF. Now, consider 
when the gate is raised to VDD, as shown in Figure 1.30(b). When a posi-
tive voltage is applied to the top plate of a capacitor, it establishes an elec-
tric field that attracts positive charge on the top plate and negative charge 
to the bottom plate. If the voltage is sufficiently large, so much negative 
charge is attracted to the underside of the gate that the region inverts from 
p-type to effectively become n-type. This inverted region is called the 
channel. Now the transistor has a continuous path from the n-type source 
through the n-type channel to the n-type drain, so electrons can flow from 

The source and drain 
terminals are physically 
symmetric. However, we 
say that charge flows from 
the source to the drain. In 
an nMOS transistor, the 
charge is carried by electrons, 
which flow from negative 
voltage to positive voltage. 
In a pMOS transistor, the 
charge is carried by holes, 
which flow from positive 
voltage to negative voltage. 
If we draw schematics with 
the most positive voltage 
at the top and the most 
negative at the bottom, the 
source of (negative) charges 
in an nMOS transistor is 
the bottom terminal and the 
source of (positive) charges in 
a pMOS transistor is the top 
terminal. 

A technician holds a 12-inch 
wafer containing hundreds 
of microprocessor chips 
(photograph © 2006, Intel 
Corporation. Reproduced by 
permission). 

Figure 1.29 nMOS and pMOS transistors
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source to drain. The transistor is ON. The gate voltage required to turn on 
a transistor is called the threshold voltage, Vt, and is typically 0.3 to 0.7 V.

pMOS transistors work in just the opposite fashion, as might be 
guessed from the bubble on their symbol shown in Figure 1.31. The sub-
strate is tied to VDD. When the gate is also at VDD, the pMOS transistor 
is OFF. When the gate is at GND, the channel inverts to p-type and the 
pMOS transistor is ON.

Unfortunately, MOSFETs are not perfect switches. In particular, 
nMOS transistors pass 0’s well but pass 1’s poorly. Specifically, when 
the gate of an nMOS transistor is at VDD, the source will only swing 
between 0 and VDD − Vt when its drain ranges from 0 to VDD. Similarly, 
pMOS transistors pass 1’s well but 0’s poorly. However, we will see that it 
is possible to build logic gates that use transistors only in their good mode.

nMOS transistors need a p-type substrate, and pMOS transistors 
need an n-type substrate. To build both flavors of transistors on the 
same chip, manufacturing processes typically start with a p-type wafer, 
then implant n-type regions called wells where the pMOS transistors 
should go. These processes that provide both flavors of transistors are 
called Complementary MOS or CMOS. CMOS processes are used to 
build the vast majority of all transistors fabricated today.

In summary, CMOS processes give us two types of electri-
cally controlled switches, as shown in Figure 1.31. The voltage at the  

Gordon Moore, 1929–
Born in San Francisco. 
Received a B.S. in chemistry 
from UC Berkeley and a Ph.D. 
in chemistry and physics from 
Caltech. Cofounded Intel in 
1968 with Robert Noyce. 
Observed in 1965 that the 
number of transistors on a 
computer chip doubles every 
year. This trend has become 
known as Moore’s Law. Since 
1975, transistor counts have 
doubled every two years.

A corollary of Moore’s 
Law is that microprocessor 
performance doubles every 18 
to 24 months. Semiconductor 
sales have also increased 
exponentially. Unfortunately, 
power consumption has 
increased exponentially as well.

Moore’s Law has driven 
the incredible advances of the 
semiconductor industry for 
50 years as the feature size of 
transistors has dropped from 
more than 10 μm to only 
5 nm. However, this progress 
has slowed because building 
transistors much smaller 
than the wavelength of light 
is expensive. (Photograph 
© 2006, Intel Corporation. 
Reproduced by permission.) 

Figure 1.30 nMOS transistor operation
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gate (g) regulates the flow of current between the source (s) and drain 
(d). nMOS transistors are OFF when the gate is 0 and ON when the 
gate is 1. pMOS transistors are just the opposite: ON when the gate is 0 
and OFF when the gate is 1.

1 . 7 . 5   CMOS NOT Gate

Figure 1.32 shows a schematic of a NOT gate built with CMOS transis-
tors. The triangle indicates GND, and the flat bar indicates VDD; these 
labels will be omitted from future schematics. The nMOS transistor, N1, 
is connected between GND and the Y output. The pMOS transistor, P1, 
is connected between VDD and the Y output. Both transistor gates are 
controlled by the input, A.

If A = 0, N1 is OFF and P1 is ON. Hence, Y is connected to VDD 
but not to GND, and is pulled up to a logic 1. P1 passes a good 1. If A = 
1, N1 is ON and P1 is OFF, and Y is pulled down to a logic 0. N1 passes 
a good 0. Checking against the truth table in Figure 1.12, we see that the 
circuit is indeed a NOT gate.

1 . 7 . 6   Other CMOS Logic Gates

Figure 1.33 shows a schematic of a two-input NAND gate. In sche-
matic diagrams, wires are always joined at three-way junctions. They are 
joined at four-way junctions only if a dot is shown. The nMOS transis-
tors N1 and N2 are connected in series; both nMOS transistors must be 
ON to pull the output down to GND. The pMOS transistors P1 and P2 
are in parallel; only one pMOS transistor must be ON to pull the output 
up to VDD. Table 1.6 lists the operation of the pull-down and pull-up 
networks and the state of the output, demonstrating that the gate does 
function as a NAND. For example, when A = 1 and B = 0, N1 is ON, 
but N2 is OFF, blocking the path from Y to GND. P1 is OFF, but P2 is 
ON, creating a path from VDD to Y. Therefore, Y is pulled up to 1.

Figure 1.34 shows the general form used to construct any inverting 
logic gate, such as NOT, NAND, or NOR. nMOS transistors are good at 
passing 0’s, so a pull-down network of nMOS transistors is placed 

Figure 1.32 NOT gate schematic
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Table 1.6 NAND gate operation

A B Pull-Down Network Pull-Up Network Y

0 0 OFF ON 1

0 1 OFF ON 1

1 0 OFF ON 1

1 1 ON OFF 0
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between the output and GND to pull the output down to 0. pMOS tran-
sistors are good at passing 1’s, so a pull-up network of pMOS transistors 
is placed between the output and VDD to pull the output up to 1. The 
networks may consist of transistors in series or in parallel. When transis-
tors are in parallel, the network is ON if either transistor is ON. When 
transistors are in series, the network is ON only if both transistors are 
ON. The slash across the input wire indicates that the gate may receive 
multiple inputs.

If both the pull-up and pull-down networks were ON simul-
taneously, a short circuit would exist between VDD and GND. The 
output of the gate might be in the forbidden zone and the transis-
tors would consume large amounts of power, possibly enough to 
burn out. On the other hand, if both the pull-up and pull-down net-
works were OFF simultaneously, the output would be connected to 
neither VDD nor GND. We say that the output floats. Its value is 
again undefined. Floating outputs are usually undesirable, but in  
Section 2.6 we will see how they can occasionally be used to the 
designer’s advantage.

In a properly functioning logic gate, one of the networks should be 
ON and the other OFF at any given time, so that the output is pulled 
HIGH or LOW but not shorted or floating. We can guarantee this by 
using the rule of conduction complements. When nMOS transistors are 
in series, the pMOS transistors must be in parallel. When nMOS transis-
tors are in parallel, the pMOS transistors must be in series.

Example 1.20 THREE-INPUT NAND SCHEMATIC

Draw a schematic for a three-input NAND gate using CMOS transistors.

Solution The NAND gate should produce a 0 output only when all three inputs 
are 1. Hence, the pull-down network should have three nMOS transistors in 
series. By the conduction complements rule, the pMOS transistors must be in 
parallel. Such a gate is shown in Figure 1.35; you can verify the function by 
checking that it has the correct truth table. 

Example 1.21 TWO-INPUT NOR SCHEMATIC

Draw a schematic for a two-input NOR gate using CMOS transistors.

Solution The NOR gate should produce a 0 output if either input is 1. Hence, the 
pull-down network should have two nMOS transistors in parallel. By the con-
duction complements rule, the pMOS transistors must be in series. Such a gate is 
shown in Figure 1.36. 

Experienced designers claim 
that electronic devices 
operate because they 
contain magic smoke. They 
confirm this theory with the 
observation that if the magic 
smoke is ever let out of the 
device, it ceases to work. 
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Figure 1.35 Three-input NAND 
gate schematic
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B
Y

Figure 1.36 Two-input NOR gate 
schematic
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Figure 1.37 Two-input AND gate 
schematic

A
B Y

Figure 1.38 Transmission gate
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Example 1.22 TWO-INPUT AND SCHEMATIC

Draw a schematic for a two-input AND gate.

Solution It is impossible to build an AND gate with a single CMOS gate. 
However, building NAND and NOT gates is easy. Thus, the best way to build 
an AND gate using CMOS transistors is to use a NAND followed by a NOT, as 
shown in Figure 1.37. 

1 . 7 . 7  Transmission Gates

At times, designers find it convenient to use an ideal switch that can pass 
both 0 and 1 well. Recall that nMOS transistors are good at passing 0 
and pMOS transistors are good at passing 1, so the parallel combina-
tion of the two passes both values well. Figure 1.38 shows such a circuit, 
called a transmission gate or pass gate. The two sides of the switch are 
called A and B because a switch is bidirectional and has no preferred 
input or output side. The control signals are called enables, EN and EN.  
When EN = 0 and EN = 1, both transistors are OFF. Hence, the trans-
mission gate is OFF or disabled, so A and B are not connected. When 
EN = 1 and EN = 0, the transmission gate is ON or enabled, and any 
logic value can flow between A and B.

1 . 7 . 8  Pseudo-nMOS Logic

An N-input CMOS NOR gate uses N nMOS transistors in parallel and 
N pMOS transistors in series. Transistors in series are slower than tran-
sistors in parallel, just as resistors in series have more resistance than 
resistors in parallel. Moreover, pMOS transistors are slower than nMOS 
transistors because holes cannot move around the silicon lattice as fast 
as electrons. Therefore, the parallel nMOS transistors are fast and the 
series pMOS transistors are slow, especially when many are in series.

Pseudo-nMOS logic replaces the slow stack of pMOS transistors 
with a single weak pMOS transistor that is always ON, as shown in 
Figure 1.39. This pMOS transistor is often called a weak pull-up. The 
physical dimensions of the pMOS transistor are selected so that the 
pMOS transistor will pull the output Y HIGH weakly—that is, only if 
none of the nMOS transistors are ON. But if any nMOS transistor is 
ON, it overpowers the weak pull-up and pulls Y down close enough to 
GND to produce a logic 0.

The advantage of pseudo-nMOS logic is that it can be used to build 
fast NOR gates with many inputs. For example, Figure 1.40 shows a  
pseudo-nMOS four-input NOR. Pseudo-nMOS gates are useful for certain 
memory and logic arrays discussed in Chapter 5. The disadvantage is that 

Y

inputs nMOS
pull-down
network 

weak

Figure 1.39 Generic pseudo-nMOS 
gate

Figure 1.40 Pseudo-nMOS four-
input NOR gate

A B
Y

weak

C D
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a short circuit exists between VDD and GND when the output is LOW; the 
weak pMOS and nMOS transistors are both ON. The short circuit draws 
continuous power, so pseudo-nMOS logic must be used sparingly.

Pseudo-nMOS gates got their name from the 1970’s, when manufac-
turing processes only had nMOS transistors. A weak nMOS transistor 
was used to pull the output HIGH because pMOS transistors were not 
available.

1.8  POWER CONSUMPTION*
Power consumption is the amount of energy used per unit time. Power 
consumption is of great importance in digital systems. The battery life of 
portable systems such as cell phones and laptop computers is limited by 
power consumption. For example, a cell phone battery holds about  
10 watt-hours (W-hr) of energy, meaning that it could deliver 1 watt (W) 
for 10 hours or 2 W for 5 hours, and so forth. For your phone battery to 
last a full day, its average consumption should be under 1 W. Laptops typ-
ically have 50 to 100 W-hr batteries and consume under 10 W in normal 
operation, of which the screen is a large fraction. Power is also significant 
for systems that are plugged in because electricity costs money and emis-
sions and because the system will overheat if it draws too much power. A 
desktop computer consuming 200 W for 8 hours each day would use 
approximately 600 kilowatt-hours (kW-hr) of electricity per year. At an 
average cost of 12 cents and one pound of CO2 emission per kW-hr, this 
is $72 of electricity each year as well as 600 pounds of CO2 emissions.

Digital systems draw both dynamic and static power. Dynamic 
power is the power used to charge capacitance as signals change 
between 0 and 1. Static power is the power used even when signals do 
not change and the system is idle.

Logic gates and the wires that connect them have capacitance. The 
energy drawn from the power supply to charge a capacitance C to volt-
age VDD is CVDD

2. If the system operates at frequency f and the fraction 
of the cycles on which the capacitor charges and discharges is α (called 
the activity factor), the dynamic power consumption is 

 P CV fDDdynamic = α
2  (1.4)

Figure 1.41 illustrates activity factors. Figure 1.41(a) shows a clock 
signal, which rises and falls once every cycle and, thus, has an activity factor 
of 1. The clock period from one rising edge to the next is called Tc (the 
cycle time), and is the reciprocal of the clock frequency f. Figure 1.41(b) 
shows a data signal that switches once every clock cycle. The paral-
lel lines on the timing diagram indicate that the signal might be high or 
might be low; we aren’t concerned with its value. The crossover indicates 
that the signal changes once, early in each clock cycle. Hence, the activity 

You’ll help our planet by 
making sure your computer 
sleeps when you aren’t using it. 
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factor is 0.5 (rising half the cycles and falling half the cycles). Figure 1.41(c) 
shows a random data signal that switches in half the cycles and remains 
constant in the other half of the cycles. Therefore, it has an activity factor  
of 0.25. Real digital systems often have idle components that are not 
switching, so an activity factor of 0.1 is more typical.

Electrical systems draw some current even when they are idle. When 
transistors are OFF, they leak a small amount of current. Some circuits, 
such as the pseudo-nMOS gate discussed in Section 1.7.8, have a path 
from VDD to GND through which current flows continuously. The total 
static current, IDD, is also called the leakage current or the quiescent supply 
current flowing between VDD and GND. The static power consumption 
is proportional to this static current:

 P I VDD DDstatic =  (1.5)

Figure 1.41 Illustration of activity 
factors

(a)

Tc = 1/f

α = 1

α = 0.5

α = 0.25

(b)

(c)

Time

Example 1.23 POWER CONSUMPTION

A particular cell phone has an 8 W-hr battery and operates at 0.707 V. Suppose 
that, when it is in use, the cell phone operates at 2 GHz. The total capacitance 
of the circuitry is 10 nF (10−8 Farads), and the activity factor is 0.05. When 
voice or data are active (10% of its time in use), it also broadcasts 3 W of power 
out of its antenna. When the phone is not in use, the dynamic power drops to 
almost zero because the signal processing is turned off. But the phone also draws 
100 mA of quiescent current whether it is in use or not. Determine the battery 
life of the phone (a) if it is not being used and (b) if it is being used continuously.

Solution The static power is Pstatic = (0.100 A)(0.707 V) = 71 milliwatts (mW). 
(a) If the phone is not being used, this is the only power consumption, so the 
battery life is (8 W-hr)/(0.071 W) = 113 hours (about 5 days). (b) If the phone is 
being used, the dynamic power is Pdynamic = (0.05)(10−8 F)(0.707 V)2(2 × 109 Hz) 
= 0.5 W. The average broadcast power is (3 W)(0.1) = 0.3 W.

Together with the static and broadcast power, the total active power is 0.5 W + 
0.071 W + 0.3 W = 0.871 W, so the battery life is 8 W-hr/0.0871 W = 9.2 hours. 
This example somewhat oversimplifies the actual operation of a cell phone, but 
it illustrates the key ideas of power consumption. 
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1.9  SUMMARY AND A LOOK AHEAD
There are 10 kinds of people in this world: those who can count in 
binary and those who can’t.

This chapter has introduced principles for understanding and 
designing complex systems. Although the real world is analog, digital 
designers discipline themselves to use a discrete subset of possible sig-
nals. In particular, binary variables have just two states: 0 and 1, also 
called FALSE and TRUE or LOW and HIGH. Logic gates compute a 
binary output from one or more binary inputs. Some of the common 
logic gates are:

▸ NOT:  Output is TRUE when input is FALSE

▸ AND:  Output is TRUE when all inputs are TRUE

▸ OR:    Output is TRUE when any inputs are TRUE

▸ XOR:  Output is TRUE when an odd number of inputs are TRUE

Logic gates are commonly built from CMOS transistors, which 
behave as electrically controlled switches. nMOS transistors turn ON 
when the gate is 1. pMOS transistors turn ON when the gate is 0.

In Chapters 2 through 5, we continue the study of digital logic. 
Chapter 2 addresses combinational logic, in which the outputs depend 
only on the current inputs. The logic gates introduced already are exam-
ples of combinational logic. You will learn to design circuits involving 
multiple gates to implement a relationship between inputs and outputs 
specified by a truth table or Boolean equation. Chapter 3 addresses 
sequential logic, in which the outputs depend on both current and past 
inputs. Registers are common sequential elements that remember their 
previous input. Finite state machines, built from registers and combina-
tional logic, are a powerful way to build complicated systems in a sys-
tematic fashion. We also study timing of digital systems to analyze how 
fast a system can operate. Chapter 4 describes hardware description 
languages (HDLs). HDLs are related to conventional programming lan-
guages but are used to simulate and build hardware rather than software. 
Most digital systems today are designed with HDLs. SystemVerilog and 
VHDL are the two prevalent languages; they are covered side-by-side in 
this book. Chapter 5 studies other combinational and sequential building 
blocks, such as adders, multipliers, and memories.

Chapter 6 shifts to computer architecture. It describes the RISC-V pro-
cessor, a recently developed open-source microprocessor beginning to see  
wide development across industry and academia. The RISC-V architecture 
is defined by its registers and assembly language instruction set. You will 



1.9 Summary and a Look Ahead 35

learn to write programs in assembly language for the RISC-V processor so 
that you can communicate with the processor in its native language.

Chapters 7 and 8 bridge the gap between digital logic and computer 
architecture. Chapter 7 investigates microarchitecture, the arrangement 
of digital building blocks, such as adders and registers, needed to con-
struct a processor. In that chapter, you learn to build your own RISC-V 
processor. Indeed, you learn three microarchitectures illustrating dif-
ferent trade-offs of performance and cost. Processor performance has 
increased exponentially, requiring ever more sophisticated memory sys-
tems to feed the insatiable demand for data. Chapter 8 delves into mem-
ory system architecture. Chapter 9 (available as a web supplement—see 
Preface) describes how computers communicate with peripheral devices, 
such as monitors, Bluetooth radios, and motors.
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Exercises

Exercise 1.1 Explain in one paragraph at least three levels of abstraction that are 
used by

 (a) biologists studying the operation of cells.

 (b) chemists studying the composition of matter.

Exercise 1.2 Explain in one paragraph how the techniques of hierarchy, 
modularity, and regularity may be used by

 (a) automobile designers.

 (b) businesses to manage their operations.

Exercise 1.3 Ben Bitdiddle is building a house. Explain how he can use the 
principles of hierarchy, modularity, and regularity to save time and money 
during construction.

Exercise 1.4 An analog voltage is in the range of 0–5 V. If it can be measured 
with an accuracy of ±50 mV, at most how many bits of information does it 
convey?

Exercise 1.5 A classroom has an old clock on the wall whose minute hand broke 
off.

 (a) If you can read the hour hand to the nearest 15 minutes, how many bits of 
information does the clock convey about the time?

 (b) If you know whether it is before or after noon, how many additional bits of 
information do you know about the time?

Exercise 1.6 The Babylonians developed the sexagesimal (base 60) number 
system about 4000 years ago. How many bits of information is conveyed with 
one sexagesimal digit? How do you write the number 400010 in sexagesimal?

Exercise 1.7 How many different numbers can be represented with 16 bits?

Exercise 1.8 What is the largest unsigned 32-bit binary number?

Exercise 1.9 What is the largest 16-bit binary number that can be represented 
with

 (a) unsigned numbers?

 (b) two’s complement numbers?

 (c) sign/magnitude numbers?
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Exercise 1.10 What is the largest 32-bit binary number that can be represented 
with

 (a) unsigned numbers?

 (b) two’s complement numbers?

 (c) sign/magnitude numbers?

Exercise 1.11 What is the smallest (most negative) 16-bit binary number that 
can be represented with

 (a) unsigned numbers?

 (b) two’s complement numbers?

 (c) sign/magnitude numbers?

Exercise 1.12 What is the smallest (most negative) 32-bit binary number that 
can be represented with

 (a) unsigned numbers?

 (b) two’s complement numbers?

 (c) sign/magnitude numbers?

Exercise 1.13 Convert the following unsigned binary numbers to decimal. Show 
your work.

 (a) 10102

 (b) 1101102

 (c) 111100002

 (d) 0001000101001112

Exercise 1.14 Convert the following unsigned binary numbers to decimal. Show 
your work.

 (a) 11102

 (b) 1001002

 (c) 110101112

 (d) 0111010101001002

Exercise 1.15 Repeat Exercise 1.13, but convert to hexadecimal.

Exercise 1.16 Repeat Exercise 1.14, but convert to hexadecimal.
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Exercise 1.17 Convert the following hexadecimal numbers to decimal. Show 
your work.

 (a) A516

 (b) 3B16

 (c) FFFF16

 (d) D000000016

Exercise 1.18 Convert the following hexadecimal numbers to decimal. Show 
your work.

 (a) 4E16

 (b) 7C16

 (c) ED3A16

 (d) 403FB00116

Exercise 1.19 Repeat Exercise 1.17, but convert to unsigned binary.

Exercise 1.20 Repeat Exercise 1.18, but convert to unsigned binary.

Exercise 1.21 Convert the following two’s complement binary numbers to 
decimal.

 (a) 10102

 (b) 1101102

 (c) 011100002

 (d) 100111112

Exercise 1.22 Convert the following two’s complement binary numbers to 
decimal.

 (a) 11102

 (b) 1000112

 (c) 010011102

 (d) 101101012

Exercise 1.23 Repeat Exercise 1.21, assuming that the binary numbers are in 
sign/magnitude form rather than two’s complement representation.

Exercise 1.24 Repeat Exercise 1.22, assuming that the binary numbers are in 
sign/magnitude form rather than two’s complement representation.
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Exercise 1.25 Convert the following decimal numbers to unsigned binary 
numbers.

 (a) 4210

 (b) 6310

 (c) 22910

 (d) 84510

Exercise 1.26 Convert the following decimal numbers to unsigned binary 
numbers.

 (a) 1410

 (b) 5210

 (c) 33910

 (d) 71110

Exercise 1.27 Repeat Exercise 1.25, but convert to hexadecimal.

Exercise 1.28 Repeat Exercise 1.26, but convert to hexadecimal.

Exercise 1.29 Convert the following decimal numbers to 8-bit two’s complement 
numbers or indicate that the decimal number would overflow the range.

 (a) 4210

 (b) −6310

 (c) 12410

 (d) −12810

 (e) 13310

Exercise 1.30 Convert the following decimal numbers to 8-bit two’s complement 
numbers or indicate that the decimal number would overflow the range.

 (a) 2410

 (b) −5910

 (c) 12810

 (d) −15010

 (e) 12710

Exercise 1.31 Repeat Exercise 1.29, but convert to 8-bit sign/magnitude 
numbers.
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Exercise 1.32 Repeat Exercise 1.30, but convert to 8-bit sign/magnitude numbers.

Exercise 1.33 Convert the following 4-bit two’s complement numbers to 8-bit 
two’s complement numbers.

 (a) 01012

 (b) 10102

Exercise 1.34 Convert the following 4-bit two’s complement numbers to 8-bit 
two’s complement numbers.

 (a) 01112

 (b) 10012

Exercise 1.35 Repeat Exercise 1.33 if the numbers are unsigned rather than 
two’s complement.

Exercise 1.36 Repeat Exercise 1.34 if the numbers are unsigned rather than 
two’s complement.

Exercise 1.37 Base 8 is referred to as octal. Convert each of the numbers from 
Exercise 1.25 to octal.

Exercise 1.38 Base 8 is referred to as octal. Convert each of the numbers from 
Exercise 1.26 to octal.

Exercise 1.39 Convert each of the following octal numbers to binary, 
hexadecimal, and decimal.

 (a) 428

 (b) 638

 (c) 2558

 (d) 30478

Exercise 1.40 Convert each of the following octal numbers to binary, 
hexadecimal, and decimal.

 (a) 238

 (b) 458

 (c) 3718

 (d) 25608

Exercise 1.41 How many 5-bit two’s complement numbers are greater than 0? 
How many are less than 0? How would your answers differ for sign/magnitude 
numbers?
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Exercise 1.42 How many 7-bit two’s complement numbers are greater than 0? 
How many are less than 0? How would your answers differ for sign/magnitude 
numbers?

Exercise 1.43 How many bytes are in a 32-bit word? How many nibbles are in 
the 32-bit word?

Exercise 1.44 How many bytes are in a 64-bit word?

Exercise 1.45 A particular DSL modem operates at 768 kbits/sec. How many 
bytes can it receive in 1 minute?

Exercise 1.46 USB 3.0 can send data at 5 Gbits/sec. How many bytes can it send 
in 1 minute?

Exercise 1.47 Hard drive manufacturers use the term “megabyte” to mean 106 
bytes and “gigabyte” to mean 109 bytes. How many real GBs (i.e., GiBs) of 
music can you store on a 50 GB hard drive?

Exercise 1.48 Estimate the value of 231 without using a calculator.

Exercise 1.49 A memory on the Pentium II microprocessor is organized as a 
rectangular array of bits with 28 rows and 29 columns. Estimate how many bits 
it has without using a calculator.

Exercise 1.50 Draw a number line analogous to Figure 1.11 for 3-bit unsigned, 
two’s complement, and sign/magnitude numbers.

Exercise 1.51 Draw a number line analogous to Figure 1.11 for 2-bit unsigned, 
two’s complement, and sign/magnitude numbers.

Exercise 1.52 Perform the following additions of unsigned binary numbers. 
Indicate whether the sum overflows a 4-bit result.

 (a) 10012 + 01002

 (b) 11012 + 10112

Exercise 1.53 Perform the following additions of unsigned binary numbers. 
Indicate whether the sum overflows an 8-bit result.

 (a) 100110012 + 010001002

 (b) 110100102 + 101101102

Exercise 1.54 Repeat Exercise 1.52, assuming that the binary numbers are in 
two’s complement form.

Exercise 1.55 Repeat Exercise 1.53, assuming that the binary numbers are in 
two’s complement form.
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Exercise 1.56 Convert the following decimal numbers to 6-bit two’s complement 
binary numbers and add them. Indicate whether the sum overflows a 6-bit result.

 (a) 1610 + 910

 (b) 2710 + 3110

 (c) −410 + 1910

 (d) 310 + −3210

 (e) −1610 + −910

 (f) −2710 + −3110

Exercise 1.57 Repeat Exercise 1.56 for the following numbers.

 (a) 710 + 1310

 (b) 1710 + 2510

 (c) −2610 + 810

 (d) 3110 + −1410

 (e) −1910 + −2210

 (f) −210 + −2910

Exercise 1.58 Perform the following additions of unsigned hexadecimal 
numbers. Indicate whether the sum overflows an 8-bit (two hex digit) result.

 (a) 716 + 916

 (b) 1316 + 2816

 (c) AB16 + 3E16

 (d) 8F16 + AD16

Exercise 1.59 Perform the following additions of unsigned hexadecimal 
numbers. Indicate whether the sum overflows an 8-bit (two hex digit) result.

 (a) 2216 + 816

 (b) 7316 + 2C16

 (c) 7F16 + 7F16

 (d) C216 + A416

Exercise 1.60 Convert the following decimal numbers to 5-bit two’s complement 
binary numbers and subtract them. Indicate whether the difference overflows a 
5-bit result.

 (a) 910 − 710

 (b) 1210 − 1510
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 (c) −610 − 1110

 (d) 410 − −810

Exercise 1.61 Convert the following decimal numbers to 6-bit two’s complement 
binary numbers and subtract them. Indicate whether the difference overflows a 
6-bit result.

 (a) 1810 − 1210

 (b) 3010 − 910

 (c) −2810 − 310

 (d) −1610 −2110

Exercise 1.62 In a biased N-bit binary number system with bias B, positive and 
negative numbers are represented as their value plus the bias B. For example, 
for 5-bit numbers with a bias of 15, the number 0 is represented as 01111, 1 
as 10000, and so forth. Biased number systems are sometimes used in floating-
point mathematics, which will be discussed in Chapter 5. Consider a biased 8-bit 
binary number system with a bias of 12710.

 (a) What decimal value does the binary number 100000102 represent?

 (b) What binary number represents the value 0?

 (c) What is the representation and value of the most negative number?

 (d) What is the representation and value of the most positive number?

Exercise 1.63 Draw a number line analogous to Figure 1.11 for 3-bit biased 
numbers with a bias of 3 (see Exercise 1.62 for a definition of biased numbers).

Exercise 1.64 In a binary coded decimal (BCD) system, 4 bits are used to represent 
a decimal digit from 0 to 9. For example, 3710 is written as 00110111BCD.

 (a) Write 28910 in BCD.

 (b) Convert 100101010001BCD to decimal.

 (c) Convert 01101001BCD to binary.

 (d) Explain why BCD might be a useful way to represent numbers.

Exercise 1.65 Answer the following questions related to BCD systems (see 
Exercise 1.64 for the definition of BCD).

 (a) Write 37110 in BCD.

 (b) Convert 000110000111BCD to decimal.

 (c) Convert 10010101BCD to binary.

 (d) Explain the disadvantages of BCD when compared with binary 
representations of numbers.
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Exercise 1.66 A flying saucer crashes in a Nebraska cornfield. The FBI 
investigates the wreckage and finds an engineering manual containing an 
equation in the Martian number system: 325 + 42 = 411. If this equation is 
correct, how many fingers would you expect Martians to have?

Exercise 1.67 Ben Bitdiddle and Alyssa P. Hacker are having an argument. Ben 
says, “All integers greater than zero and exactly divisible by six have exactly two 
1’s in their binary representation.” Alyssa disagrees. She says, “No, but all such 
numbers have an even number of 1’s in their representation.” Do you agree with 
Ben or Alyssa or both or neither? Explain.

Exercise 1.68 Ben Bitdiddle and Alyssa P. Hacker are having another argument. Ben 
says, “I can get the two’s complement of a number by subtracting 1, then inverting 
all the bits of the result.” Alyssa says, “No, I can do it by examining each bit of the 
number, starting with the least significant bit. When the first 1 is found, invert each 
subsequent bit.” Do you agree with Ben or Alyssa or both or neither? Explain.

Exercise 1.69 Write a program in your favorite language (e.g., C, Java, Perl) to 
convert numbers from binary to decimal. The user should type in an unsigned 
binary number. The program should print the decimal equivalent.

Exercise 1.70 Repeat Exercise 1.69 but convert from an arbitrary base b1 to 
another base b2, as specified by the user. Support bases up to 16, using the letters 
of the alphabet for digits greater than 9. The user should enter b1, b2, and then 
the number to convert in base b1. The program should print the equivalent 
number in base b2.

Exercise 1.71 Draw the symbol, Boolean equation, and truth table for

 (a) a three-input OR gate

 (b) a three-input exclusive OR (XOR) gate

 (c) a four-input XNOR gate

Exercise 1.72 Draw the symbol, Boolean equation, and truth table for

 (a) a four-input OR gate

 (b) a three-input XNOR gate

 (c) a five-input NAND gate

Exercise 1.73 A majority gate produces a TRUE output if and only if more than 
half of its inputs are TRUE. Complete a truth table for the three-input majority 
gate shown in Figure 1.42.

Figure 1.42 Three-input majority gate

A

B Y
C

MAJ
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Exercise 1.74 A three-input AND-OR (AO) gate shown in Figure 1.43 produces 
a TRUE output if both A and B are TRUE or if C is TRUE. Complete a truth 
table for the gate.

Exercise 1.75 A three-input OR-AND-INVERT (OAI) gate shown in  
Figure 1.44 produces a FALSE output if C is TRUE and A or B is TRUE. 
Otherwise, it produces a TRUE output. Complete a truth table for the gate.

Exercise 1.76 There are 16 different truth tables for Boolean functions of two 
variables. List each truth table. Give each one a short descriptive name (such as 
OR, NAND, and so on).

Exercise 1.77 How many different truth tables exist for Boolean functions of N 
variables?

Exercise 1.78 Is it possible to assign logic levels so that a device with the transfer 
characteristics shown in Figure 1.45 would serve as an inverter? If so, what are 
the input and output low and high levels (VIL, VOL, VIH, and VOH) and noise 
margins (NML and NH)? If not, explain why not.

Figure 1.43 Three-input AND-OR gate

A
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C

Figure 1.44 Three-input OR-AND-INVERT gate
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Figure 1.45 DC transfer characteristics
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Exercise 1.79 Repeat Exercise 1.78 for the transfer characteristics shown in 
Figure 1.46.
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Figure 1.46 DC transfer characteristics

Exercise 1.80 Is it possible to assign logic levels so that a device with the transfer 
characteristics shown in Figure 1.47 would serve as a buffer? If so, what are 
the input and output low and high levels (VIL, VOL, VIH, and VOH) and noise 
margins (NML and NMH)? If not, explain why not.
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Figure 1.47 DC transfer characteristics

Exercise 1.81 Ben Bitdiddle has invented a circuit with the transfer 
characteristics shown in Figure 1.48 that he would like to use as a buffer.  
Will it work? Why or why not? He would like to advertise that it is compatible 
with LVCMOS and LVTTL logic. Can Ben’s buffer correctly receive inputs 
from those logic families? Can its output properly drive those logic families? 
Explain.
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Exercise 1.82 While walking down a dark alley, Ben Bitdiddle encounters a two-
input gate with the transfer function shown in Figure 1.49. The inputs are A and 
B and the output is Y.

Figure 1.48 Ben’s buffer DC 
transfer characteristics
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Figure 1.49 Two-input DC transfer 
characteristics
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 (a) What kind of logic gate did he find?

 (b) What are the approximate high and low logic levels?

Exercise 1.83 Repeat Exercise 1.82 for Figure 1.50.

Figure 1.50 Two-input DC transfer 
characteristics
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Exercise 1.84 Sketch a transistor-level circuit for the following CMOS gates.  
Use a minimum number of transistors.

 (a) four-input NAND gate

 (b) three-input OR-AND-INVERT gate (see Exercise 1.75)

 (c) three-input AND-OR gate (see Exercise 1.74)

Exercise 1.85 Sketch a transistor-level circuit for the following CMOS gates. Use 
a minimum number of transistors.

 (a) three-input NOR gate

 (b) three-input AND gate

 (c) two-input OR gate

Exercise 1.86 A minority gate produces a TRUE output if and only if fewer than 
half of its inputs are TRUE. Otherwise, it produces a FALSE output. Sketch a 
transistor-level circuit for a three-input CMOS minority gate. Use a minimum 
number of transistors.

Exercise 1.87 Write a truth table for the function performed by the gate in 
Figure 1.51. The truth table should have two inputs, A and B. What is the name 
of this function?

Figure 1.51 Mystery schematic

A

B

A

B

A

A

B

B

Y

Exercise 1.88 Write a truth table for the function performed by the gate in 
Figure 1.52. The truth table should have three inputs, A, B, and C.

Figure 1.52 Mystery schematic

A

B

C

C

A B

Y
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Exercise 1.89 Implement the following three-input gates using only pseudo-
nMOS logic gates. Your gates receive three inputs, A, B, and C. Use a minimum 
number of transistors.

 (a) three-input NOR gate

 (b) three-input NAND gate

 (c) three-input AND gate

Exercise 1.90 Resistor-Transistor Logic (RTL) uses nMOS transistors to pull 
the gate output LOW and a weak resistor to pull the output HIGH when none 
of the paths to ground are active. A NOT gate built using RTL is shown in 
Figure 1.53. Sketch a three-input RTL NOR gate. Use a minimum number of 
transistors.

Figure 1.53 RTL NOT gate

A
Y

weak
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Interview Questions

These questions have been asked at interviews for digital design jobs.

Question 1.1 Sketch a transistor-level circuit for a CMOS four-input NOR gate.

Question 1.2 The king receives 64 gold coins in taxes but has reason to believe 
that one is counterfeit. He summons you to identify the fake coin. You have a 
balance that can hold coins on each side. How many times do you need to use 
the balance to find the lighter, fake coin?

Question 1.3 The professor, the teaching assistant, the digital design student, 
and the freshman track star need to cross a rickety bridge on a dark night. The 
bridge is so shaky that only two people can cross at a time. They have only 
one flashlight among them and the span is too long to throw the flashlight, so 
somebody must carry it back to the other people. The freshman track star can 
cross the bridge in 1 minute. The digital design student can cross the bridge in 
2 minutes. The teaching assistant can cross the bridge in 5 minutes. The professor 
always gets distracted and takes 10 minutes to cross the bridge. What is the 
fastest time to get everyone across the bridge?
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2.1  INTRODUCTION
In digital electronics, a circuit is a network that processes discrete-valued 
variables. A circuit can be viewed as a black box, shown in Figure 2.1, with

▸ one or more discrete-valued input terminals

▸ one or more discrete-valued output terminals

▸ a functional specification describing the relationship between inputs 
and outputs

▸ a timing specification describing the delay between inputs changing 
and outputs responding.

Peering inside the black box, circuits are composed of nodes and ele-
ments. An element is itself a circuit with inputs, outputs, and a specifica-
tion. A node is a wire, whose voltage conveys a discrete-valued variable. 
Nodes are classified as input, output, or internal. Inputs receive values 
from the external world. Outputs deliver values to the external world. 
Wires that are not inputs or outputs are called internal nodes. Figure 2.2 

Physics

Devices
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Circuits

Digital
Circuits

+

+−

Logic
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architecture

Architecture

Operating
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Application
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>”hello
world!”
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Figure 2.1 Circuit as a black box with inputs, outputs, and specifications
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Figure 2.2 Elements and nodes
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illustrates a circuit with three elements, E1, E2, and E3, and six nodes. 
Nodes A, B, and C are inputs. Y and Z are outputs. n1 is an internal 
node between E1 and E3.

Digital circuits are classified as combinational or sequential. A com-
binational circuit’s outputs depend only on the current values of the 
inputs; in other words, it combines the current input values to compute  
the output. For example, a logic gate is a combinational circuit. A sequen-
tial circuit’s outputs depend on both current and previous values of the 
inputs; in other words, it depends on the input sequence. A combina-
tional circuit is memoryless, but a sequential circuit has memory. This 
chapter focuses on combinational circuits, and Chapter 3 examines 
sequential circuits.

The functional specification of a combinational circuit expresses the 
output values in terms of the current input values. The timing specifica-
tion of a combinational circuit consists of lower and upper bounds on 
the delay from input to output. We will initially concentrate on the func-
tional specification, then return to the timing specification later in this 
chapter.

Figure 2.3 shows a combinational circuit with two inputs and one 
output. On the left of the figure are the inputs, A and B, and on the right 
is the output, Y. The symbol  inside the box indicates that it is imple-
mented using only combinational logic. In this example, the function F is 
specified to be OR: Y = F(A, B) = A + B. In words, we say that the output 
Y is a function of the two inputs, A and B—namely, Y =  A OR B.

Figure 2.4 shows two possible implementations for the combina-
tional logic circuit in Figure 2.3. As we will see repeatedly throughout 
the book, there are often many implementations for a single function. 
You choose which to use given the building blocks at your disposal and 
your design constraints. These constraints often include area, speed, 
power, and design time.

Figure 2.5 shows a combinational circuit with multiple outputs. 
This particular combinational circuit is called a full adder, which we will 
revisit in Section 5.2.1. The two equations specify the function of the 
outputs, S and Cout, in terms of the inputs, A, B, and Cin.

To simplify drawings, we often use a single line with a slash through 
it and a number next to it to indicate a bus, a bundle of multiple signals. 
The number specifies how many signals are in the bus. For example, 
Figure 2.6(a) represents a block of combinational logic with three inputs 
and two outputs. If the number of bits is unimportant or obvious from 
the context, the slash may be shown without a number. Figure 2.6(b) 
indicates two blocks of combinational logic with an arbitrary number of 
outputs from one block serving as inputs to the second block.

The rules of combinational composition tell us how we can build a 
large combinational circuit from smaller combinational circuit elements. 

A
B Y

Y = F(A, B) = A + B

CL

Figure 2.3 Combinational  
logic circuit

A
B

Y

(a)

Y

(b)

A
B

Figure 2.4 Two OR 
implementations

A S

S = A ⊕ B ⊕ Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Figure 2.5 Multiple-output 
combinational circuit

CL3

(a)

CL CL

(b)

2

Figure 2.6 Slash notation for 
multiple signals
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A circuit is combinational if it consists of interconnected circuit elements 
such that

▸ Every circuit element is itself combinational.

▸ Every node of the circuit is either designated as an input to the circuit 
or connects to exactly one output terminal of a circuit element.

▸ The circuit contains no cyclic paths: every path through the circuit 
visits each circuit node at most once.  

Example 2.1 COMBINATIONAL CIRCUITS

Which of the circuits in Figure 2.7 are combinational circuits according to the 
rules of combinational composition?

Solution Circuit (a) is combinational. It is constructed from two combinational 
circuit elements (inverters I1 and I2). It has three nodes: n1, n2, and n3. n1 is 
an input to the circuit and to I1; n2 is an internal node, which is the output of 
I1 and the input to I2; n3 is the output of the circuit and of I2. (b) is not com-
binational, because there is a cyclic path: the output of the XOR feeds back to 
one of its inputs. Hence, a cyclic path starting at n4 passes through the XOR to 
n5, which returns to n4. (c) is combinational. (d) is not combinational, because 
node n6 connects to the output terminals of both I3 and I4. (e) is combinational, 
illustrating two combinational circuits connected to form a larger combinational 
circuit. (f) does not obey the rules of combinational composition because it has 
a cyclic path through the two elements. Depending on the functions of the ele-
ments, it may or may not be a combinational circuit.

Large circuits such as microprocessors can be very complicated, so 
we use the principles from Chapter 1 to manage the complexity. Viewing 
a circuit as a black box with a well-defined interface and function is an 
application of abstraction and modularity. Building the circuit out of 
smaller circuit elements is an application of hierarchy. The rules of com-
binational composition are an application of discipline.

The rules of combinational 
composition are sufficient but 
not strictly necessary. Certain 
circuits that disobey these 
rules are still combinational, 
so long as the outputs depend 
only on the current values 
of the inputs. However, 
determining whether oddball 
circuits are combinational 
is more difficult, so we will 
usually restrict ourselves to 
combinational composition as 
a way to build combinational 
circuits. 

(a)

n1 n2 n3I1 I2

(c)

CL
CL

(e)

n4
n5

(b)

n6
I3

I4

(d)

CL
CL

(f)

Figure 2.7 Example circuits
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The functional specification of a combinational circuit is usually 
expressed as a truth table or a Boolean equation. In the next sections, 
we describe how to derive a Boolean equation from any truth table and 
how to use Boolean algebra and Karnaugh maps to simplify equations. 
We show how to implement these equations using logic gates and how 
to analyze the speed of these circuits.

2.2  BOOLEAN EQUATIONS
Boolean equations deal with variables that are either TRUE or FALSE, 
so they are perfect for describing digital logic. This section defines some 
terminology commonly used in Boolean equations and then shows how 
to write a Boolean equation for any logic function, given its truth table.

2 . 2 . 1   Terminology

The complement of a variable A is its inverse A. The variable or its com-
plement is called a literal. For example, A, A, B, and B are literals. We 
call A the true form of the variable and A the complementary form; 
“true form” does not mean that A is TRUE but merely that A does not 
have a line over it.

The AND of one or more literals is called a product or an implicant. 
AB, ABC, and B are all implicants for a function of three variables. A 
minterm is a product involving all of the inputs to the function. ABC  is 
a minterm for a function of the three variables A, B, and C, but AB is not 
because it does not involve C. Similarly, the OR of one or more literals is 
called a sum. A maxterm is a sum involving all of the inputs to the function. 
A + B + C is a maxterm for a function of the three variables A, B, and C.

The order of operations is important when interpreting Boolean 
equations. Does Y = A + BC mean Y = (A OR B) AND C or Y = A OR 
(B AND C)? In Boolean equations, NOT has the highest precedence, 
followed by AND, then OR. Just as in ordinary equations, products are 
performed before sums. Therefore, the equation is read as Y = A OR (B 
AND C). Equation 2.1 gives another example of order of operations.

 AB BCD A B BC D+ = +(( ) ) ( ( ))  (2.1)

2 . 2 . 2   Sum-of-Products Form

A truth table of N inputs contains 2N rows, one for each possible value 
of the inputs. Each row in a truth table is associated with a minterm 
that is TRUE for that row. Figure 2.8 shows a truth table of two inputs, 
A and B. Each row shows its corresponding minterm. For example, the 
minterm for the first row is AB because AB is TRUE when A = 0, B = 0. 
The minterms are numbered starting with 0; the top row corresponds to 
minterm 0, m0, the next row to minterm 1, m1, and so on.

0

A B Y
0 0
0 1
1 0
1 1

0
1
0

minterm
minterm
name

A B
A B

m0
m1
m2
m3

A B
A B

Figure 2.8 Truth table and 
minterms
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We can write a Boolean equation for any truth table by summing 
each of the minterms for which the output, Y, is TRUE. For example, in 
Figure 2.8, there is only one row (or minterm) for which the output Y is 
TRUE, shown circled in blue. Thus, Y = AB. Figure 2.9 shows a truth 
table with more than one row in which the output is TRUE. Taking  
the sum of each of the circled minterms gives Y AB= +AB .

This is called the sum-of-products (SOP) canonical form of a function 
because it is the sum (OR) of products (ANDs forming minterms). Although 
there are many ways to write the same function, such as Y BA BA= + ,  
we will sort the minterms in the same order that they appear in the truth 
table so that we always write the same Boolean expression for the same truth 
table.

The sum-of-products canonical form can also be written in sigma 
notation using the summation symbol, Σ. With this notation, the func-
tion from Figure 2.9 would be written as:

F A B m m( , ) ( , )= Σ 1 3

or

 F A B( , ) ( , )= Σ 1 3
 (2.2)

Example 2.2 SUM-OF-PRODUCTS (SOP) FORM

Ben Bitdiddle is having a picnic. He won’t enjoy it if it rains or if there are ants. 
Design a circuit that will output TRUE only if Ben enjoys the picnic.

Solution First, define the inputs and outputs. The inputs are A and R, which indi-
cate if there are ants and if it rains. A is TRUE when there are ants and FALSE 
when there are no ants. Likewise, R is TRUE when it rains and FALSE when the 
sun smiles on Ben. The output is E, Ben’s enjoyment of the picnic. E is TRUE if 
Ben enjoys the picnic and FALSE if he suffers. Figure 2.10 shows the truth table 
for Ben’s picnic experience.

Using sum-of-products form, we write the equation as: E AR=  or  E=Σ( )0 .  
We can build the equation using two inverters and a two-input AND gate, shown in 
Figure 2.11(a). You may recognize this truth table as the NOR function from Section 
1.5.5: E  =  A NOR R = +A R. Figure 2.11(b) shows the NOR implementation.  
In Section 2.3, we show that the two equations, AR and A R+ , are equivalent.
 

The sum-of-products form provides a Boolean equation for any 
truth table with any number of variables. Figure 2.12 shows a random 
three-input truth table. The sum-of-products form of the logic function is

 Y ABC ABC ABC= + +
or (2.3)

 
Y = Σ( , , )0 4 5

Canonical form is just a fancy 
word for standard form. You 
can use the term to impress 
your friends and scare your 
enemies. 

A B Y 
0 0 
0 1 
1 0 
1 1 

0 
1 
0 
1 

minterm

A B

A B 
A B 
A B 

minterm
name
m0
m1
m2
m3

Figure 2.9 Truth table with 
multiple TRUE minterms

A R E
0 0
0 1
1 0
1 1

1
0
0
0

Figure 2.10 Ben’s truth table
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Unfortunately, sum-of-products canonical form does not necessarily 
generate the simplest equation. In Section 2.3, we show how to write the 
same function using fewer terms.

2 . 2 . 3   Product-of-Sums Form

An alternative way of expressing Boolean functions is the product-of-
sums (POS) canonical form. Each row of a truth table corresponds to 
a maxterm that is FALSE for that row. For example, the maxterm for 
the first row of a two-input truth table is (A  + B) because (A  + B) is 
FALSE when A  = 0, B  = 0. We can write a Boolean equation for any 
circuit directly from the truth table as the AND of each of the maxterms 
for which the output is FALSE. The product-of-sums canonical form can 
also be written in pi notation using the product symbol, Π.

Example 2.3 PRODUCT-OF-SUMS (POS) FORM

Write an equation in product-of-sums form for the truth table in Figure 2.13.

Solution The truth table has two rows in which the output is FALSE. Hence, the 
function can be written in product-of-sums form as Y A B A B= + +( )( ) or, using 
pi notation, Y M M= Π( , )0 2  or Y = Π( , )0 2 . The first maxterm, (A + B), guaran-
tees that Y = 0 for A = 0, B = 0, because any value AND 0 is 0. Likewise, the 
second maxterm, ( )A B+ , guarantees that Y = 0 for A = 1, B = 0. Figure 2.13 
is the same truth table as Figure 2.9, showing that the same function can be  
written in more than one way.
  

Similarly, a Boolean equation for Ben’s picnic from Figure 2.10 can 
be written in product-of-sums form by circling the three rows of 0’s to 
obtain E A R A R A R= + + +( )( )( ) or ( , , )E = Π 1 2 3 . This is uglier than 
the sum-of-products equation, E AR= , but the two equations are logically 
equivalent.

Sum-of-products produces a shorter equation when the output is 
TRUE on only a few rows of a truth table; product-of-sums is simpler 
when the output is FALSE on only a few rows of a truth table.

2.3  BOOLEAN ALGEBRA
In the previous section, we learned how to write a Boolean expression given 
a truth table. However, that expression does not necessarily lead to the sim-
plest set of logic gates. Just as you use algebra to simplify mathematical 
equations, you can use Boolean algebra to simplify Boolean equations. The 
rules of Boolean algebra are much like those of ordinary algebra but are in 
some cases simpler because variables have only two possible values: 0 or 1.

Boolean algebra is based on a set of axioms that we assume are 
correct. Axioms are unprovable in the sense that a definition cannot be 

A

R

E

(a)

A
R

E

(b)

Figure 2.11 Ben’s circuit

A + B

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Figure 2.13 Truth table with 
multiple FALSE maxterms
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1 1

1
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0
0
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0
0
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0 0
0 1
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1 1

1
1
1
1

1
1
0
0

Figure 2.12 Random three-input 
truth table
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proved. From these axioms, we prove all the theorems of Boolean alge-
bra. These theorems have great practical significance because they teach 
us how to simplify logic to produce smaller and less costly circuits.

Axioms and theorems of Boolean algebra obey the principle of dual-
ity. If the symbols 0 and 1 and the operators • (AND) and + (OR) are 
interchanged, the statement will still be correct. We use the prime sym-
bol (′) to denote the dual of a statement.

2 . 3 . 1   Axioms

Table 2.1 states the axioms of Boolean algebra. These five axioms and 
their duals define Boolean variables and the meanings of NOT, AND, 
and OR. Axiom A1 states that a Boolean variable B is 0 if it is not 1. 
The axiom’s dual, A1′, states that the variable is 1 if it is not 0. Together, 
A1 and A1′ tell us that we are working in a Boolean or binary field of 
0’s and 1’s. Axioms A2 and A2′ define the NOT operation. Axioms A3 
to A5 define AND; their duals, A3′ to A5′ define OR.

2 . 3 . 2   Theorems of One Variable

Theorems T1 to T5 in Table 2.2 describe how to simplify equations 
involving one variable.

The identity theorem, T1, states that for any Boolean variable B, B 
AND 1 = B. Its dual states that B OR 0 = B. In hardware, as shown in 
Figure 2.14, T1 means that if one input of a two-input AND gate is 
always 1, we can remove the AND gate and replace it with a wire con-
nected to the variable input (B). Likewise, T1′ means that if one input of 
a two-input OR gate is always 0, we can replace the OR gate with a 
wire connected to B. In general, gates cost money, power, and delay, so 
replacing a gate with a wire is beneficial.

The null element theorem, T2, says that B AND 0 is always equal to 
0. Therefore, 0 is called the null element for the AND operation, because 
it nullifies the effect of any other input. The dual states that B OR 1 is 
always equal to 1. Hence, 1 is the null element for the OR operation. In 

The null element theorem 
leads to some outlandish 
statements that are actually 
true! It is particularly 
dangerous when left in the 
hands of advertisers: YOU 
WILL GET A MILLION 
DOLLARS or we’ll send you a 
toothbrush in the mail. (You’ll 
most likely be receiving a 
toothbrush in the mail.) 

Table 2.1 Axioms of Boolean algebra

Axiom Dual Name

A1 B = 0 if B ≠ 1 A1′ B = 1 if B ≠ 0 Binary field

A2  = 1 A2′  = 0 NOT

A3 0 • 0 = 0 A3′ 1 + 1 = 1 AND/OR

A4 1 • 1 = 1 A4′ 0 + 0 = 0 AND/OR

A5 0 • 1 = 1 • 0 = 0 A5′ 1 + 0 = 0 + 1 = 1 AND/OR

1 =

(a)

B B

=0
B

B

(b)

Figure 2.14 Identity theorem in 
hardware: (a) T1, (b) T1′

0 1
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hardware, as shown in Figure 2.15, if one input of an AND gate is 0, we 
can replace the AND gate with a wire that is tied LOW (to 0). Likewise, 
if one input of an OR gate is 1, we can replace the OR gate with a wire 
that is tied HIGH (to 1).

Idempotency, T3, says that a variable AND itself is equal to just 
itself. Likewise, a variable OR itself is equal to itself. The theorem gets 
its name from the Latin roots: idem (same) and potent (power). The 
operations return the same thing you put into them. Figure 2.16 shows 
that idempotency again permits replacing a gate with a wire.

Involution, T4, is a fancy way of saying that complementing a vari-
able twice results in the original variable. In digital electronics, two 
wrongs make a right. Two inverters in series logically cancel each other 
out and are logically equivalent to a wire, as shown in Figure 2.17. The 
dual of T4 is itself.

The complement theorem, T5 (Figure 2.18), states that a variable 
AND its complement is 0 (because one of them has to be 0). And, by dual-
ity, a variable OR its complement is 1 (because one of them has to be 1).

2 . 3 . 3   Theorems of Several Variables

Theorems T6 to T12 in Table 2.3 describe how to simplify equations 
involving more than one Boolean variable.

Commutativity and associativity, T6 and T7, work the same as in 
traditional algebra. By commutativity, the order of inputs for an AND or 
OR function does not affect the value of the output. By associativity, the 
specific groupings of inputs in AND or OR operations do not affect the 
value of the output.

The distributivity theorem, T8, is the same as in traditional algebra, 
but its dual, T8′, is not. By T8, AND distributes over OR, and by T8′, 
OR distributes over AND. In traditional algebra, multiplication distrib-
utes over addition but addition does not distribute over multiplication 
so that (B + C) × (B + D) ≠ B + (C × D).

The covering, combining, and consensus theorems, T9 to T11, per-
mit us to eliminate redundant variables. With some thought, you should 
be able to convince yourself that these theorems are correct.

0 =

(a)

B 0

=1
B 1

(b)

Figure 2.15 Null element theorem 
in hardware: (a) T2, (b) T2′

B =

(a)

B B

=B
B B

(b)

Figure 2.16 Idempotency theorem 
in hardware: (a) T3, (b) T3′

= BB

Figure 2.17 Involution theorem in 
hardware: T4

B
=

(a)

B
0

=
B

B
1

(b)

Figure 2.18 Complement theorem 
in hardware: (a) T5, (b) T5′

Table 2.2 Boolean theorems of one variable

Theorem Dual Name

T1 B • 1 = B T1′ B + 0 = B Identity

T2 B • 0 = 0 T2′ B + 1 = 1 Null Element

T3 B • B = B T3′ B + B = B Idempotency

T4  = B Involution

T5 B • B = 0 T5′ B + B = 1 Complements

B
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De Morgan’s Theorem, T12, is a particularly powerful tool in digital 
design. The theorem explains that the complement of the product of all 
the terms is equal to the sum of the complement of each term. Likewise, 
the complement of the sum of all the terms is equal to the product of the 
complement of each term.

According to De Morgan’s theorem, a NAND gate is equivalent to 
an OR gate with inverted inputs. Similarly, a NOR gate is equivalent to 
an AND gate with inverted inputs. Figure 2.19 shows these De Morgan 
equivalent gates for NAND and NOR gates. The two symbols shown for 
each function are called duals. They are logically equivalent and can be 
used interchangeably.

The inversion circle is called a bubble. Intuitively, you can imagine 
that “pushing” a bubble through the gate causes it to come out at the other 

Augustus De Morgan, died 1871
A British mathematician, 
born in India. Blind in one 
eye. His father died when 
he was 10. Attended Trinity 
College, Cambridge, at 
age 16, and was appointed 
Professor of Mathematics at 
the newly founded London 
University at age 22. Wrote 
widely on many mathematical 
subjects, including logic, 
algebra, and paradoxes. 
De Morgan’s crater on the 
moon is named for him. He 
proposed a riddle for the year 
of his birth: “I was x years of 
age in the year x2.” 

Table 2.3 Boolean theorems of several variables

Theorem Dual Name

T6 B • C = C • B T6′ B + C = C + B Commutativity

T7 (B • C) • D = B • (C • D) T7′ (B + C) + D = B + (C + D) Associativity

T8 (B • C) + (B • D) = B • (C + D) T8′ (B + C) • (B + D) = B + (C • D) Distributivity

T9 B • (B + C) = B T9′ B + (B • C) = B Covering

T10 (B • C) + (B • C) = B T10′ (B + C) • (B + C) = B Combining

T11 (B • C) + (  • D) + (C • D)  
= (B • C) + (  • D)

T11′ (B + C) • (  + D) • (C + D)  
= (B + C) • (  + D)

Consensus

T12 B B B

B B B
0 1 2

0 1 2

• •

( )

…
= + + …

T12′ B B B

B B B
0 1 2

0 1 2

+ + …
= • …•( )

De Morgan’s 
Theorem

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

NAND
A
B Y

A
B Y

NOR
A
B Y

A
B Y

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Y = A + B = A BY = AB = A + B

Figure 2.19 De Morgan equivalent gates

B
B

B
B
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side and flips the body of the gate from AND to OR or vice versa. For 
example, the NAND gate in Figure 2.19 consists of an AND body with a 
bubble on the output. Pushing the bubble to the left results in an OR body 
with bubbles on the inputs. The underlying rules for bubble pushing are 

▸ Pushing bubbles backward (from the output) or forward (from the 
inputs) changes the body of the gate from AND to OR or vice versa.

▸ Pushing a bubble from the output back to the inputs puts bubbles 
on all gate inputs.

▸ Pushing bubbles on all gate inputs forward toward the output puts a 
bubble on the output.

Section 2.5.2 uses bubble pushing to help analyze circuits.

Example 2.4 DERIVE THE PRODUCT-OF-SUMS FORM

Figure 2.20 shows the truth table for a Boolean function Y and its complement Y.  
Using De Morgan’s Theorem, derive the product-of-sums canonical form of Y 
from the sum-of-products form of Y.

Solution Figure 2.21 shows the minterms (circled) contained in Y. The sum-of-
products canonical form of Y is

 Y AB AB= +  (2.4)

Taking the complement of both sides and applying De Morgan’s Theorem twice, 
we get

 Y Y AB AB AB AB A B A B= = + = = + +( )( ) ( )( )  (2.5) 

 

2 . 3 . 4   The Truth Behind It All

The curious reader might wonder how to prove that a theorem is true. 
In Boolean algebra, proofs of theorems with a finite number of variables 
are easy: just show that the theorem holds for all possible values of these 
variables. This method is called perfect induction and can be done with 
a truth table.

Example 2.5  PROVING THE CONSENSUS THEOREM USING  
PERFECT INDUCTION

Prove the consensus theorem, T11, from Table 2.3.

Solution Check both sides of the equation for all eight combinations of B, C, 
and D. The truth table in Figure 2.22 illustrates these combinations. Because 
BC BD CD BC BD+ + = +  for all cases, the theorem is proved.

 

Notice that  is  equal to .AB not AB 

A B Y
0 0
0 1
1 0
1 1

0
0
1
1

Y
1
1
0
0

Figure 2.20 Truth table showing 
Y and Y

A B Y
0 0
0 1
1 0
1 1

0
0
1
1

Y
1
1
0
0

minterm

A B
A B
A B

A B

Figure 2.21 Truth table showing 
minterms for Y
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2 . 3 . 5   Simplifying Equations

The theorems of Boolean algebra help us simplify Boolean equations. For 
example, consider the sum-of-products expression from the truth table of 
Figure 2.9: Y AB AB= + . By the combining theorem (T10), the equation 
simplifies to  Y = B. This may have been obvious looking at the truth table. In 
general, multiple steps may be necessary to simplify more complex equations.

The basic principle of simplifying sum-of-products equations is to 
combine terms using the relationship PA PA P+ = , where P may be any 
term. How far can an equation be simplified? We define an equation in 
sum-of-products form to be minimized if it uses the fewest possible 
implicants. If there are several equations with the same number of impli-
cants, the minimal one is the one with the fewest literals.

An implicant is called a prime implicant if it cannot be combined with 
any other implicants in the equation to form a new implicant with fewer 
literals. The implicants in a minimal equation must all be prime impli-
cants. Otherwise, they could be combined to reduce the number of literals.

Example 2.6 EQUATION MINIMIZATION

Minimize Equation 2.3: ABC ABC ABC+ + .

Solution We start with the original equation and apply Boolean theorems step by 
step, as shown in Table 2.4.

Have we simplified the equation completely at this point? Let’s take a closer 
look. From the original equation, the minterms ABC  and ABC  differ only in 
the variable A. So we combined the minterms to form BC. However, if we look 
at the original equation, we note that the last two minterms ABC  and ABC also 
differ by a single literal (C and C). Thus, using the same method, we could have 
combined these two minterms to form the minterm AB. We say that implicants 
BC and AB share the minterm ABC.

So, are we stuck with simplifying only one of the minterm pairs, or can we sim-
plify both? Using the idempotency theorem, we can duplicate terms as many times 
as we want: B = B + B + B + B … . Using this principle, we simplify the equation 
completely to its two prime implicants, BC AB+ , as shown in Table 2.5.
 

Tables 2.2 and 2.3 list the 
Boolean axioms and theorems 
in their fundamental forms. 
However, they also apply 
to more complex terms. For 
example, we apply the combining 
theorem to the expression 
( ) ( )A BC D A BC D+ + +  to 
produce

 
( )A BC+ .

 

0 0
0 1
1 0
1 1

B C D
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

BC + BD BC + BD + CD
0
1
0
1
0
0
1
1

0
1
0
1
0
0
1
1

Figure 2.22 Truth table  
proving T11
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Although it is a bit counterintuitive, expanding an implicant (e.g., 
turning AB into ABC + ABC) is sometimes useful in minimizing equa-
tions. By doing this, you can repeat one of the expanded minterms to be 
combined (shared) with another minterm.

You may have noticed that completely simplifying a Boolean equa-
tion with the theorems of Boolean algebra can take some trial and error. 
Section 2.7 describes a methodical technique called Karnaugh maps that 
makes the process easier.

Why bother simplifying a Boolean equation if it remains logically 
equivalent? Simplifying reduces the number of gates used to physically 
implement the function, thus making it smaller, cheaper, and possibly 
faster. The next section describes how to implement Boolean equations 
with logic gates.

2.4  FROM LOGIC TO GATES
A schematic is a diagram of a digital circuit showing the elements and 
the wires that connect them. For example, the schematic in Figure 2.23 
shows a possible hardware implementation of our favorite logic func-
tion, Equation 2.3:

 Y ABC ABC ABC= + +  (2.3)

The labs that accompany this 
textbook (see Preface) show 
how to use computer-aided 
design (CAD) tools to design, 
simulate, and test digital 
circuits. 

Table 2.4 Equation minimization

Step Equation Justification

ABC ABC ABC+ +

1 T8: Distributivity

2 BC ABC( )1 + T5: Complements

3 T1: Identity

Table 2.5 Improved equation minimization

Step Equation Justification

ABC ABC ABC+ +

1 T3: Idempotency

2 BC A A AB C C( ) ( )+ + + T8: Distributivity

3 T5: Complements

4 BC AB+ T1: Identity
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By drawing schematics in a consistent fashion, we make them easier 
to read and debug. We will generally obey the following guidelines:

▸ Inputs are on the left (or top) side of a schematic.

▸ Outputs are on the right (or bottom) side of a schematic.

▸ Whenever possible, gates should flow from left to right.

▸ Straight wires are better to use than wires with multiple corners 
(jagged wires waste mental effort following the wire rather than 
thinking about what the circuit does).

▸ Wires always connect at a T junction.

▸ A dot where wires cross indicates a connection between the wires.

▸ Wires crossing without a dot make no connection.

The last three guidelines are illustrated in Figure 2.24.
Any Boolean equation in sum-of-products form can be drawn as a 

schematic in a systematic way similar to Figure 2.23. First, draw columns 
for the inputs. Place inverters in adjacent columns to provide the com-
plementary inputs if necessary. Draw rows of AND gates for each of the 
minterms. Then, for each output, draw an OR gate connected to the min-
terms related to that output. This style is called a programmable logic 
array (PLA) because the inverters, AND gates, and OR gates are arrayed 
in a systematic fashion. PLAs will be discussed further in Section 5.6.

Figure 2.25 shows an implementation of the simplified equation we 
found using Boolean algebra in Example 2.6. Notice that the simplified 
circuit has significantly less hardware than that of Figure 2.23. It may 
also be faster because it uses gates with fewer inputs.

We can reduce the number of gates even further (albeit by a sin-
gle inverter) by taking advantage of inverting gates. Observe that BC  is 
an AND with inverted inputs. Figure 2.26 shows a schematic using this 
optimization to eliminate the inverter on C. Recall that by De Morgan’s 

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Figure 2.23 Schematic of 
Y ABC ABC ABC= + +

wires connect
at a T junction

wires connect
at a dot

wires crossing 
without a dot do 

not connect

Figure 2.24 Wire connections

A B C

Y

Figure 2.25 Schematic of 
Y BC AB= +
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theorem, the AND with inverted inputs is equivalent to a NOR gate. 
Depending on the implementation technology, it may be cheaper to use 
the fewest gates or to use certain types of gates in preference to others. 
For example, NANDs and NORs are preferred over ANDs and ORs in 
CMOS implementations.

Many circuits have multiple outputs, each of which computes a sep-
arate Boolean function of the inputs. We can write a separate truth table 
for each output, but it is often convenient to write all of the outputs on 
a single truth table and sketch one schematic with all of the outputs.

Example 2.7 MULTIPLE-OUTPUT CIRCUITS

The dean, the department chair, the teaching assistant, and the dorm social chair 
each use the auditorium from time to time. Unfortunately, they occasionally con-
flict, leading to disasters such as the one that occurred when the dean’s fundraising  
meeting with crusty trustees happened at the same time as the dorm’s BTB1 
party. Alyssa P. Hacker has been called in to design a room reservation system.

The system has four inputs, A3, …, A0, and four outputs, Y3, …, Y0. These sig-
nals can also be written as A3:0 and Y3:0. Each user asserts her input when she 
requests the auditorium for the next day. The system asserts at most one output, 
granting the auditorium to the highest priority user. The dean, who is paying for 
the system, demands highest priority (3). The department chair, teaching assis-
tant, and dorm social chair have decreasing priority.

Write a truth table and Boolean equations for the system. Sketch a circuit that 
performs this function.

Solution This function is called a four-input priority circuit. Its symbol and truth 
table are shown in Figure 2.27.

We could write each output in sum-of-products form and reduce the equations 
using Boolean algebra. However, the simplified equations are clear by inspection 
from the functional description (and the truth table): Y3 is TRUE whenever A3 
is asserted, so Y3 = A3. Y2 is TRUE if A2 is asserted and A3 is not asserted, so 
Y A A Y2 3 2 1= .  is TRUE if A1 is asserted and neither of the higher-priority inputs 
is asserted: Y A AA1 3 2 1= . And Y0 is TRUE whenever A0 and no other input is 
asserted: Y A A A A0 3 2 1 0= . The schematic is shown in Figure 2.28. An experi-
enced designer can often implement a logic circuit by inspection. Given a clear 
specification, simply turn the words into equations and the equations into gates.
 

Notice that if A3 is asserted in the priority circuit, the outputs don’t 
care what the other inputs are. We use the symbol X to describe inputs 

1Black light, twinkies, and beer.

Y

A CB

Figure 2.26 Schematic using 
fewer gates
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that the output doesn’t care about. Figure 2.29 shows that the four-input 
priority circuit truth table becomes much smaller with don’t cares. From 
this truth table, we can easily read the Boolean equations in sum-of-
products form by ignoring inputs with X’s. Don’t cares can also appear 
in truth table outputs, as we will see in Section 2.7.3.

2.5  MULTILEVEL COMBINATIONAL LOGIC
Logic in sum-of-products form is called two-level logic because it con-
sists of literals connected to a level of AND gates connected to a level 
of OR gates. Designers often build circuits with more than two levels of 

X is an overloaded symbol 
that means “don’t care” in 
truth tables and “contention” 
in logic simulation (see Section 
2.6.1). Think about the 
context so you don’t mix up 
the meanings. Some authors 
use D or ? instead for “don’t 
care” to avoid this ambiguity. 
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Circuit
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0
0
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0
0
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0
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A1 A0A3 A2 Y2 Y1 Y0Y3

Figure 2.27 Priority circuit
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Figure 2.28 Priority circuit schematic
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Figure 2.29 Priority circuit truth table with 
don’t cares (X’s)
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logic gates. These multilevel combinational circuits may use less hard-
ware than their two-level counterparts. Bubble pushing is especially 
helpful in analyzing and designing multilevel circuits.

2 . 5 . 1   Hardware Reduction

Some logic functions require an enormous amount of hardware when 
built using two-level logic. A notable example is the XOR function of 
multiple variables. For example, consider building a three-input XOR 
using the two-level techniques we have studied so far.

Recall that an N-input XOR produces a TRUE output when an 
odd number of inputs are TRUE. Figure 2.30 shows the truth table for 
a three-input XOR with the rows circled that produce TRUE outputs.  
From the truth table, we read off a Boolean equation in sum-of-products 
form in Equation 2.6. Unfortunately, there is no way to simplify this 
equation into fewer implicants.

 Y ABC ABC ABC ABC= + + +  (2.6)

On the other hand, A ⊕ B ⊕ C = (A ⊕ B) ⊕ C (prove this to your-
self by perfect induction if you are in doubt). Therefore, the three-input 
XOR can be built out of a cascade of two-input XORs, as shown in 
Figure 2.31.

Similarly, an eight-input XOR would require 128 eight-input AND 
gates and one 128-input OR gate for a two-level sum-of-products imple-
mentation. A much better option is to use a tree of two-input XOR 
gates, as shown in Figure 2.32.

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
0
1
0
0
1

Y

XOR3

Y = A ⊕ B ⊕ C

A
B Y
C

BA C

Y
(b)(a)

Figure 2.30 Three-input XOR:  
(a) functional specification and  
(b) two-level logic implementation
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Selecting the best multilevel implementation of a specific logic 
function is not a simple process. Moreover, “best” has many meanings: 
fewest gates, fastest, shortest design time, least cost, least power con-
sumption. In Chapter 5, you will see that the “best” circuit in one tech-
nology is not necessarily the best in another. For example, we have been 
using ANDs and ORs, but in CMOS, NANDs and NORs are more effi-
cient. With some experience, you will find that you can create a good 
multilevel design by inspection for most circuits. You will develop some 
of this experience as you study circuit examples through the rest of this 
book. As you are learning, explore various design options and think 
about the trade-offs. Computer-aided design (CAD) tools are also avail-
able to search a vast space of possible multilevel designs and seek the 
one that best fits your constraints given the available building blocks.

2 . 5 . 2   Bubble Pushing

You may recall from Section 1.7.6 that CMOS circuits prefer NANDs 
and NORs over ANDs and ORs. But reading the equation by inspection 
from a multilevel circuit with NANDs and NORs can get pretty hairy. 
Figure 2.33 shows a multilevel circuit whose function is not immediately 
clear by inspection. Bubble pushing is a helpful way to redraw these cir-
cuits so that the bubbles cancel out and the function can be more easily 
determined. Building on the principles from Section 2.3.3, the guidelines 
for bubble pushing are as follows:

• Begin at the output of the circuit and work toward the inputs.

• Push any bubbles on the final output back toward the inputs so that 
you can read an equation in terms of the output (e.g., Y) instead of 
the complement of the output ( )Y .

• Working backward, draw each gate in a form so that bubbles can-
cel. If the current gate has an input bubble, draw the preceding gate 
with an output bubble. If the current gate does not have an input 
bubble, draw the preceding gate without an output bubble.

Figure 2.34 shows how to redraw Figure 2.33 according to the 
bubble pushing guidelines. Starting at the output Y, the NAND gate 
has a bubble on the output that we wish to eliminate. We push the 
output bubble back to form an OR with inverted inputs, shown in  

A
B

YC

Figure 2.31 Three-input XOR 
using two-input XORs

Figure 2.32 Eight-input XOR using 
seven two-input XORs

A
B

C

D

Y

Figure 2.33 Multilevel circuit 
using NANDs and NORs
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Figure 2.34(a). Working to the left, the rightmost gate has an input bub-
ble that cancels with the output bubble of the middle NAND gate, so 
no change is necessary, as shown in Figure 2.34(b). The middle gate has 
no input bubble, so we transform the leftmost gate to have no output 
bubble, as shown in Figure 2.34(c). Now, all of the bubbles in the cir-
cuit cancel except at the inputs, so the function can be read by inspec-
tion in terms of ANDs and ORs of true or complementary inputs: 
Y ABC D= + .

For emphasis of this last point, Figure 2.35 shows a circuit logically 
equivalent to the one in Figure 2.34. The functions of internal nodes are 
labeled in blue. Because bubbles in series cancel, we can ignore the bub-
bles on the output of the middle gate and on one input of the rightmost 
gate to produce the logically equivalent circuit of Figure 2.35.

A
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C Y

D
(a)

no output 
bubble

bubble on 
input and outputA

B

C

D

Y

(b)

A
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Y

(c)
Y = ABC + D

no bubble on 
input and output

Figure 2.34 Bubble-pushed 
circuit

A
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AB

ABC

Y = ABC + D

Figure 2.35 Logically equivalent 
bubble-pushed circuit
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Example 2.8 BUBBLE PUSHING FOR CMOS LOGIC

Most designers think in terms of AND and OR gates, but suppose you would 
like to implement the circuit in Figure 2.36 in CMOS logic, which favors NAND 
and NOR gates. Use bubble pushing to convert the circuit to NANDs, NORs, 
and inverters.

Solution A brute force solution is to just replace each AND gate with a NAND 
and an inverter, and each OR gate with a NOR and an inverter, as shown in 
Figure 2.37. This requires eight gates. Notice that the inverter is drawn with the 
bubble on the front rather than back, to emphasize how the bubble can cancel 
with the preceding inverting gate.

For a better solution, observe that bubbles can be added to the output of a gate 
and the input of the next gate without changing the function, as shown in Figure 
2.38(a). The final AND is converted to a NAND and an inverter, as shown in 
Figure 2.38(b). This solution requires only five gates.
 

Figure 2.36 Circuit using ANDs 
and ORs

Figure 2.37 Poor circuit using 
NANDs and NORs

(a) (b)

Figure 2.38 Better circuit using 
NANDs and NORs

2.6  X’S AND Z’S, OH MY
Boolean algebra is limited to 0’s and 1’s. However, real circuits can also 
have illegal and floating values, represented symbolically by X and Z.

2 . 6 . 1   Illegal Value: X

The symbol X indicates that the circuit node has an unknown or illegal 
value. This commonly happens if it is being driven to both 0 and 1 at the 
same time. Figure 2.39 shows a case where node Y is driven both HIGH 
and LOW. This situation, called contention, is considered to be an error 

A = 1

Y = X 

B = 0

Figure 2.39 Circuit with 
contention
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and must be avoided. The actual voltage on a node with contention may 
be somewhere between 0 and VDD, depending on the relative strengths 
of the gates driving HIGH and LOW. It is often, but not always, in the 
forbidden zone. Contention also can cause large amounts of power to 
flow between the fighting gates, resulting in the circuit getting hot and 
possibly damaged.

X values are also sometimes used by circuit simulators to indicate 
an uninitialized value. For example, if you forget to specify the value of 
an input, the simulator may assume that it is an X to warn you of the 
problem.

As mentioned in Section 2.4, digital designers also use the symbol 
X to indicate “don’t care” values in truth tables. Be sure not to mix up 
the two meanings. When X appears in a truth table, it indicates that the 
value of the variable in the truth table is unimportant (can be either 0 
or 1). When X appears in a circuit, it means that the circuit node has an 
unknown or illegal value.

2 . 6 . 2   Floating Value: Z

The symbol Z indicates that a node is being driven neither HIGH 
nor LOW. The node is said to be floating, high impedance, or high Z.  
A typical misconception is that a floating or undriven node is the 
same as a logic 0. In reality, a floating node might be 0, might be 1, 
or might be at some voltage in between, depending on the history of 
the system. A floating node does not always mean there is an error in 
the circuit, so long as some other circuit element does drive the node 
to a valid logic level when the value of the node is relevant to circuit 
operation.

One common way to produce a floating node is to forget to con-
nect a voltage to a circuit input or to assume that an unconnected input 
is the same as an input with the value of 0. This mistake may cause 
the circuit to behave erratically, as the floating input randomly changes 
from 0 to 1. Indeed, touching the circuit may be enough to trigger the 
change by means of static electricity from the body. We have seen cir-
cuits that operate correctly only as long as the student keeps a finger 
pressed on a chip.

The tristate buffer, shown in Figure 2.40, has three possible output 
states: HIGH (1), LOW (0), and floating (Z). The tristate buffer has an 
input A, output Y, and enable E. When the enable is TRUE, the tristate 
buffer acts as a simple buffer, transferring the input value to the output. 
When the enable is FALSE, the output is allowed to float (Z).

The tristate buffer in Figure 2.40 has an active high enable. That is, 
when the enable is HIGH (1), the buffer is enabled. Figure 2.41 shows a 

E A Y 
0 0 Z 
0 1 Z 
1 0 0 
1 1 1 

Tristate
Buffer

A 

E 

Y 

Figure 2.40 Tristate buffer

E A Y
0 0 0
0 1 1
1 0 Z
1 1 Z
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E

Y

Figure 2.41 Tristate buffer 
with active low enable
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tristate buffer with an active low enable. When the enable is LOW (0), 
the buffer is enabled. We show that the signal is active low by putting a 
bubble on its input wire. We often indicate an active low input by draw-
ing a bar over its name, E, or appending the letters “b” or “bar” after its 
name, Eb or Ebar.

Tristate buffers are commonly used on busses that connect multiple 
chips. For example, a microprocessor, a video controller, and an Ethernet 
controller might all need to communicate with the memory system in a 
personal computer. Each chip can connect to a shared memory bus using 
tristate buffers, as shown in Figure 2.42. Only one chip at a time is 
allowed to assert its enable signal to drive a value onto the bus. The 
other chips must produce floating outputs so that they do not cause con-
tention with the chip talking to the memory. Any chip can read the 
information from the shared bus at any time. Such tristate busses were 
once common. However, in modern computers, higher speeds are possi-
ble with point-to-point links, in which chips are connected to each other 
directly rather than over a shared bus. 

2.7  KARNAUGH MAPS
After working through several minimizations of Boolean equations 
using Boolean algebra, you will realize that, if you’re not careful, you 
sometimes end up with a completely different equation instead of a sim-
plified equation. Karnaugh maps (K-maps) are a graphical method for 
simplifying Boolean equations. They were invented in 1953 by Maurice 
Karnaugh, a telecommunications engineer at Bell Labs. K-maps work 

Maurice Karnaugh, 1924– 
Graduated with a bachelor’s 
degree in physics from the 
City College of New York in 
1948 and earned a Ph.D. in 
physics from Yale in 1952.

Worked at Bell Labs and 
IBM from 1952 to 1993 
and as a computer science 
professor at the Polytechnic 
University of New York from 
1980 to 1999. 
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Figure 2.42 Tristate bus 
connecting multiple chips
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well for problems with up to four variables. More important, they give 
insight into manipulating Boolean equations.

Recall that logic minimization involves combining terms. Two terms 
containing an implicant P and the true and complementary forms of 
some variable A are combined to eliminate A PA PA P: .+ =  Karnaugh 
maps make these combinable terms easy to see by putting them next to 
each other in a grid.

Figure 2.43 shows the truth table and K-map for a three-input func-
tion. The top row of the K-map gives the four possible values for the A 
and B inputs. The left column gives the two possible values for the C 
input. Each square in the K-map corresponds to a row in the truth table 
and contains the value of the output Y for that row. For example, the 
top left square corresponds to the first row in the truth table and indi-
cates that the output value Y = 1 when ABC = 000. Just like each row  
in a truth table, each square in a K-map represents a single minterm. For the 
purpose of explanation, Figure 2.43(c) shows the minterm corresponding  
to each square in the K-map.

Each square, or minterm, differs from an adjacent square by a 
change in a single variable. This means that adjacent squares share all 
the same literals except one, which appears in true form in one square 
and in complementary form in the other. For example, the squares rep-
resenting the minterms ABC  and ABC are adjacent and differ only in 
the variable C. You may have noticed that the A and B combinations in 
the top row are in a peculiar order: 00, 01, 11, 10. This order is called 
a Gray code. It differs from ordinary binary order (00, 01, 10, 11) in 
that adjacent entries differ only in a single variable. For example, 01:11 
changes only A from 0 to 1, while 01:10 would change A from 0 to 
1 and B from 1 to 0. Hence, writing the combinations in binary order 
would not have produced our desired property of adjacent squares dif-
fering only in one variable.

The K-map also “wraps around.” The squares on the far right are 
effectively adjacent to the squares on the far left in that they differ only 
in one variable, A. In other words, you could take the map and roll it 
into a cylinder, then join the ends of the cylinder to form a torus (i.e., 
a donut), and still guarantee that adjacent squares would differ only in 
one variable.

2 . 7 . 1   Circular Thinking

In the K-map in Figure 2.43, only two minterms are present in the equa-
tion, ABC  and ABC, as indicated by the 1’s in the left column. Reading 
the minterms from the K-map is exactly equivalent to reading equations 
in sum-of-products form directly from the truth table.

Gray codes were patented 
(U.S. Patent 2,632,058) by 
Frank Gray, a Bell Labs 
researcher, in 1953. They 
are especially useful in 
mechanical encoders because 
a slight misalignment causes 
an error in only one bit.

Gray codes generalize 
to any number of bits. For 
example, a 3-bit Gray code 
sequence is:

000, 001, 011, 010,
110, 111, 101, 100

Lewis Carroll posed a related 
puzzle in Vanity Fair in 1879.

“The rules of the Puzzle are 
simple enough. Two words 
are proposed, of the same 
length; and the puzzle consists 
of linking these together by 
interposing other words, each 
of which shall differ from 
the next word in one letter 
only. That is to say, one letter 
may be changed in one of the 
given words, then one letter in 
the word so obtained, and so 
on, till we arrive at the other 
given word.”

For example, SHIP to DOCK:

SHIP, SLIP, SLOP,
SLOT, SOOT, LOOT,
LOOK, LOCK, DOCK.

Can you find a shorter 
sequence? 
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As before, we can use Boolean algebra to minimize equations in sum-of-
products form.

 Y ABC ABC AB C C AB= + = + =( )  (2.7)

K-maps help us do this simplification graphically by circling 1’s in 
adjacent squares, as shown in Figure 2.44. For each circle, we write the 
corresponding implicant. Remember from Section 2.2 that an implicant 
is the product of one or more literals. Variables whose true and comple-
mentary forms are both in the circle are excluded from the implicant. In 
this case, the variable C has both its true form (1) and its complementary 
form (0) in the circle, so we do not include it in the implicant. In other 
words, Y is TRUE when A = B = 0, independent of C. So, the implicant is 
AB. The K-map gives the same answer we reached using Boolean algebra.

2 . 7 . 2   Logic Minimization with K-Maps

K-maps provide an easy visual way to minimize logic. Simply circle all 
the rectangular blocks of 1’s in the map, using the fewest possible num-
ber of circles. Each circle should be as large as possible. Then, read off 
the implicants that were circled.

More formally, recall that a Boolean equation is minimized when it 
is written as a sum of the fewest number of prime implicants. Each circle 
on the K-map represents an implicant. The largest possible circles are 
prime implicants.

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

(a)

C 00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

(b)

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

(c)

Figure 2.43 Three-input function: (a) truth table, (b) K-map, (c) K-map showing minterms

C 00 01

0

1

Y

11 10
AB

1

0

0

0

0

0

0

1 Figure 2.44 K-map minimization



Combinational Logic DesignCHAPTER TWO76

For example, in the K-map of Figure 2.44, ABC and ABC are impli-
cants, but not prime implicants. Only AB  is a prime implicant in that 
K-map. Rules for finding a minimized equation from a K-map are as 
follows:

▸ Use the fewest circles necessary to cover all the 1’s.

▸ All the squares in each circle must contain 1’s.

▸ Each circle must span a rectangular block that is a power of 2 (i.e., 
1, 2, or 4) squares in each direction.

▸ Each circle should be as large as possible.

▸ A circle may wrap around the edges of the K-map.

▸ A 1 in a K-map may be circled multiple times if doing so allows 
fewer circles to be used.

Example 2.9  MINIMIZATION OF A THREE-VARIABLE FUNCTION  
USING A K-MAP

Suppose we have the function Y = F(A, B, C) with the K-map shown in Figure 
2.45. Minimize the equation using the K-map.

Solution Circle the 1’s in the K-map using as few circles as possible, as shown 
in Figure 2.46. Each circle in the K-map represents a prime implicant, and the 
dimension of each circle is a power of two (2 × 1 and 2 × 2). We form the prime 
implicant for each circle by writing those variables that appear in the circle only 
in true or only in complementary form.

For example, in the 2 × 1 circle, the true and complementary forms of B are 
included in the circle, so we do not include B in the prime implicant. However, 
only the true form of A (A) and complementary form of C C( ) are in this circle, 
so we include these variables in the prime implicant AC. Similarly, the 2 × 2 circle 
covers all squares where B = 0, so the prime implicant is B.

Notice how the top-right square (minterm) is covered twice to make the prime 
implicant circles as large as possible. As we saw with Boolean algebra techniques, 
this is equivalent to sharing a minterm to reduce the size of the implicant. Also 
notice how the circle covering four squares wraps around the sides of the K-map.

00 01

Y

11 10
AB

1

1

0

0

1

0

1

1

0

1

C

Figure 2.45 K-map for  
Example 2.9
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Example 2.10 SEVEN-SEGMENT DISPLAY DECODER

A seven-segment display decoder takes a 4-bit data input D3:0 and produces 
seven outputs to control light-emitting diodes to display a digit from 0 to 9. 
The seven outputs are often called segments a through g, or Sa–Sg, as defined in  
Figure 2.47. The digits are shown in Figure 2.48. Write a truth table for the  
outputs, and use K-maps to find Boolean equations for outputs Sa and Sb. 
Assume that illegal input values (10–15) produce a blank readout.

Solution The truth table is given in Table 2.6. For example, an input of 0000 
should turn on all segments except Sg.

Each of the seven outputs is an independent function of four variables. The 
K-maps for outputs Sa and Sb are shown in Figure 2.49. Remember that adjacent 
squares may differ in only a single variable, so we label the rows and columns in 
Gray code order: 00, 01, 11, 10. Be careful to also remember this ordering when 
entering the output values into the squares.

Next, circle the prime implicants. Use the fewest number of circles necessary to 
cover all the 1’s. A circle can wrap around the edges (vertical and horizontal), 
and a 1 may be circled more than once. Figure 2.50 shows the prime implicants 
and the simplified Boolean equations.

Note that the minimal set of prime implicants is not unique. For example, the 
0000 entry in the Sa K-map was circled, along with the 1000 entry to produce 
the D D D2 1 0 minterm. The circle could have included the 0010 entry instead, 
producing a D D D3 2 0 minterm, as shown with dashed lines in Figure 2.51.

Figure 2.52 (see page 80) illustrates a common error in which a nonprime 
implicant was chosen to cover the 1 in the upper left corner. This minterm, 
D D D D3 2 1 0,, gives a sum-of-products equation that is not minimal. The minterm 
could have been combined with either of the adjacent ones to form a larger cir-
cle, as was done in the previous two figures.
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Figure 2.46 Solution for  
Example 2.9
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Figure 2.47 Seven-segment 
display decoder icon
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0 1 2 3 4 5 6 7 8 9 

Figure 2.48 Seven-segment 
display digits

Table 2.6 Seven-segment display decoder truth table

D3:0 Sa Sb Sc Sd Se Sf Sg

0000 1 1 1 1 1 1 0

0001 0 1 1 0 0 0 0

0010 1 1 0 1 1 0 1

0011 1 1 1 1 0 0 1

0100 0 1 1 0 0 1 1

0101 1 0 1 1 0 1 1

0110 1 0 1 1 1 1 1

0111 1 1 1 0 0 0 0

1000 1 1 1 1 1 1 1

1001 1 1 1 0 0 1 1

others 0 0 0 0 0 0 0

01 11
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D3:2
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Figure 2.49 Karnaugh maps for 
Sa and Sb
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2 . 7 . 3   Don’t Cares

Recall that “don’t care” entries for truth table inputs were introduced 
in Section 2.4 to reduce the number of rows in the table when some 
variables do not affect the output. They are indicated by the symbol X, 
which means that the entry can be either 0 or 1.

Don’t cares also appear in truth table outputs where the output 
value is unimportant or the corresponding input combination can never 
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Figure 2.50 K-map solution for Example 2.10
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Figure 2.51 Alternative K-map for 
Sa showing different set of prime 
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happen. Such outputs can be treated as either 0’s or 1’s at the designer’s 
discretion.

In a K-map, X’s allow for even more logic minimization. They can 
be circled if they help cover the 1’s with fewer or larger circles, but they 
do not have to be circled if they are not helpful.

Example 2.11 SEVEN-SEGMENT DISPLAY DECODER WITH DON’T CARES

Repeat Example 2.10 if we don’t care about the output values for illegal input 
values of 10 to 15.

Solution The K-map is shown in Figure 2.53 with X entries representing don’t 
care. Because don’t cares can be 0 or 1, we circle a don’t care if it allows us to 
cover the 1’s with fewer or bigger circles. Circled don’t cares are treated as 1’s, 
whereas uncircled don’t cares are 0’s. Observe how a 2 × 2 square wrapping 
around all four corners is circled for segment Sa. Use of don’t cares simplifies the 
logic substantially.
 

2 . 7 . 4   The Big Picture

Boolean algebra and Karnaugh maps are two methods of logic simplifi-
cation. Ultimately, the goal is to find a low-cost method of implementing 
a particular logic function.

In modern engineering practice, computer programs called logic syn-
thesizers produce simplified circuits from a description of the logic func-
tion, as we will see in Chapter 4. For large problems, logic synthesizers 
are much more efficient than humans. For small problems, a human with 
a bit of experience can find a good solution by inspection. Neither of the 
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authors has ever used a Karnaugh map in real life to solve a practical 
problem. But the insight gained from the principles underlying Karnaugh 
maps is valuable. And Karnaugh maps often appear at job interviews!

2.8  COMBINATIONAL BUILDING BLOCKS
Combinational logic is often grouped into larger building blocks to 
build more complex systems. This is an application of the principle of 
abstraction, hiding the unnecessary gate-level details to emphasize the 
function of the building block. We have already studied three such build-
ing blocks: full adders (from Section 2.1), priority circuits (from Section 
2.4), and seven-segment display decoders (from Section 2.7). This sec-
tion introduces two more commonly used building blocks: multiplexers 
and decoders. Chapter 5 covers other combinational building blocks.

2 . 8 . 1   Multiplexers

Multiplexers are among the most commonly used combinational cir-
cuits. They choose an output from among several possible inputs, based 
on the value of a select signal. A multiplexer is sometimes affectionately 
called a mux.

2:1 Multiplexer
Figure 2.54 shows the schematic and truth table for a 2:1 multiplexer 
with two data inputs D0 and D1, a select input S, and one output Y. The 
multiplexer chooses between the two data inputs, based on the select: 
if S = 0, Y = D0, and if S = 1, Y = D1. S is also called a control signal 
because it controls what the multiplexer does.

A 2:1 multiplexer can be built from sum-of-products logic as shown 
in Figure 2.55. The Boolean equation for the multiplexer may be derived 
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using a Karnaugh map or read off by inspection (Y is 1 if S = 0 AND D0 
is 1 OR if S = 1 AND D1 is 1).

Alternatively, multiplexers can be built from tristate buffers as 
shown in Figure 2.56. The tristate enables are arranged such that 
exactly one tristate buffer is active at all times. When S = 0, tristate T0 
is enabled, allowing D0 to flow to Y. When S = 1, tristate T1 is enabled, 
allowing D1 to flow to Y.

Wider Multiplexers
A 4:1 multiplexer has four data inputs and one output, as shown in 
Figure 2.57. Two select signals are needed to choose among the four 
data inputs. The 4:1 multiplexer can be built using sum-of-products 
logic, tristates, or multiple 2:1 multiplexers, as shown in Figure 2.58.

The product terms enabling the tristates can be formed using AND 
gates and inverters. They can also be formed using a decoder, which we 
will introduce in Section 2.8.2.

Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built 
by expanding the methods shown in Figure 2.58. In general, an N:1 
multiplexer needs log2N select lines. Again, the best implementation 
choice depends on the target technology.

Multiplexer Logic
Multiplexers can be used as lookup tables to perform logic functions. 
Figure 2.59 shows a 4:1 multiplexer used to implement a two-input 

Shorting together the outputs 
of multiple gates technically 
violates the rules for 
combinational circuits given 
in Section 2.1. But because 
exactly one of the outputs 
is driven at any time, this 
exception is allowed. 
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Figure 2.56 Multiplexer using 
tristate buffers
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AND gate. The inputs, A and B, serve as select lines. The multiplexer 
data inputs are connected to 0 or 1, according to the corresponding row 
of the truth table. In general, a 2N-input multiplexer can be programmed 
to perform any N-input logic function by applying 0’s and 1’s to the 
appropriate data inputs. Indeed, by changing the data inputs, the multi-
plexer can be reprogrammed to perform a different function.

With a little cleverness, we can cut the multiplexer size in half, using 
only a 2N–1-input multiplexer to perform any N-input logic function. 
The strategy is to provide one of the literals, as well as 0’s and 1’s, to the 
multiplexer data inputs.

To illustrate this principle, Figure 2.60 shows two-input AND and 
XOR functions implemented with 2:1 multiplexers. We start with an ordi-
nary truth table and then combine pairs of rows to eliminate the right-
most input variable by expressing the output in terms of this variable. For 
example, in the case of AND, when A = 0, Y = 0, regardless of B. When 
A = 1, Y = 0 if B = 0 and Y = 1 if B = 1, so Y = B. We then use the multi-
plexer as a lookup table according to the new, smaller truth table.

Example 2.12 LOGIC WITH MULTIPLEXERS

Alyssa P. Hacker needs to implement the function Y AB BC ABC= + +  to fin-
ish her senior project, but when she looks in her lab kit, the only part she has left 
is an 8:1 multiplexer. How does she implement the function?

Solution Figure 2.61 shows Alyssa’s implementation using a single 8:1 multi-
plexer. The multiplexer acts as a lookup table, where each row in the truth table 
corresponds to a multiplexer input.
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Example 2.13 LOGIC WITH MULTIPLEXERS, REPRISED

Alyssa turns on her circuit one more time before the final presentation and 
blows up the 8:1 multiplexer. (She accidently powered it with 20 V instead of 5 V 
after not sleeping all night.) She begs her friends for spare parts and they give her 
a 4:1 multiplexer and an inverter. Can she build her circuit with only these parts?

Solution Alyssa reduces her truth table to four rows by letting the output depend 
on C. (She could also have chosen to rearrange the columns of the truth table to 
let the output depend on A or B.) Figure 2.62 shows the new design.
 

2 . 8 . 2   Decoders

A decoder has N inputs and 2N outputs. It asserts exactly one of its 
outputs depending on the input combination. Figure 2.63 shows a 2:4 
decoder. When A1:0 = 00, Y0 is 1. When A1:0 = 01, Y1 is 1. And so forth. 
The outputs are called one-hot, because exactly one is “hot” (HIGH) at 
a given time.
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Figure 2.60 Multiplexer logic 
using variable inputs
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Figure 2.61 Alyssa’s circuit:  
(a) truth table, (b) 8:1 multiplexer 
implementation
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Example 2.14 DECODER IMPLEMENTATION

Implement a 2:4 decoder with AND and NOT gates.

Solution Figure 2.64 shows an implementation for the 2:4 decoder, using four 
AND gates. Each gate depends on either the true or the complementary form 
of each input. In general, an N:2N decoder can be constructed from 2N N-input 
AND gates that accept the various combinations of true or complementary 
inputs. Each output in a decoder represents a single minterm. For example, Y0 
represents the minterm A A1 0. This fact will be handy when using decoders with 
other digital building blocks.
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Figure 2.62 Alyssa’s new circuit
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Figure 2.65 Logic function using 
decoder
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Figure 2.64 2:4 decoder implementation

Decoder Logic
Decoders can be combined with OR gates to build logic functions. 
Figure 2.65 shows the two-input XNOR function using a 2:4 decoder 
and a single OR gate. Because each output of a decoder represents a sin-
gle minterm, the function is built as the OR of all of the minterms in the 
function. In Figure 2.65, Y AB AB A B= + = ⊕ .
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When using decoders to build logic, it is easiest to express functions 
as a truth table or in canonical sum-of-products form. An N-input func-
tion with M 1’s in the truth table can be built with an N:2N decoder and 
an M-input OR gate attached to all of the minterms containing 1’s in 
the truth table. This concept will be applied to the building of read-only 
memories (ROMs) in Section 5.5.6.

2.9  TIMING
In previous sections, we have been concerned primarily with whether the 
circuit works—ideally, using the fewest gates. However, as any seasoned 
circuit designer will attest, one of the most challenging issues in circuit 
design is timing: making a circuit run fast.

An output takes time to change in response to an input change. 
Figure 2.66 shows the delay between an input change and the subse-
quent output change for a buffer. The figure is called a timing diagram; 
it portrays the transient response of the buffer circuit when an input 
changes. The transition from LOW to HIGH is called the rising edge. 
Similarly, the transition from HIGH to LOW (not shown in the figure) is 
called the falling edge. The blue arrow indicates that the rising edge of Y 
is caused by the rising edge of A. We measure delay from the 50% point 
of the input signal, A, to the 50% point of the output signal, Y. The 
50% point is the point at which the signal is halfway (50%) between its 
LOW and HIGH values as it transitions.

2 . 9 . 1   Propagation and Contamination Delay

Combinational logic is characterized by its propagation delay and con-
tamination delay. The propagation delay tpd is the maximum time from 
when any input changes until the output or outputs reach their final 
value. The contamination delay tcd is the minimum time from when any 
input changes until any output starts to change its value.

When designers speak of 
calculating the delay of a 
circuit, they generally are 
referring to the worst-case 
value (the propagation delay), 
unless it is clear otherwise 
from the context. 

A

Y

Time

delay

A Y

Figure 2.66 Circuit delay
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Figure 2.67 illustrates a buffer’s propagation delay and contamina-
tion delay in blue and gray, respectively. The figure shows that A is ini-
tially either HIGH or LOW and changes to the other state at a particular 
time; we are interested only in the fact that it changes, not what value it 
has. In response, Y changes some time later. The arcs indicate that Y may 
start to change tcd after A transitions and that Y definitely settles to its 
new value within tpd.

The underlying causes of delay in circuits include the time required 
to charge the capacitance in a circuit and the speed of light. tpd and tcd 
may be different for many reasons, including

▸ different rising and falling delays

▸ multiple inputs and outputs, some of which are faster than others

▸ circuits slowing down when hot and speeding up when cold

Calculating tpd and tcd requires delving into the lower levels of 
abstraction beyond the scope of this book. However, manufacturers nor-
mally supply data sheets specifying these delays for each gate.

Along with the factors already listed, propagation and contamina-
tion delays are also determined by the path a signal takes from input 
to output. Figure 2.68 shows a four-input logic circuit. The critical 
path, shown in blue, is the path from input A or B to output Y. It is 
the longest—and, therefore, the slowest—path because the input travels 

Circuit delays are ordinarily 
on the order of picoseconds 
(1 ps = 10−12 seconds) to 
nanoseconds (1 ns = 10−9 
seconds). Trillions of 
picoseconds have elapsed in 
the time you spent reading this 
sidebar. 

A Y

A

Y

Time

tpd

tcd

Figure 2.67 Propagation and 
contamination delay

A
B

C

D Y

Critical Path

Short Path

n1

n2 Figure 2.68 Short path and 
critical path
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through three gates to the output. This path is critical because it limits 
the speed at which the circuit operates. The short path through the cir-
cuit, shown in gray, is from input D to output Y. This is the shortest—
and, therefore, the fastest—path through the circuit because the input 
travels through only a single gate to the output.

The propagation delay of a combinational circuit is the sum of the 
propagation delays through each element on the critical path. The con-
tamination delay is the sum of the contamination delays through each 
element on the short path. These delays are illustrated in Figure 2.69 
and are described by the following equations:

 t t tpd pd pd= +2 – –AND OR (2.8)

 t tcd cd= –AND (2.9)

Example 2.15 FINDING DELAYS

Ben Bitdiddle needs to find the propagation delay and contamination delay  
of the circuit shown in Figure 2.70. According to his data book, each gate  
has a propagation delay of 100 picoseconds (ps) and a contamination delay  
of 60 ps.

Although we are ignoring wire 
delay in this analysis, digital 
circuits are now so fast that 
the delay of long wires can be 
as important as the delay of 
the gates. The speed of light 
delay in wires is covered in 
Appendix A. 

A = 1    0

Y = 1    0

D

Y

delay

Time

A

Y

delay

A = 1
B = 1

C = 0

D = 1    0 Y = 1    0

Short Path

Critical Path

Time

n1

n2

n1

n2

n1

n2

B = 1

C = 0

D = 1

Figure 2.69 Critical and short path waveforms
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Solution Ben begins by finding the critical path and the shortest path through the 
circuit. The critical path, highlighted in blue in Figure 2.71, is from input A or 
B through three gates to the output Y. Hence, tpd is three times the propagation 
delay of a single gate, or 300 ps.

The shortest path, shown in gray in Figure 2.72, is from input C, D, or E 
through two gates to the output Y. There are only two gates in the shortest path, 
so tcd is 120 ps.
 

A
B

C

D
E

Y Figure 2.71 Ben’s critical path

A
B

C

D
E

Y Figure 2.70 Ben’s circuit

A
B

C

D
E

Y Figure 2.72 Ben’s shortest path

Example 2.16  MULTIPLEXER TIMING: CONTROL-CRITICAL  
VS. DATA-CRITICAL

Compare the worst-case timing of the three four-input multiplexer designs 
shown in Figure 2.58 on page 83. Table 2.7 lists the propagation delays for the 
components. What is the critical path for each design? Given your timing analy-
sis, why might you choose one design over the other?

Solution One of the critical paths for each of the three design options is high-
lighted in blue in Figures 2.73 and 2.74. tpd_sy indicates the propagation delay 
from input S to output Y; tpd_dy indicates the propagation delay from input D to 
output Y; tpd for the circuit is the worst of the two: max(tpd_sy, tpd_dy).

For both the two-level logic and tristate implementations in Figure 2.73, the crit-
ical path is from one of the control signals S to the output Y: tpd = tpd_sy. These 
circuits are control critical, because the critical path is from the control signals 
to the output. Any additional delay in the control signals will add directly to the 
worst-case delay. The delay from D to Y in Figure 2.73(b) is only 50 ps, com-
pared with the delay from S to Y of 125 ps.
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Figure 2.74 shows the hierarchical implementation of the 4:1 multiplexer using 
two stages of 2:1 multiplexers. The critical path is from any of the D inputs to 
the output. This circuit is data critical, because the critical path is from the data 
input to the output: tpd = tpd_dy.

If data inputs arrive well before the control inputs, we would prefer the design 
with the shortest control-to-output delay (the hierarchical design in Figure 2.74). 
Similarly, if the control inputs arrive well before the data inputs, we would  
prefer the design with the shortest data-to-output delay (the tristate design in 
Figure 2.73(b)).

The best choice depends not only on the critical path through the circuit and the 
input arrival times but also on the power, cost, and availability of parts.
 

2 . 9 . 2   Glitches

So far, we have discussed the case where a single input transition causes 
a single output transition. However, it is possible that a single input 
transition can cause multiple output transitions. These are called glitches 
or hazards. Although glitches usually don’t cause problems, it is import-
ant to realize that they exist and recognize them when looking at timing 
diagrams. Figure 2.75 shows a circuit with a glitch and the Karnaugh 
map of the circuit.

The Boolean equation is correctly minimized, but let’s look at what 
happens when A = 0, C = 1, and B transitions from 1 to 0. Figure 2.76 
(see page 92) illustrates this scenario. The short path (shown in gray) 
goes through two gates, the AND and OR gates. The critical path 
(shown in blue) goes through an inverter and two gates, the AND and 
OR gates.

Hazards have another meaning 
related to microarchitecture in 
Chapter 7, so we will stick with 
the term glitches for multiple 
output transitions to avoid 
confusion. 

Table 2.7  Timing specifications for multiplexer 
circuit elements

Gate tpd (ps)

NOT 30

2-input AND 60

3-input AND 80

4-input OR 90

tristate (A to Y) 50

tristate (enable to Y) 35
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As B transitions from 1 to 0, n2 (on the short path) falls before n1 
(on the critical path) can rise. Until n1 rises, the two inputs to the OR 
gate are 0, and the output Y drops to 0. When n1 eventually rises, Y 
returns to 1. As shown in the timing diagram of Figure 2.76, Y starts at 
1 and ends at 1 but momentarily glitches to 0.

tpd_sy = tpd_INV + tpd_AND3 + tpd_OR4

= 30 ps + 80 ps + 90 ps 

= 200 ps 

S1

D0

D1

D2

D3

Out

S0

(a)
tpd_dy = tpd_AND3 + tpd_OR4

= 170 ps 

D2

D3

Out

S1 S0

tpd_sy = tpd_INV + tpd_AND2 + tpd_TRI_sy

     = 30 ps + 60 ps + 35 ps 

     = 125 ps(b)
tpd_dy = tpd_TRI_ay

= 50 ps

D0

D1
Figure 2.73 4:1 multiplexer 
propagation delays: (a) two-level 
logic, (b) tristate

S0

D0

D1

D2

D3

S1

Y

t pd_s0y = t pd_TRI_sy + t pd_TRI_ay = 85 ps

2:1 mux

2:1 mux

2:1 mux

t pd_dy = 2 t pd_TRI_ay = 100 ps

Figure 2.74 4:1 multiplexer propagation 
delays: hierarchical using 2:1 multiplexers
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Y = AB + BC

Figure 2.75 Circuit with a glitch
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As long as we wait for the propagation delay to elapse before we 
depend on the output, glitches are not a problem, because the output 
eventually settles to the right answer.

If we choose to, we can avoid this glitch by adding another gate to 
the implementation. This is easiest to understand in terms of the K-map. 
Figure 2.77 shows how an input transition on B from ABC  = 011 to 
ABC = 001 moves from one prime implicant circle to another. The tran-
sition across the boundary of two prime implicants in the K-map indi-
cates a possible glitch.

As we saw from the timing diagram in Figure 2.76, if the circuitry 
implementing one of the prime implicants turns off before the circuitry 
of the other prime implicant can turn on, there is a glitch. To fix this, we 
add another circle that covers that prime implicant boundary, as shown 
in Figure 2.78. You might recognize this as the consensus theorem, 
where the added term, AC , is the consensus or redundant term.

A = 0

C = 1

B = 1    0
Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1    0

0    1

glitch

n1

n2

n2

n1

Figure 2.76 Timing of a glitch
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Figure 2.77 Input change crosses 
implicant boundary
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Figure 2.79 shows the glitch-proof circuit. The added AND gate is 
highlighted in blue. Now, a transition on B when A = 0 and C = 1 does 
not cause a glitch on the output because the blue AND gate outputs 1 
throughout the transition.

In general, a glitch can occur when a change in a single variable 
crosses the boundary between two prime implicants in a K-map. We 
can eliminate the glitch by adding redundant implicants to the K-map 
to cover these boundaries. This, of course, comes at the cost of extra 
hardware.

However, simultaneous transitions on multiple inputs can also cause 
glitches. These glitches cannot be fixed by adding hardware. Because 
the vast majority of interesting systems have simultaneous (or near- 
simultaneous) transitions on multiple inputs, glitches are a fact of life 
in most circuits. Although we have shown how to eliminate one kind of 
glitch, the point of discussing glitches is not to eliminate them but to be 
aware that they exist. This is especially important when looking at tim-
ing diagrams on a simulator or oscilloscope.

2.10  SUMMARY
A digital circuit is a module with discrete-valued inputs and outputs and 
a specification describing the function and timing of the module. This 
chapter has focused on combinational circuits, whose outputs depend 
only on the current values of the inputs.

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + AC AC

Figure 2.78 K-map without glitch

B = 1    0
Y = 1

A = 0

C = 1 Figure 2.79 Circuit without glitch



Combinational Logic DesignCHAPTER TWO94

The function of a combinational circuit can be given by a truth table 
or a Boolean equation. The Boolean equation for any truth table can 
be obtained systematically using sum-of-products (SOP) or product-of-
sums (POS) form. In sum-of-products form, the function is written as 
the sum (OR) of one or more implicants. Implicants are the product 
(AND) of literals. Literals are the true or complementary forms of the 
input variables.

Boolean equations can be simplified using the rules of Boolean alge-
bra. In particular, they can be simplified into minimal sum-of-products 
form by combining implicants that differ only in the true and comple-
mentary forms of one of the literals: PA PA P+ = . Karnaugh maps 
are a visual tool for minimizing functions of up to four variables. With 
practice, designers can usually simplify functions of a few variables by 
inspection. Computer-aided design tools are used for more complicated 
functions; such methods and tools are discussed in Chapter 4.

Logic gates are connected to create combinational circuits that per-
form the desired function. Any function in sum-of-products form can 
be built using two-level logic: NOT gates form the complements of 
the inputs, AND gates form the products, and OR gates form the sum. 
Depending on the function and the building blocks available, multilevel 
logic implementations with various types of gates may be more efficient. 
For example, CMOS circuits favor NAND and NOR gates because 
these gates can be built directly from CMOS transistors without requir-
ing extra NOT gates. When using NAND and NOR gates, bubble push-
ing is helpful to keep track of the inversions.

Logic gates are combined to produce larger circuits, such as multi-
plexers, decoders, and priority circuits. A multiplexer chooses one of the 
data inputs based on the select input. A decoder sets one of the outputs 
HIGH according to the inputs. A priority circuit produces an output 
indicating the highest priority input. These circuits are all examples of 
combinational building blocks. Chapter 5 will introduce more building 
blocks, including other arithmetic circuits. These building blocks will be 
used extensively to build a microprocessor in Chapter 7.

The timing specification of a combinational circuit consists of the 
propagation and contamination delays through the circuit. These indi-
cate the longest and shortest times between an input change and the 
consequent output change. Calculating the propagation delay of a cir-
cuit involves identifying the critical path through the circuit, then adding 
up the propagation delays of each element along that path. There are 
many different ways to implement complicated combinational circuits; 
these ways offer trade-offs between speed and cost.

The next chapter will move to sequential circuits, whose outputs 
depend on current as well as previous values of the inputs. In other 
words, sequential circuits have memory of the past.
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Exercises

Exercise 2.1 Write a Boolean equation in sum-of-products canonical form for 
each of the truth tables in Figure 2.80.

B C Y
0 0
0 1
1 0
1 1

1
0
1
0
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0
0
0
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0 0
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1 1

1
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0 1
1 0
1 1

1
1
1
1

0
1
1
0

A

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
1
1
0
1
0
0
1

(a) (b) (c) (d) (e)

Figure 2.80 Truth tables for Exercises 2.1, 2.3, and 2.41
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(a) (b) (c) (d) (e)

Figure 2.81 Truth tables for Exercises 2.2 and 2.4

Exercise 2.2 Write a Boolean equation in sum-of-products canonical form for 
each of the truth tables in Figure 2.81.
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Exercise 2.3 Write a Boolean equation in product-of-sums canonical form for 
the truth tables in Figure 2.80.

Exercise 2.4 Write a Boolean equation in product-of-sums canonical form for 
the truth tables in Figure 2.81.

Exercise 2.5 Minimize each of the Boolean equations from Exercise 2.1.

Exercise 2.6 Minimize each of the Boolean equations from Exercise 2.2.

Exercise 2.7 Sketch a reasonably simple combinational circuit implementing 
each of the functions from Exercise 2.5. Reasonably simple means that you are 
not wasteful of gates, but you don’t waste vast amounts of time checking every 
possible implementation of the circuit either.

Exercise 2.8 Sketch a reasonably simple combinational circuit implementing 
each of the functions from Exercise 2.6.

Exercise 2.9 Repeat Exercise 2.7 using only NOT gates and AND and OR gates.

Exercise 2.10 Repeat Exercise 2.8 using only NOT gates and AND and OR gates.

Exercise 2.11 Repeat Exercise 2.7 using only NOT gates and NAND and NOR 
gates.

Exercise 2.12 Repeat Exercise 2.8 using only NOT gates and NAND and NOR 
gates.

Exercise 2.13 Simplify the following Boolean equations using Boolean theorems. 
Check for correctness using a truth table or K-map.

 (a) Y AC ABC= +

 (b) Y AB ABC A C= + + +( )

 (c) Y ABCD ABC ABCD ABD ABCD BCD A= + + + + + +

Exercise 2.14 Simplify the following Boolean equations using Boolean theorems. 
Check for correctness using a truth table or K-map.

 (a) Y ABC ABC= +

 (b) Y ABC AB= +

 (c) Y ABCD ABCD A B C D= + + + + +( )
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Exercise 2.15 Sketch a reasonably simple combinational circuit implementing 
each of the functions from Exercise 2.13.

Exercise 2.16 Sketch a reasonably simple combinational circuit implementing 
each of the functions from Exercise 2.14.

Exercise 2.17 Simplify each of the following Boolean equations. Sketch a 
reasonably simple combinational circuit implementing the simplified equation.

 (a) Y BC ABC BC= + +

 (b) Y A AB AB A B= + + + +

 (c) Y ABC ABD ABE ACD ACE A D E BCD

BCE BDE CDE

= + + + + + + + +
+ + +

( )

Exercise 2.18 Simplify each of the following Boolean equations. Sketch a 
reasonably simple combinational circuit implementing the simplified equation.

 (a) Y ABC BC BC= + +

 (b) Y A B C D AD B= + + + +( )

 (c) Y ABCD ABCD B D E= + + +( )

Exercise 2.19 Give an example of a truth table requiring between 3 billion and 
5 billion rows that can be constructed using fewer than 40 (but at least 1) two-
input gates.

Exercise 2.20 Give an example of a circuit with a cyclic path that is nevertheless 
combinational.

Exercise 2.21 Alyssa P. Hacker says that any Boolean function can be written 
in minimal sum-of-products form as the sum of all of the prime implicants of 
the function. Ben Bitdiddle says that there are some functions whose minimal 
equation does not involve all of the prime implicants. Explain why Alyssa is 
right or provide a counterexample demonstrating Ben’s point.

Exercise 2.22 Prove that the following theorems are true using perfect induction. 
You need not prove their duals.

 (a) The idempotency theorem (T3)

 (b) The distributivity theorem (T8)

 (c) The combining theorem (T10)
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Exercise 2.23 Prove De Morgan’s Theorem (T12) for three variables, A, B, and 
C, using perfect induction.

Exercise 2.24 Write Boolean equations for the circuit in Figure 2.82. You need 
not minimize the equations.

A B C D

Y Z

Figure 2.82 Circuit schematic for Exercise 2.24

A
B

C
D
E Y

Figure 2.83 Circuit schematic for Exercises 2.26 and 2.43

Exercise 2.25 Minimize the Boolean equations from Exercise 2.24 and sketch an 
improved circuit with the same function.

Exercise 2.26 Using De Morgan equivalent gates and bubble pushing methods, 
redraw the circuit in Figure 2.83 so that you can find the Boolean equation by 
inspection. Write the Boolean equation.
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Exercise 2.27 Repeat Exercise 2.26 for the circuit in Figure 2.84.

A
B
C

D

E

F
G

Y

Figure 2.84 Circuit schematic for Exercises 2.27 and 2.44

Exercise 2.28 Find a minimal Boolean equation for the function in Figure 2.85. 
Remember to take advantage of the don’t care entries.

C D Y
0 0 X
0 1 X
1 0 X
1 1 0

B

0 0
0 1
1 0
1 1

0
X
0
X

0
0
0
0
1
1
1
1

A
0
0
0
0
0
0
0
0

0 0 1
0 1 0
1 0 X
1 1 1
0 0
0 1
1 0
1 1

1
1
X
1

0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

Figure 2.85 Truth table for Exercise 2.28

Exercise 2.29 Sketch a circuit for the function from Exercise 2.28.

Exercise 2.30 Does your circuit from Exercise 2.29 have any potential glitches 
when one of the inputs changes? If not, explain why not. If so, show how to 
modify the circuit to eliminate the glitches.

Exercise 2.31 Find a minimal Boolean equation for the function in Figure 2.86. 
Remember to take advantage of the don’t care entries.
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Exercise 2.32 Sketch a circuit for the function from Exercise 2.31.

Exercise 2.33 Ben Bitdiddle will enjoy his picnic on sunny days that have no 
ants. He will also enjoy his picnic any day he sees a hummingbird, as well as 
on days where there are ants and ladybugs. Write a Boolean equation for his 
enjoyment (E) in terms of sun (S), ants (A), hummingbirds (H), and ladybugs (L).

Exercise 2.34 Complete the design of the seven-segment decoder segments Sc 
through Sg (see Example 2.10):

 (a) Derive Boolean equations for the outputs Sc through Sg assuming that inputs 
greater than 9 must produce blank (0) outputs.

 (b) Derive Boolean equations for the outputs Sc through Sg assuming that inputs 
greater than 9 are don’t cares.

 (c) Sketch a reasonably simple gate-level implementation of part (b). Multiple 
outputs can share gates where appropriate.

Exercise 2.35 A circuit has four inputs and two outputs. The inputs A3:0 represent 
a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 
1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if 
the number is divisible by 3. Give simplified Boolean equations for each output 
and sketch a circuit.

Exercise 2.36 A priority encoder has 2N inputs. It produces an N-bit binary 
output indicating the most significant bit of the input that is TRUE or 0 if none 

C D Y
0 0 0
0 1 1
1 0 X
1 1 X

B

0 0
0 1
1 0
1 1

0
X
X
X

0
0
0
0
1
1
1
1

A
0
0
0
0
0
0
0
0

0 0 1
0 1 0
1 0 0
1 1 1
0 0
0 1
1 0
1 1

0
1
X
1

0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

Figure 2.86 Truth table for Exercise 2.31
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of the inputs are TRUE. It also produces an output NONE that is TRUE if none 
of the inputs are TRUE. Design an eight-input priority encoder with inputs A7:0 
and outputs Y2.0 and NONE. For example, if the input is 00100000, the output 
Y should be 101 and NONE should be 0. Give a simplified Boolean equation 
for each output, and sketch a schematic.

Exercise 2.37 Design a modified priority encoder (see Exercise 2.36) that 
receives an 8-bit input, A7:0, and produces two 3-bit outputs, Y2:0 and Z2:0.  
Y indicates the most significant bit of the input that is TRUE. Z indicates the 
second most significant bit of the input that is TRUE. Y should be 0 if none of 
the inputs are TRUE. Z should be 0 if no more than one of the inputs is TRUE. 
Give a simplified Boolean equation for each output and sketch a schematic.

Exercise 2.38 An M-bit thermometer code for the number k consists of k 1’s 
in the least significant bit positions and M – k 0’s in all the more significant 
bit positions. A binary-to-thermometer code converter has N inputs and 2N–1 
outputs. It produces a 2N–1 bit thermometer code for the number specified 
by the input. For example, if the input is 110, the output should be 0111111. 
Design a 3:7 binary-to-thermometer code converter. Give a simplified Boolean 
equation for each output and sketch a schematic.

Exercise 2.39 Write a minimized Boolean equation for the function performed 
by the circuit in Figure 2.87.

0

1

00

C, D

01
10

11

A

Y

Figure 2.87 Multiplexer circuit for Exercise 2.39

Exercise 2.40 Write a minimized Boolean equation for the function performed 
by the circuit in Figure 2.88.

00

C, D

01
10

11

Y

00

A, B

01
10

11

Figure 2.88 Multiplexer circuit for Exercise 2.40
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Exercise 2.41 Implement the function from Figure 2.80(b) using

 (a) an 8:1 multiplexer

 (b) a 4:1 multiplexer and one inverter

 (c) a 2:1 multiplexer and two other logic gates

Exercise 2.42 Implement the function from Exercise 2.17(a) using

 (a) an 8:1 multiplexer

 (b) a 4:1 multiplexer and no other gates

 (c) a 2:1 multiplexer, one OR gate, and an inverter

Exercise 2.43 Determine the propagation delay and contamination delay of the 
circuit in Figure 2.83. Use the gate delays given in Table 2.8.

Exercise 2.44 Determine the propagation delay and contamination delay of the 
circuit in Figure 2.84. Use the gate delays given in Table 2.8.

Table 2.8 Gate delays for Exercises 2.43–2.45 and 2.47–2.48

Gate tpd (ps) tcd (ps)

NOT 15 10

2-input NAND 20 15

3-input NAND 30 25

2-input NOR 30 25

3-input NOR 45 35

2-input AND 30 25

3-input AND 40 30

2-input OR 40 30

3-input OR 55 45

2-input XOR 60 40

Exercise 2.45 Sketch a schematic for a fast 3:8 decoder. Suppose gate delays are 
given in Table 2.8 (and only the gates in that table are available). Design your 
decoder to have the shortest possible critical path and indicate what that path is. 
What are its propagation delay and contamination delay?
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Exercise 2.46 Design an 8:1 multiplexer with the shortest possible delay from the 
data inputs to the output. You may use any of the gates from Table 2.7 on page 90.  
Sketch a schematic. Using the gate delays from the table, determine this delay.

Exercise 2.47 Redesign the circuit from Exercise 2.35 to be as fast as possible. 
Use only the gates from Table 2.8. Sketch the new circuit and indicate the critical 
path. What are its propagation delay and contamination delay?

Exercise 2.48 Redesign the priority encoder from Exercise 2.36 to be as fast as 
possible. You may use any of the gates from Table 2.8. Sketch the new circuit 
and indicate the critical path. What are its propagation delay and contamination 
delay?

Exercise 2.49 Another way to think about transistor-level design (see Section 
1.7) is to use De Morgan’s theorem to consider the pull-up and pull-down 
networks. Design the pull-down network of a transistor-level gate directly from 
the equations below. Then, apply De Morgan’s theorem to the equations and 
draw the pull-up network using that rewritten equation. Also, state the numbers 
of transistors used. Do not forget to draw (and count) the inverters needed to 
complement the inputs, if needed.

 (a) W A BC CD= + +

 (b) X A B C D AD= + + +( )

 (c) Y A BC BC ABC= + +( )

Exercise 2.50 Repeat Exercise 2.49 for the equations below.

 (a) W A B C D= + +( )( )

 (b) X AB C D AD= + +( )

 (c) Y A B CD ABCD= + +( )
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Interview Questions

The following exercises present questions that have been asked at interviews for 
digital design jobs.

Question 2.1 Sketch a schematic for the two-input XOR function, using only 
NAND gates. How few can you use?

Question 2.2 Design a circuit that will tell whether a given month has 31 days 
in it. The month is specified by a 4-bit input A3:0. For example, if the inputs are 
0001, the month is January, and if the inputs are 1100, the month is December. 
The circuit output Y should be HIGH only when the month specified by the 
inputs has 31 days in it. Write the simplified equation, and draw the circuit 
diagram using a minimum number of gates. (Hint: Remember to take advantage 
of don’t cares.)

Question 2.3 What is a tristate buffer? How and why is it used?

Question 2.4 A gate or set of gates is universal if it can be used to construct any 
Boolean function. For example, the set {AND, OR, NOT} is universal.

 (a) Is an AND gate by itself universal? Why or why not?

 (b) Is the set {OR, NOT} universal? Why or why not?

 (c) Is a NAND gate by itself universal? Why or why not?

Question 2.5 Explain why a circuit’s contamination delay might be less than 
(instead of equal to) its propagation delay.
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3.1  INTRODUCTION
In the last chapter, we showed how to analyze and design combinational 
logic. The output of combinational logic depends only on current input 
values. Given a specification in the form of a truth table or Boolean 
equation, we can create an optimized circuit to meet the specification.

In this chapter, we will analyze and design sequential logic.  
The outputs of sequential logic depend on both current and prior input 
values. Hence, sequential logic has memory. Sequential logic might 
explicitly remember certain previous inputs or it might distill the prior 
inputs into a smaller amount of information called the state of the  
system. The state of a digital sequential circuit is a set of bits called state 
variables that contain all the information about the past necessary to 
explain the future behavior of the circuit.

The chapter begins by studying latches and flip-flops, which are 
simple sequential circuits that store one bit of state. In general, sequen-
tial circuits are complicated to analyze. To simplify design, we disci-
pline ourselves to build only synchronous sequential circuits consisting 
of combinational logic and banks of flip-flops containing the state of 
the circuit. The chapter describes finite state machines, which are an 
easy way to design sequential circuits. Finally, we analyze the speed of 
sequential circuits and discuss parallelism as a way to increase speed.

3.2  LATCHES AND FLIP-FLOPS
The fundamental building block of memory is a bistable element, an ele-
ment with two stable states. Figure 3.1(a) shows a simple bistable ele-
ment consisting of a pair of inverters connected in a loop. Figure 3.1(b) 
shows the same circuit redrawn to emphasize the symmetry. The invert-
ers are cross-coupled, meaning that the input of I1 is the output of I2 
and vice versa. The circuit has no inputs, but it does have two outputs,  
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Q and Q. Analyzing this circuit is different from analyzing a combina-
tional circuit because it is cyclic: Q depends on Q, and Q depends on Q.

Consider the two cases, Q is 0 or Q is 1. Working through the  
consequences of each case, we have:

▸ Case I: Q = 0
 As shown in Figure 3.2(a), I2 receives a FALSE input, Q, so it pro-

duces a TRUE output on Q. I1 receives a TRUE input, Q, so it pro-
duces a FALSE output on Q. This is consistent with the original 
assumption that Q = 0, so the case is said to be stable.

▸ Case II: Q = 1
 As shown in Figure 3.2(b), I2 receives a TRUE input and produces 

a FALSE output on Q. I1 receives a FALSE input and produces a 
TRUE output on Q. This is again stable.

Because the cross-coupled inverters have two stable states, Q = 0 
and Q = 1, the circuit is said to be bistable. A subtle point is that the 
circuit has a third possible state with both outputs approximately half-
way between 0 and 1. This is called a metastable state, which will be 
discussed in Section 3.5.4.

An element with N stable states conveys log2N bits of informa-
tion, so a bistable element stores one bit. The state of the cross-coupled 
inverters is contained in one binary state variable, Q. The value of Q 
tells us everything about the past that is necessary to explain the future 
behavior of the circuit. Specifically, if Q = 0, it will remain 0 forever, and 
if Q = 1, it will remain 1 forever. The circuit does have another node, 
Q, but Q does not contain any additional information because if Q is 

Just as Y is commonly used for 
the output of combinational 
logic, Q is commonly used for 
the output of sequential logic. 

Figure 3.1 Cross-coupled  
inverter pair
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QI1
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Figure 3.2 Bistable operation of 
cross-coupled inverters
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known, Q is also known. On the other hand, Q is also an acceptable 
choice for the state variable.

When power is first applied to a sequential circuit, the initial state is 
unknown and usually unpredictable. It may differ each time the circuit is 
turned on.

Although the cross-coupled inverters can store a bit of information, 
they are not practical because the user has no inputs to control the state. 
However, other bistable elements, such as latches and flip-flops, provide 
inputs to control the value of the state variable. The remainder of this 
section considers these circuits.

3 . 2 . 1   SR Latch

One of the simplest sequential circuits is the SR latch, which is  
composed of two cross-coupled NOR gates, as shown in Figure 3.3.  
The latch has two inputs, S and R, and two outputs, Q and Q.  
The SR latch is similar to the cross-coupled inverters, but its state 
can be controlled through the S and R inputs, which set and reset the 
output Q.

A good way to understand an unfamiliar circuit is to work out its 
truth table, so that is where we begin. Recall that a NOR gate produces 
a FALSE output when either input is TRUE. Consider the four possible 
combinations of R and S.

▸ Case I: R = 1, S = 0
 N1 sees at least one TRUE input, R, so it produces a FALSE output on  

Q. N2 sees both Q and S FALSE, so it produces a TRUE output  
on Q.

▸ Case II: R = 0, S = 1
 N1 receives inputs of 0 and Q. Because we don’t yet know Q, 

we can’t determine the output Q. N2 receives at least one TRUE 
input, S, so it produces a FALSE output on Q. Now we can revisit 
N1, knowing that both inputs are FALSE, so the output Q is 
TRUE.

▸ Case III: R = 1, S = 1
 N1 and N2 both see at least one TRUE input (R or S), so each  

produces a FALSE output. Hence, Q and Q are both FALSE.

▸ Case IV: R = 0, S = 0
 N1 receives inputs of 0 and Q. Because we don’t yet know Q, we 

can’t determine the output. N2 receives inputs of 0 and Q. Because 
we don’t yet know Q, we can’t determine the output. Now we are 

R

S

QN1

N2 Q

Figure 3.3 SR latch schematic
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stuck. This is reminiscent of the cross-coupled inverters. But we 
know that Q must either be 0 or 1, so we can solve the problem by 
checking what happens in each of these subcases.

 ▸ Case IVa: Q = 0
   Because S and Q are FALSE, N2 produces a TRUE output on Q,  

as shown in Figure 3.4(a). Now N1 receives one TRUE input,  
Q, so its output, Q, is FALSE, just as we had assumed.

 ▸ Case IVb: Q = 1
   Because Q is TRUE, N2 produces a FALSE output on Q, as 

shown in Figure 3.4(b). Now N1 receives two FALSE inputs, R 
and Q, so its output, Q, is TRUE, just as we had assumed.

 Putting this all together, suppose that Q has some known prior 
value, which we will call Qprev, before we enter Case IV. Qprev is 
either 0 or 1 and represents the state of the system. When R and S 
are 0, Q will remember this old value, Qprev, and Q will be its com-
plement, Qprev . This circuit has memory.

The truth table in Figure 3.5 summarizes these four cases. The inputs 
S and R stand for Set and Reset. To set a bit means to make it TRUE. To 
reset a bit means to make it FALSE. The outputs, Q and Q, are normally 
complementary. When R is asserted, Q is reset to 0 and Q does the oppo-
site. When S is asserted, Q is set to 1 and Q does the opposite. When nei-
ther input is asserted, Q remembers its old value, Qprev. Asserting both S 
and R simultaneously doesn’t make much sense because it means the latch 
should be set and reset at the same time, which is impossible. The poor 
confused circuit responds by making both outputs 0.

The SR latch is represented by the symbol in Figure 3.6. Using the 
symbol is an application of abstraction and modularity. There are vari-
ous ways to build an SR latch, such as using different logic gates or tran-
sistors. Nevertheless, any circuit element with the relationship specified 
by the truth table in Figure 3.5 and the symbol in Figure 3.6 is called an 
SR latch.

Like the cross-coupled inverters, the SR latch is a bistable element 
with one bit of state stored in Q. However, the state can be controlled 
through the S and R inputs. When R is asserted, the state is reset to 0. 
When S is asserted, the state is set to 1. When neither is asserted, the 
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Figure 3.5 SR latch truth table
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state retains its old value. Notice that the entire history of inputs can be 
accounted for by the single state variable Q. No matter what pattern of 
setting and resetting occurred in the past, all that is needed to predict 
the future behavior of the SR latch is whether it was most recently set  
or reset.

3 . 2 . 2   D Latch

The SR latch is awkward because it behaves strangely when both S and 
R are simultaneously asserted. Moreover, the S and R inputs conflate 
the issues of what and when. Asserting one of the inputs determines 
not only what the state should be but also when it should change. 
Designing circuits becomes easier when these questions of what and 
when are separated. The D latch in Figure 3.7(a) solves these prob-
lems. It has two inputs. The data input, D, controls what the next 
state should be. The clock input, CLK, controls when the state should 
change.

Again, we analyze the latch by writing the truth table, given in 
Figure 3.7(b). For convenience, we first consider the internal nodes D,  
S, and R. If CLK = 0, both S and R are FALSE, regardless of the value of 
D. If CLK = 1, one AND gate will produce TRUE and the other FALSE 
depending on the value of D. Given S and R, Q and Q are determined 
using Figure 3.5. Observe that when CLK = 0, Q remembers its old  
value, Qprev. When CLK = 1, Q = D. In all cases, Q is the complement of 
Q, as would seem logical. The D latch avoids the strange case of simul-
taneously asserted R and S inputs.

Putting it all together, we see that the clock controls when data 
flows through the latch. When CLK = 1, the latch is transparent. The 
data at D flows through to Q as if the latch were just a buffer. When 
CLK = 0, the latch is opaque. It blocks the new data from flowing 
through to Q, and Q retains the old value. Hence, the D latch is some-
times called a transparent latch or a level-sensitive latch. The D latch 
symbol is given in Figure 3.7(c).

The D latch updates its state continuously while CLK = 1. We shall 
see later in this chapter that it is useful to update the state only at a  
specific instant in time. The D flip-flop described in the next section does 
just that.

Some people call a latch 
open or closed rather than 
transparent or opaque. 
However, we think those 
terms are ambiguous—does 
open mean transparent like 
an open door, or opaque, like 
an open circuit? 
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Figure 3.7 D latch: (a) schematic, (b) truth table, (c) symbol
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3 . 2 . 3   D FIip-Flop

A D flip-flop can be built from two back-to-back D latches controlled 
by complementary clocks, as shown in Figure 3.8(a). The first latch, L1, 
is called the leader. The second latch, L2, is called the follower, because 
it follows whatever L1 does.

The node between them is named N1. A symbol for the D flip-flop 
is given in Figure 3.8(b). When the Q output is not needed, the symbol is 
often condensed, as in Figure 3.8(c).

When CLK = 0, the leader (latch L1) is transparent and the follower 
(L2) is opaque. Therefore, whatever value was at D propagates through 
to N1. When CLK  = 1, the leader (L1) goes opaque and the follower 
(L2) becomes transparent. The value at N1 propagates through to Q, 
but N1 is cut off from D. Hence, whatever value was at D immediately 
before the clock rises from 0 to 1 gets copied to Q immediately after the 
clock rises. At all other times, Q retains its old value, because there is 
always an opaque latch blocking the path between D and Q.

In other words, a D flip-flop copies D to Q on the rising edge of 
the clock and remembers its state at all other times. Reread this defini-
tion until you have it memorized; one of the most common problems for 
beginning digital designers is to forget what a flip-flop does. The rising 
edge of the clock is often just called the clock edge for brevity. The D 
input specifies what the new state will be. The clock edge indicates when 
the state should be updated.

A D flip-flop is also known as an edge-triggered flip-flop or a pos-
itive edge-triggered flip-flop. The triangle in the symbols denotes an 
edge-triggered clock input. The Q output is often omitted when it is not 
needed.

The precise distinction 
between flip-flops and latches 
is somewhat muddled and 
has evolved over time. In 
common industry usage, a 
flip-flop is edge-triggered. In 
other words, it is a bistable 
element with a clock input. 
The state of the flip-flop 
changes only in response to 
a clock edge, such as when 
the clock rises from 0 to 1. 
Bistable elements without 
an edge-triggered clock are 
commonly called latches.

The term flip-flop or 
latch by itself usually refers 
to a D flip-flop or D latch, 
respectively, because these 
are the types most commonly 
used in practice. 

(a)

CLK

D Q

CLK

D Q QD N1

CLK

L1 L2
master slave

(b)

D Q

(c)

QQQ

Q

Figure 3.8 D flip-flop:  
(a) schematic, (b) symbol,  
(c) condensed symbol

Example 3.1 FLIP-FLOP TRANSISTOR COUNT

How many transistors are needed to build the D flip-flop described in this section?

Solution A NAND or NOR gate uses four transistors. A NOT gate uses two 
transistors. An AND gate is built from a NAND and a NOT, so it uses six tran-
sistors. The SR latch uses two NOR gates, or eight transistors. The D latch uses 
an SR latch, two AND gates, and a NOT gate, or 22 transistors. The D flip-flop 
uses two D latches and a NOT gate, or 46 transistors. Section 3.2.7 describes a 
more efficient CMOS implementation, using transmission gates. 

3 . 2 . 4   Register

An N-bit register is a bank of N flip-flops that share a common CLK 
input so that all bits of the register are updated at the same time. 
Registers are the key building block of most sequential circuits.  
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Figure 3.9 shows the schematic and symbol for a four-bit register with 
inputs D3:0 and outputs Q3:0. D3:0 and Q3:0 are both 4-bit busses.

3 . 2 . 5   Enabled Flip-Flop

An enabled flip-flop adds another input called EN or ENABLE to deter-
mine whether data is loaded on the clock edge. When EN is TRUE, 
the enabled flip-flop behaves like an ordinary D flip-flop. When EN 
is FALSE, the enabled flip-flop ignores the clock and retains its state. 
Enabled flip-flops are useful when we wish to load a new value into a 
flip-flop only some of the time, rather than on every clock edge.

Figure 3.10 shows two ways to construct an enabled flip-flop from 
a D flip-flop and an extra gate. In Figure 3.10(a), an input multiplexer 
passes the value D if EN is TRUE or recycles the old state from Q if EN 
is FALSE. In Figure 3.10(b), the clock is gated. If EN is TRUE, the CLK 
input to the flip-flop toggles normally. If EN is FALSE, the CLK input is 
also FALSE and the flip-flop retains its old value. Notice that EN must 
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Figure 3.9 A 4-bit register:  
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not change while CLK  =  1 lest the flip-flop see a clock glitch (switch 
at an incorrect time). Generally, performing logic on the clock is a bad 
idea. Clock gating delays the clock and can cause timing errors, as we 
will see in Section 3.5.3, so do it only if you are sure you know what 
you are doing. The symbol for an enabled flip-flop is given in Figure 
3.10(c).

3 . 2 . 6   Resettable Flip-Flop

A resettable flip-flop adds another input, called RESET. When RESET 
is FALSE, the resettable flip-flop behaves like an ordinary D flip-flop. 
When RESET is TRUE, the resettable flip-flop ignores D and resets 
the output to 0. Resettable flip-flops are useful when we want to force 
a known state (i.e., 0) into all the flip-flops in a system when we first  
turn it on.

Such flip-flops may be synchronously or asynchronously resettable. 
Synchronously resettable flip-flops reset themselves only on the rising 
edge of CLK. Asynchronously resettable flip-flops reset themselves as 
soon as RESET becomes TRUE, independent of CLK.

Figure 3.11(a) shows how to construct a synchronously resettable 
flip-flop from an ordinary D flip-flop and an AND gate. When the signal 
RESET  is FALSE, the AND gate forces a 0 into the input of the flip-flop. 
When RESET  is TRUE, the AND gate passes D to the flip-flop. In this 
example, RESET  is an active low signal, meaning that the reset signal 
performs its function—in this case, resetting the flip-flop—when it is 0, 
not 1. By adding an inverter, the circuit could have accepted an active 
high reset signal instead. Figures 3.11(b) and 3.11(c) show symbols for 
the resettable flip-flop with active high reset.

Asynchronously resettable flip-flops require modifying the internal 
structure of the flip-flop and are left to you to design in Exercise 3.13. 
Both synchronously and asynchronously resettable flip-flops are fre-
quently available to the designer as standard components.

As you might imagine, settable flip-flops are also occasionally used. 
They load a 1 into the flip-flop when SET is asserted and they, too, come 
in synchronous and asynchronous flavors. Resettable and settable flip-
flops may also have an enable input and may be grouped into N-bit 
registers.

3 . 2 . 7   Transistor-Level Latch and Flip-Flop Designs*

Example 3.1 showed that latches and flip-flops require a large num-
ber of transistors when built from logic gates. But the fundamental role 
of a latch is to be transparent or opaque, much like a switch. Recall 
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Figure 3.11 Synchronously 
resettable flip-flop: (a) schematic, 
(b, c) symbols
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from Section 1.7.7 that a transmission gate is an efficient way to build 
a CMOS switch, so we might expect that we could take advantage of 
transmission gates to reduce the transistor count.

A compact D latch can be constructed from a single transmission 
gate, as shown in Figure 3.12(a). When CLK = 1 and CLK = 0, the 
transmission gate is ON, so D flows to Q and the latch is transparent. 
When CLK = 0 and CLK = 1, the transmission gate is OFF, so Q is iso-
lated from D and the latch is opaque. This latch suffers from two major 
limitations:

▸ Floating output node: When the latch is opaque, Q is not held at its 
value by any gates. Thus, Q is called a floating or dynamic node. After 
some time, noise and charge leakage may disturb the value of Q.

▸ No buffers: The lack of buffers has caused malfunctions on several 
commercial chips. A spike of noise that pulls D to a negative volt-
age can turn on the nMOS transistor, making the latch transpar-
ent, even when CLK = 0. Likewise, a spike on D above VDD can 
turn on the pMOS transistor even when CLK = 0. And the trans-
mission gate is symmetric, so it could be driven backward with 
noise on Q, affecting the input D. The general rule is that neither 
the input of a transmission gate nor the state node of a sequential 
circuit should ever be exposed to the outside world, where noise is 
likely.

Figure 3.12(b) shows a more robust 12-transistor D latch used on 
modern commercial chips. It is still built around a clocked transmission 
gate, but it adds inverters I1 and I2 to buffer the input and output. The 
state of the latch is held on node N1. Inverter I3 and the tristate buffer, 
T1, provide feedback to turn N1 into a static node. If a small amount 
of noise occurs on N1 while CLK = 0, T1 will drive N1 back to a valid 
logic value.

Figure 3.13 shows a D flip-flop constructed from two static latches 
controlled by CLK and CLK. Some redundant internal inverters have 
been removed, so the flip-flop requires only 20 transistors.

This circuit assumes that 
CLK and CLK  are both 
available. If not, two more 
transistors are needed to 
invert the clock signal. 
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3 . 2 . 8   Putting It All Together

Latches and flip-flops are the fundamental building blocks of sequential 
circuits. Remember that a D latch is level-sensitive, whereas a D flip-flop 
is edge-triggered. The D latch is transparent when CLK = 1, allowing 
the input D to flow through to the output Q. The D flip-flop copies D 
to Q on the rising edge of CLK. At all other times, latches and flip-flops 
retain their old state. A register is a bank of several D flip-flops that 
share a common CLK signal.

3.3  SYNCHRONOUS LOGIC DESIGN
In general, sequential circuits include all circuits that are not combinational— 
that is, those whose output cannot be determined simply by looking at the 
current inputs. Some sequential circuits are just plain kooky. This section 
begins by examining some of those curious circuits. It then introduces the 
notion of synchronous sequential circuits and the dynamic discipline. By 
disciplining ourselves to synchronous sequential circuits, we can develop 
easy, systematic ways to analyze and design sequential systems.

3 . 3 . 1   Some Problematic CircuitsExample 3.2 FLIP-FLOP AND LATCH COMPARISON

Ben Bitdiddle applies the D and CLK inputs shown in Figure 3.14 to a D latch 
and a D flip-flop. Help him determine the output, Q, of each device.

Solution Figure 3.15 shows the output waveforms, assuming a small delay for Q 
to respond to input changes. The arrows indicate the cause of an output change. 
The initial value of Q is unknown and could be 0 or 1, as indicated by the pair 
of horizontal lines. First, consider the latch. On the first rising edge of CLK,  
D = 0, so Q definitely becomes 0. Each time D changes while CLK = 1, Q also 
follows. When D changes while CLK = 0, D is ignored. Now, consider the flip-flop. 
On each rising edge of CLK, D is copied to Q. At all other times, Q retains its state. 

CLK

D

Q (latch)

Q (flop)

Figure 3.14 Example waveforms

CLK

D

Q (latch)

Q (flop)

Figure 3.15 Solution waveforms
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3.3  SYNCHRONOUS LOGIC DESIGN
In general, sequential circuits include all circuits that are not combinational— 
that is, those whose output cannot be determined simply by looking at the 
current inputs. Some sequential circuits are just plain kooky. This section 
begins by examining some of those curious circuits. It then introduces the 
notion of synchronous sequential circuits and the dynamic discipline. By 
disciplining ourselves to synchronous sequential circuits, we can develop 
easy, systematic ways to analyze and design sequential systems.

3 . 3 . 1   Some Problematic CircuitsExample 3.2 FLIP-FLOP AND LATCH COMPARISON

Ben Bitdiddle applies the D and CLK inputs shown in Figure 3.14 to a D latch 
and a D flip-flop. Help him determine the output, Q, of each device.

Solution Figure 3.15 shows the output waveforms, assuming a small delay for Q 
to respond to input changes. The arrows indicate the cause of an output change. 
The initial value of Q is unknown and could be 0 or 1, as indicated by the pair 
of horizontal lines. First, consider the latch. On the first rising edge of CLK,  
D = 0, so Q definitely becomes 0. Each time D changes while CLK = 1, Q also 
follows. When D changes while CLK = 0, D is ignored. Now, consider the flip-flop. 
On each rising edge of CLK, D is copied to Q. At all other times, Q retains its state. 

Example 3.3 ASTABLE CIRCUITS

Alyssa P. Hacker encounters three misbegotten inverters who have tied them-
selves in a loop, as shown in Figure 3.16. The output of the third inverter is fed 
back to the first inverter. Each inverter has a propagation delay of 1 ns. Help 
Alyssa determine what the circuit does.

Solution Suppose that node X is initially 0. Then, Y = 1, Z = 0, and, hence, X = 
1, which is inconsistent with our original assumption. The circuit has no stable 
states and is said to be unstable or astable. Figure 3.17 shows the behavior of 
the circuit. If X rises at time 0, Y will fall at 1 ns, Z will rise at 2 ns, and X will 
fall again at 3 ns. In turn, Y will rise at 4 ns, Z will fall at 5 ns, and X will rise 
again at 6 ns; then, the pattern will repeat. Each node oscillates between 0 and 1, 
with a period (repetition time) of 6 ns. This circuit is called a ring oscillator.

The period of the ring oscillator depends on the propagation delay of each 
inverter. This delay depends on how the inverter was manufactured, the power 
supply voltage, and even the temperature. Therefore, the ring oscillator period is 
difficult to accurately predict. In short, the ring oscillator is a sequential circuit 
with zero inputs and one output that changes periodically.

Figure 3.16 Three-inverter loop

X Y Z

Figure 3.17 Ring oscillator 
waveforms
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Z
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Example 3.4 RACE CONDITIONS

Ben Bitdiddle designed a new D latch that he claims is better than the one in 
Figure 3.7 because it uses fewer gates. He has written the truth table to find 
the output, Q, given the two inputs, D and CLK, and the old state of the 
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3 . 3 . 2   Synchronous Sequential Circuits

The previous two examples contain loops called cyclic paths, in which 
outputs are fed directly back to inputs. They are sequential rather than 
combinational circuits. Combinational logic has no cyclic paths and 
no races. If inputs are applied to combinational logic, the outputs will 
always settle to the correct value within a propagation delay. However, 
sequential circuits with cyclic paths can have undesirable races or unsta-
ble behavior. Analyzing such circuits for problems is time-consuming, 
and many bright people have made mistakes.

To avoid these problems, designers break the cyclic paths by insert-
ing registers somewhere in the path. This transforms the circuit into a 

latch, Qprev. Based on this truth table, he has derived Boolean equations.  
He obtains Qprev by feeding back the output, Q. His design is shown in Figure 
3.18. Does his latch work correctly, independent of the delays of each gate?

Solution Figure 3.19 shows that the circuit has a race condition that causes it 
to fail when certain gates are slower than others. Suppose that CLK = D = 1.  
The latch is transparent and passes D through to make Q = 1. Now, CLK 
falls. The latch should remember its old value, keeping Q = 1. However, sup-
pose that the delay through the inverter from CLK to CLK is rather long 
compared with the delays of the AND and OR gates. Then, nodes N1 and 
Q may both fall before CLK rises. In such a case, N2 will never rise and Q 
becomes stuck at 0.

This is an example of asynchronous circuit design in which outputs are directly 
fed back to inputs. Asynchronous circuits are infamous for having race condi-
tions where the behavior of the circuit depends on which of two paths through 
logic gates is fastest. One circuit may work, while a seemingly identical one built 
from gates with slightly different delays may not work. Or the circuit may work 
only at certain temperatures or voltages at which the delays are just right. These 
malfunctions are extremely difficult to track down. 

CLK
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N2

Q

CLK

Figure 3.19 Latch waveforms 
illustrating race condition
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N1 = CLK·D

N2 = CLK·Qprev

Q = CLK·D + CLK·Qprev

Figure 3.18 An improved (?)  
D latch
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collection of combinational logic and registers. The registers contain the 
state of the system, which changes only at the clock edge, so we say 
the state is synchronized to the clock. If the clock is sufficiently slow, 
so that the inputs to all registers settle before the next clock edge, all 
races are eliminated. Adopting this discipline of always using registers 
in the feedback path leads us to the formal definition of a synchronous 
sequential circuit.

Recall that a circuit is defined by its input and output terminals 
and its functional and timing specifications. A sequential circuit has a 
finite set of discrete states {S0, S1, S2,…}. A synchronous sequential 
circuit has a clock input, whose rising edges indicate a sequence of 
times at which state transitions occur. We often use the terms current 
state and next state to distinguish the state of the system at the present 
from the state to which it will enter on the next clock edge. The func-
tional specification details the next state and the value of each output 
for each possible combination of current state and input values. The 
timing specification consists of an upper bound, tpcq, and a lower 
bound, tccq, on the time from the rising edge of the clock until the out-
put changes, as well as setup and hold times, tsetup and thold, that indi-
cate when the inputs must be stable relative to the rising edge of the 
clock.

The rules of synchronous sequential circuit composition teach us 
that a circuit is a synchronous sequential circuit if it consists of intercon-
nected circuit elements, such that

▸ Every circuit element is either a register or a combinational circuit

▸ At least one circuit element is a register

▸ All registers receive the same clock signal

▸ Every cyclic path contains at least one register

Sequential circuits that are not synchronous are called asynchronous.
A flip-flop is the simplest synchronous sequential circuit. It 

has one input, D, one clock, CLK, one output, Q, and two states, 
{0, 1}. The functional specification for a flip-flop is that the next 
state is D and that the output, Q, is the current state, as shown in  
Figure 3.20.

We often call the current state variable S and the next state variable 
S′. In this case, the prime after S indicates next state, not inversion. The 
timing of sequential circuits will be analyzed in Section 3.5.

Two other common types of synchronous sequential circuits are 
called finite state machines and pipelines. These will be covered later in 
this chapter.

tpcq stands for the time of 
propagation from clock to Q, 
where Q indicates the output 
of a synchronous sequential 
circuit. tccq stands for the time 
of contamination from clock 
to Q. These are analogous to 
tpd and tcd in combinational 
logic. 

This definition of a 
synchronous sequential 
circuit is sufficient but more 
restrictive than necessary. For 
example, in high-performance 
microprocessors, some 
registers may receive delayed 
or gated clocks to squeeze out 
the last bit of performance 
or power. Similarly, some 
microprocessors use latches 
instead of registers. However, 
the definition is adequate 
for all of the synchronous 
sequential circuits covered 
in this book and for most 
commercial digital systems. 

D Q
Next
State

Current
State

S ′ S

CLK

Figure 3.20 Flip-flop current 
state and next state
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3 . 3 . 3   Synchronous and Asynchronous Circuits

Asynchronous design in theory is more general than synchronous design 
because the timing of the system is not limited by clocked registers. Just 
as analog circuits are more general than digital circuits because analog 
circuits can use any voltage, asynchronous circuits are more general 
than synchronous circuits because they can use any kind of feedback. 
However, synchronous circuits have proved to be easier to design and 
use than asynchronous circuits, just as digital are easier than analog cir-
cuits. Despite decades of research on asynchronous circuits, virtually all 
digital systems are essentially synchronous.

CLCL

CLK

CLCL

CLK

CL

CLK

CL

CL

CLK

CL

CLKCLK

CL

CLK

Latch

CL

CLK

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.21 Example circuits

Example 3.5 SYNCHRONOUS SEQUENTIAL CIRCUITS

Which of the circuits in Figure 3.21 are synchronous sequential circuits?

Solution Circuit (a) is combinational, not sequential, because it has no registers. 
(b) is a simple sequential circuit with no feedback. (c) is neither a combinational 
circuit nor a synchronous sequential circuit because it has a latch that is neither a 
register nor a combinational circuit. (d) and (e) are synchronous sequential logic; 
they are two forms of finite state machines, which are discussed in Section 3.4.  
(f) is neither combinational nor synchronous sequential because it has a cyclic 
path from the output of the combinational logic back to the input of the same 
logic but no register in the path. (g) is synchronous sequential logic in the form of 
a pipeline, which we will study in Section 3.6. (h) is not, strictly speaking, a syn-
chronous sequential circuit, because the second register receives a different clock 
signal than the first, delayed by two inverter delays. 
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Of course, asynchronous circuits are occasionally necessary when 
communicating between systems with different clocks or when receiving 
inputs at arbitrary times, just as analog circuits are necessary when com-
municating with the real world of continuous voltages. Furthermore, 
research in asynchronous circuits continues to generate interesting 
insights, some of which can also improve synchronous circuits.

3.4  FINITE STATE MACHINES
Synchronous sequential circuits can be drawn in the forms shown in 
Figure 3.22. These forms are called finite state machines (FSMs). They get 
their name because a circuit with k registers can be in one of a finite num-
ber (2k) of unique states. An FSM has M inputs, N outputs, and k bits of 
state. It also receives a clock and, optionally, a reset signal. An FSM con-
sists of two blocks of combinational logic, next state logic and output 
logic, and a register that stores the state. On each clock edge, the FSM 
advances to the next state, which was computed based on the current 
state and inputs. There are two general classes of finite state machines, 
characterized by their functional specifications. In Moore machines, the 
outputs depend only on the current state of the machine. In Mealy 
machines, the outputs depend on both the current state and the current 
inputs. Finite state machines provide a systematic way to design synchro-
nous sequential circuits given a functional specification. This method will 
be explained in the remainder of this section, starting with an example.

3 . 4 . 1   FSM Design Example

To illustrate the design of FSMs, consider the problem of inventing a 
controller for a traffic light at a busy intersection on campus. Engineering 
students are moseying between their dorms and the labs on Academic 

Moore and Mealy machines 
are named after their 
promoters, researchers 
who developed automata 
theory, the mathematical 
underpinnings of state 
machines, at Bell Labs.

Edward F. Moore 
(1925–2003), not to be 
confused with Intel founder 
Gordon Moore, published his 
seminal article, “Gedanken-
experiments on Sequential 
Machines,” in 1956. He 
subsequently became a 
professor of mathematics 
and computer science at the 
University of Wisconsin.

George H. Mealy (1927–
2010) published his article, 
“A Method of Synthesizing 
Sequential Circuits,” in 1955. 
He subsequently wrote the 
first Bell Labs operating 
system for the IBM 704 
computer. He later joined 
Harvard University. 
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Figure 3.22 Finite state 
machines: (a) Moore machine,  
(b) Mealy machine
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Avenue. They are busy reading about FSMs in their favorite textbook 
and aren’t looking where they are going. Football players are hustling 
between the athletic fields and the dining hall on Bravado Boulevard. 
They are tossing the ball back and forth and aren’t looking where they 
are going either. Several serious injuries have already occurred at the 
intersection of these two roads, and the Dean of Students asks Ben 
Bitdiddle to install a traffic light before there are fatalities.

Ben decides to solve the problem with an FSM. He installs two traf-
fic sensors, TA and TB, on Academic Ave. and Bravado Blvd., respec-
tively. Each sensor indicates TRUE if students are present and FALSE 
if the street is empty. He also installs two traffic lights, LA and LB, to  
control traffic. Each light receives digital inputs specifying whether it 
should be green, yellow, or red. Hence, his FSM has two inputs, TA and 
TB, and two outputs, LA and LB. The intersection with lights and sensors 
is shown in Figure 3.23. Ben provides a clock with a 5-second period. 
On each clock tick (rising edge), the lights may change based on the traf-
fic sensors. He also provides a reset button so that Physical Plant techni-
cians can put the controller in a known initial state when they turn it on. 
Figure 3.24 shows a black box view of the state machine.

Ben’s next step is to sketch the state transition diagram, shown in 
Figure 3.25, to indicate all possible states of the system and the transi-
tions between these states. When the system is reset, the lights are green 
on Academic Ave. and red on Bravado Blvd. Every 5 seconds, the control-
ler examines the traffic pattern and decides what to do next. As long as 
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state machine
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traffic is present on Academic Ave., the lights do not change. When there 
is no longer traffic on Academic Ave., the light on Academic Ave. becomes 
yellow for 5 seconds before it turns red and Bravado Blvd.’s light turns 
green. Similarly, the Bravado Blvd. light remains green as long as traffic is 
present on the boulevard, then turns yellow and eventually red.

In a state transition diagram, circles represent states and arcs represent 
transitions between states. The transitions take place on the rising edge of 
the clock; we do not bother to show the clock on the diagram, because it 
is always present in a synchronous sequential circuit. Moreover, the clock 
simply controls when the transitions should occur, whereas the diagram 
indicates which transitions occur. The arc labeled Reset, pointing from 
outer space into state S0 indicates that the system should enter that state 
upon reset regardless of what previous state it was in. If a state has mul-
tiple arcs leaving it, the arcs are labeled to show what input triggers each 
transition. For example, when in state S0, the system will remain in that 
state if TA is TRUE and move to S1 if TA is FALSE. If a state has a single 
arc leaving it, that transition always occurs regardless of the inputs. For 
example, when in state S1, the system will always move to S2 at the clock 
edge. The value that the outputs have while in a particular state are indi-
cated in the state. For example, while in state S2, LA is red and LB is green.

Ben rewrites the state transition diagram as a state transition table 
(Table 3.1), which indicates, for each state and input, what the next 
state, S′, should be. Note that the table uses don’t care symbols (X) 
whenever the next state does not depend on a particular input. Also, 
note that Reset is omitted from the table. Instead, we use resettable flip-
flops that always go to state S0 on reset, independent of the inputs. 

The state transition diagram is abstract in that it uses states labeled 
{S0, S1, S2, S3} and outputs labeled {red, yellow, green}. To build a real 
circuit, the states and outputs must be assigned binary encodings. Ben 
chooses the simple encodings given in Tables 3.2 and 3.3. Each state and 
output is encoded with two bits: S1:0, LA1:0, and LB1:0. 

The current state is often 
referred to simply as the state 
of the system. 

Notice that states are 
designated as S0, S1, etc. The 
subscripted versions, S0, S1, 
etc., refer to the state bits. 
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Figure 3.25 State transition 
diagram
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Table 3.1 State transition table

Current Inputs Next State 
State S TA TB S′

S0 0 X S1

S0 1 X S0

S1 X X S2

S2 X 0 S3

S2 X 1 S2

S3 X X S0

Table 3.2 State encoding

State Encoding S1:0

S0 00

S1 01

S2 10

S3 11

Table 3.3 Output encoding

Output Encoding L1:0

green 00

yellow 01

red 10

Table 3.4 State transition table with binary encodings

 Current State   Inputs Next State
S1 S0 TA TB ′S1 ′S0

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

1 0 X 0 1 1

1 0 X 1 1 0

1 1 X X 0 0

Ben updates the state transition table to use these binary encodings, 
as shown in Table 3.4. The revised state transition table is a truth table 
specifying the next state logic. It defines the next state, S′, as a function 
of the current state, S, and the inputs.

From this table, it is straightforward to read off the Boolean equa-
tions for the next state in sum-of-products form.

 ′ = + +
′ = +

S S S S S T S S T

S S S T S S T
B B

A B

1 1 0 1 0 1 0

0 1 0 1 0
 (3.1)

The equations can be simplified, using Karnaugh maps. However, 
doing it by inspection is often easier. For example, the TB and TB terms 
in the ′S1  equation are clearly redundant. Thus, ′S1  reduces to an XOR 
operation. Equation 3.2 gives the simplified next state equations.
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′
′ = +
=S S S

S S S S ST TA B

1 1 0

0 1 0 1 0

⊕
 (3.2)

Similarly, Ben writes an output table (Table 3.5) that indicates, for 
each state, what the output should be in that state. Again, it is straightfor-
ward to read off and simplify the Boolean equations for the outputs. For 
example, observe that LA1 is TRUE only on the rows where S1 is TRUE.
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 (3.3)

Finally, Ben sketches his Moore FSM in the form of Figure 3.22(a). First, 
he draws the 2-bit state register, as shown in Figure 3.26(a). On each 
clock edge, the state register copies the next state, S′1:0, to become the 
state S1:0. The state register receives a synchronous or asynchronous 
reset to initialize the FSM at startup. Then, he draws the next state logic, 
based on Equation 3.2, which computes the next state from the current  
state and inputs, as shown in Figure 3.26(b). Finally, he draws the  
output logic, based on Equation 3.3, which computes the outputs from 
the current state, as shown in Figure 3.26(c).

Figure 3.27 shows a timing diagram illustrating the traffic light con-
troller going through a sequence of states. The diagram shows CLK, 
Reset, the inputs TA and TB, next state S′, state S, and outputs LA and LB. 
Arrows indicate causality; for example, changing the state causes the out-
puts to change, and changing the inputs causes the next state to change. 
Dashed lines indicate the rising edges of CLK when the state changes.

The clock has a 5-second period, so the traffic lights change at most 
once every 5 seconds. When the finite state machine is first turned on, its 
state is unknown, as indicated by the question marks. Therefore, the sys-
tem should be reset to put it into a known state. In this timing diagram, S 

Table 3.5 Output table

Current State  Outputs
S1 S0 LA1 LA0 LB1 LB0

0 0 0 0 1 0

0 1 0 1 1 0

1 0 1 0 0 0

1 1 1 0 0 1
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immediately resets to S0, indicating that asynchronously resettable flip-
flops are being used. In state S0, light LA is green and light LB is red.

In this example, traffic arrives immediately on Academic Ave. 
Therefore, the controller remains in state S0, keeping LA green even 
though traffic arrives on Bravado Blvd. and starts waiting. After 15 seconds, 
the traffic on Academic Ave. has all passed through and TA falls. At the 
following clock edge, the controller moves to state S1, turning LA yellow. 
In another 5 seconds, the controller proceeds to state S2, in which LA 
turns red and LB turns green. The controller waits in state S2 until all 
traffic on Bravado Blvd. has passed through. It then proceeds to state S3, 
turning LB yellow. Five seconds later, the controller enters state S0,  
turning LB red and LA green. The process repeats.

3 . 4 . 2   State Encodings

In the previous example, the state and output encodings were selected  
arbitrarily. A different choice would have resulted in a different circuit. A nat-
ural question is how to determine the encoding that produces the circuit 
with the fewest logic gates or the shortest propagation delay. Unfortunately, 
there is no simple way to find the best encoding except to try all possibil-
ities, which is infeasible when the number of states is large. However, it is 
often possible to choose a good encoding by inspection so that related states 
or outputs share bits. Computer-aided design (CAD) tools are also good at 
searching the set of possible encodings and selecting a reasonable one.

One important decision in state encoding is the choice between 
binary encoding and one-hot encoding. With binary encoding, as was 
used in the traffic light controller example, each state is represented as a 
binary number. Because K binary numbers can be represented by log2K 
bits, a system with K states needs only log2K bits of state.

In one-hot encoding, a separate bit of state is used for each state. It 
is called one-hot because only one bit is “hot” or TRUE at any time. For 
example, a one-hot encoded FSM with three states would have state encod-
ings of 001, 010, and 100. Each bit of state is stored in a flip-flop, so one-
hot encoding requires more flip-flops than binary encoding. However, with 
one-hot encoding, the next state and output logic is often simpler, so fewer 
gates are required. The best encoding choice depends on the specific FSM.

This schematic uses some 
AND gates, with bubbles on 
the inputs. They might be 
constructed with AND gates 
and input inverters, with 
NOR gates and inverters for 
the nonbubbled inputs, or 
with some other combination 
of gates. The best choice 
depends on the particular 
implementation technology. 

Despite Ben’s best efforts, 
students don’t pay attention 
to traffic lights and collisions 
continue to occur. The 
Dean of Students next asks 
him and Alyssa to design a 
catapult to throw engineering 
students directly from their 
dorm roofs through the 
open windows of the lab, 
bypassing the troublesome 
intersection all together. But 
that is the subject of another 
textbook. 
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Figure 3.26 State machine circuit for traffic light controller
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immediately resets to S0, indicating that asynchronously resettable flip-
flops are being used. In state S0, light LA is green and light LB is red.

In this example, traffic arrives immediately on Academic Ave. 
Therefore, the controller remains in state S0, keeping LA green even 
though traffic arrives on Bravado Blvd. and starts waiting. After 15 seconds, 
the traffic on Academic Ave. has all passed through and TA falls. At the 
following clock edge, the controller moves to state S1, turning LA yellow. 
In another 5 seconds, the controller proceeds to state S2, in which LA 
turns red and LB turns green. The controller waits in state S2 until all 
traffic on Bravado Blvd. has passed through. It then proceeds to state S3, 
turning LB yellow. Five seconds later, the controller enters state S0,  
turning LB red and LA green. The process repeats.

3 . 4 . 2   State Encodings

In the previous example, the state and output encodings were selected  
arbitrarily. A different choice would have resulted in a different circuit. A nat-
ural question is how to determine the encoding that produces the circuit 
with the fewest logic gates or the shortest propagation delay. Unfortunately, 
there is no simple way to find the best encoding except to try all possibil-
ities, which is infeasible when the number of states is large. However, it is 
often possible to choose a good encoding by inspection so that related states 
or outputs share bits. Computer-aided design (CAD) tools are also good at 
searching the set of possible encodings and selecting a reasonable one.

One important decision in state encoding is the choice between 
binary encoding and one-hot encoding. With binary encoding, as was 
used in the traffic light controller example, each state is represented as a 
binary number. Because K binary numbers can be represented by log2K 
bits, a system with K states needs only log2K bits of state.

In one-hot encoding, a separate bit of state is used for each state. It 
is called one-hot because only one bit is “hot” or TRUE at any time. For 
example, a one-hot encoded FSM with three states would have state encod-
ings of 001, 010, and 100. Each bit of state is stored in a flip-flop, so one-
hot encoding requires more flip-flops than binary encoding. However, with 
one-hot encoding, the next state and output logic is often simpler, so fewer 
gates are required. The best encoding choice depends on the specific FSM.

This schematic uses some 
AND gates, with bubbles on 
the inputs. They might be 
constructed with AND gates 
and input inverters, with 
NOR gates and inverters for 
the nonbubbled inputs, or 
with some other combination 
of gates. The best choice 
depends on the particular 
implementation technology. 

Despite Ben’s best efforts, 
students don’t pay attention 
to traffic lights and collisions 
continue to occur. The 
Dean of Students next asks 
him and Alyssa to design a 
catapult to throw engineering 
students directly from their 
dorm roofs through the 
open windows of the lab, 
bypassing the troublesome 
intersection all together. But 
that is the subject of another 
textbook. 

Example 3.6 FSM STATE ENCODING

A divide-by-N counter has one output and no inputs. The output Y is HIGH for 
one clock cycle out of every N. In other words, the output divides the frequency 
of the clock by N. The waveform and state transition diagram for a divide-by-3 
counter is shown in Figure 3.28. Sketch circuit designs for such a counter using 
binary and one-hot state encodings.
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Figure 3.28 Divide-by-3 counter 
(a) waveform and (b) state 
transition diagram

Solution Tables 3.6 and 3.7 show the abstract state transition and output tables, 
respectively, before encoding.

Table 3.8 compares binary and one-hot encodings for the three states.

The binary encoding uses two bits of state. Using this encoding, the state tran-
sition table is shown in Table 3.9. Note that there are no inputs; the next state 
depends only on the current state. The output table is left as an exercise to the 
reader. The next state and output equations are:

 ′ =
′ =

S S S

S S S
1 1 0

0 1 0
 (3.4)

 
Y S S= 1 0  (3.5)

The one-hot encoding uses three bits of state. The state transition table for this 
encoding is shown in Table 3.10 and the output table is again left as an exercise 
to the reader. The next state and output equations are as follows:

 
′ =
′ =
′ =

S S
S S
S S

2

1

0

1

0

2

 (3.6)

 
Y S= 0  (3.7)

Figure 3.29 shows schematics for each of these designs. Note that the hardware 
for the binary encoded design could be optimized to share the same gate for Y 
and S′0. Also, observe that one-hot encoding requires both settable (s) and reset-
table (r) flip-flops to initialize the machine to S0 on reset. The best implementa-
tion choice depends on the relative cost of gates and flip-flops, but the one-hot 
design is usually preferable for this specific example.
 

A related encoding is the one-cold encoding, in which K states are 
represented with K bits, exactly one of which is FALSE.

Table 3.6 Divide-by-3 counter  
state transition table

Current State Next State

S0 S1

S1 S2

S2 S0

Table 3.7 Divide-by-3 counter 
output table

Current State Output

S0 1

S1 0

S2 0
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Table 3.8 One-hot and binary encodings for divide-by-3 counter

One-Hot Encoding Binary Encoding
State S2 S1 S0 S1 S0

S0 0 0 1 0 0

S1 0 1 0 0 1

S2 1 0 0 1 0

Table 3.9 State transition table with binary encoding

Current State Next State
S1 S0 ′S1 ′S0

0 0 0 1

0 1 1 0

1 0 0 0

Table 3.10 State transition table with one-hot encoding

Current State Next State
S2 S1 S0 ′S2 ′S1 ′S0

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0 0 0 1

CLK

next state logic output logicstate register

Reset

Y

output

Reset

CLK

r r s
Y

r

S'1 S1

S1

S1 S2 S0

S'0 S0

S0

(a)

(b)

Figure 3.29 Divide-by-3 circuits 
for (a) binary and (b) one-hot 
encodings
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3 . 4 . 3   Moore and Mealy Machines

So far, we have shown examples of Moore machines, in which the  
output depends only on the state of the system. Hence, in state transition 
diagrams for Moore machines, the outputs are labeled in the circles. 
Recall that Mealy machines are much like Moore machines, but the  
outputs can depend on inputs as well as the current state. Hence, in state 
transition diagrams for Mealy machines, the outputs are labeled on the 
arcs instead of in the circles. The block of combinational logic that com-
putes the outputs uses the current state and inputs, as was shown in 
Figure 3.22(b).

An easy way to remember the 
difference between the two 
types of finite state machines 
is that a Moore machine 
typically has more states than 
a Mealy machine for a given 
problem. 

Example 3.7 MOORE VERSUS MEALY MACHINES

Alyssa P. Hacker owns a pet robotic snail with an FSM brain. The snail crawls 
from left to right along a paper tape containing a sequence of 1’s and 0’s. On 
each clock cycle, the snail crawls to the next bit. The snail smiles when the last 
two bits that it has crawled over are 01. Design the FSM to compute when 
the snail should smile. The input A is the bit underneath the snail’s antennae. 
The output Y is TRUE when the snail smiles. Compare Moore and Mealy state 
machine designs. Sketch a timing diagram for each machine showing the input, 
states, and output as Alyssa’s snail crawls along the sequence 0100110111.

Solution The Moore machine requires three states, as shown in Figure 3.30(a). 
Convince yourself that the state transition diagram is correct. In particular, why 
is there an arc from S2 to S1 when the input is 0?

In comparison, the Mealy machine requires only two states, as shown in Figure 
3.30(b). Each arc is labeled as A/Y. A is the value of the input that causes that 
transition, and Y is the corresponding output.

Tables 3.11 and 3.12 show the state transition and output tables, respectively for 
the Moore machine. The Moore machine requires at least two bits of state. Consider 
using a binary state encoding: S0 = 00, S1 = 01, and S2 = 10. Tables 3.13 and 3.14 
rewrite the state transition and output tables, respectively, with these encodings.

From these tables, we find the next state and output equations by inspection. 
Note that these equations are simplified using the fact that state 11 does not exist. 
Thus, the corresponding next state and output for the nonexistent state are don’t 
cares (not shown in the tables). We use the don’t cares to minimize our equations.

 
′ =

′ =

S S A

S A

1

0

0
 (3.8)

 
Y S= 1  (3.9)
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Table 3.15 shows the combined state transition and output table for the Mealy 
machine. The Mealy machine requires only one bit of state. Consider using a 
binary state encoding: S0 = 0 and S1 = 1. Table 3.16 rewrites the state transition 
and output table with these encodings.

From these tables, we find the next state and output equations by inspection.

 ′ =S A0  (3.10)

 Y S A= 0  (3.11)

The Moore and Mealy machine schematics are shown in Figure 3.31. The timing 
diagrams for each machine are shown in Figure 3.32 (see page 133). The two 
machines follow a different sequence of states. Moreover, the Mealy machine’s 
output rises a cycle sooner because it responds to the input rather than wait-
ing for the state change. If the Mealy output were delayed through a flip-flop, it 
would match the Moore output. When choosing your FSM design style, consider 
when you want your outputs to respond.
 

Reset

(a)

S0
0

S1
0

S2
1

0

Reset

(b)

0 1

S0 S1

1/1

0/0

1/01 0
1

0/0

Figure 3.30 FSM state transition diagrams: (a) Moore machine, (b) Mealy machine

Table 3.12 Moore output table

Current State  
S

Output  
Y

S0 0

S1 0

S2 1

Table 3.11 Moore state transition table

Current State  
S

Input  
A

Next State 
S′

S0 0 S1

S0 1 S0

S1 0 S1

S1 1 S2

S2 0 S1

S2 1 S0
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3 . 4 . 4   Factoring State Machines

Designing complex FSMs is often easier if they can be broken down 
into multiple interacting simpler state machines, such that the output of 
some machines is the input of others. This application of hierarchy and  
modularity is called factoring of state machines.

Table 3.13 Moore state transition table with state 
encodings

Current State Input Next State
S1 S0 A ′S1 ′S0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

Table 3.14 Moore output table 
with state encodings

Current State Output
S1 S0 Y

0 0 0

0 1 0

1 0 1

Table 3.15 Mealy state transition and output table

Current State  
S

Input  
A

Next State  
S′

Output  
Y

S0 0 S1 0

S0 1 S0 0

S1 0 S1 0

S1 1 S0 1

Table 3.16 Mealy state transition and output table with state encodings

Current State  
S0

Input  
A

Next State  
′S0

Output  
Y

0 0 1 0

0 1 0 0

1 0 1 0

1 1 0 1
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Example 3.8 UNFACTORED AND FACTORED STATE MACHINES

Modify the traffic light controller from Section 3.4.1 to have a parade mode, 
which keeps the Bravado Boulevard light green while spectators and the band 
march to football games in scattered groups. The controller receives two more 
inputs: P and R. Asserting P for at least one cycle enters parade mode. Asserting 
R for at least one cycle leaves parade mode. When in parade mode, the control-
ler proceeds through its usual sequence until LB turns green, then remains in that 
state with LB green until parade mode ends.

First, sketch a state transition diagram for a single FSM, as shown in Figure 3.33(a). 
Then, sketch the state transition diagrams for two interacting FSMs, as shown in 
Figure 3.33(b). The Mode FSM asserts the output M when it is in parade mode. 
The Lights FSM controls the lights based on M and the traffic sensors, TA and TB.

Solution Figure 3.34(a) shows the single FSM design. States S0 to S3 handle nor-
mal mode. States S4 to S7 handle parade mode. The two halves of the diagram are 
almost identical, but in parade mode, the FSM remains in S6 with a green light on 
Bravado Blvd. The P and R inputs control movement between these two halves. 
The FSM is messy and tedious to design. Figure 3.34(b) shows the factored FSM 
design. The Mode FSM has two states to track whether the lights are in normal or 
parade mode. The Lights FSM is modified to remain in S2 while M is TRUE.
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(a) Moore and (b) Mealy machines
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Figure 3.32 Timing diagrams for 
Moore and Mealy machines



Sequential Logic DesignCHAPTER THREE134
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Figure 3.33 (a) Single and  
(b) factored designs for modified 
traffic light controller FSM
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Figure 3.34 State transition  
diagrams: (a) unfactored,  
(b) factored
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3 . 4 . 5   Deriving an FSM from a Schematic

Deriving the state transition diagram from a schematic follows nearly 
the reverse process of FSM design. This process can be necessary, for 
example, when taking on an incompletely documented project or reverse 
engineering somebody else’s system.

▸ Examine circuit, stating inputs, outputs, and state bits.

▸ Write next state and output equations.

▸ Create next state and output tables.

▸ Reduce the next state table to eliminate unreachable states.

▸ Assign each valid state bit combination a name.

▸ Rewrite next state and output tables with state names.

▸ Draw state transition diagram.

▸ State in words what the FSM does.

In the final step, be careful to succinctly describe the overall purpose 
and function of the FSM—do not simply restate each transition of the 
state transition diagram.

Example 3.9 DERIVING AN FSM FROM ITS CIRCUIT

Alyssa P. Hacker arrives home, but her keypad lock has been rewired and her old 
code no longer works. A piece of paper is taped to it showing the circuit diagram 
in Figure 3.35. Alyssa thinks the circuit could be a finite state machine and decides 
to derive the state transition diagram to see whether it helps her get in the door.

Solution Alyssa begins by examining the circuit. The input is A1:0 and the output  
is Unlock. The state bits are already labeled in Figure 3.35. This is a Moore 

Unlock

CLK

Reset

r

S ′1 S1

S ′0 S0

A0A1

Figure 3.35 Circuit of found FSM 
for Example 3.9



Sequential Logic DesignCHAPTER THREE136

machine because the output depends only on the state bits. From the circuit, she 
writes down the next state and output equations directly:

 
′ =
′ =

=

S S A

S S S A A

S

A1 0 0

0 1 0 1 0

1

1

Unlock
 (3.12)

Next, she writes down the next state and output tables from the equations, as 
shown in Tables 3.17 and 3.18, respectively, first placing 1’s in the tables as indi-
cated by Equation 3.12. She places 0’s everywhere else.

Alyssa reduces the table by removing unused states and combining rows using 
don’t cares. The S1:0 = 11 state is never listed as a possible next state in Table 3.17, 
so rows with this current state are removed. For current state S1:0 = 10, the next 

Table 3.17 Next state table derived from circuit in Figure 3.35

Current State Input Next State
S1 S0 A1 A0 ′S1 ′S0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 1 0 0

Table 3.18 Output table derived from circuit 
in Figure 3.35

Current State Output
S1 S0 Unlock

0 0 0

0 1 0

1 0 1

1 1 1
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state is always S1:0 = 00, independent of the inputs, so don’t cares are inserted 
for the inputs. The reduced tables are shown in Tables 3.19 and 3.20.

She assigns names to each state bit combination: S0 is S1:0 = 00, S1 is S1:0 = 01, 
and S2 is S1:0 = 10. Tables 3.21 and 3.22 show the next state and output tables, 
respectively, with state names.

Table 3.19 Reduced next state table

Current State Input Next State
S1 S0 A1 A0 ′S1 ′S0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 X X 0 0

Table 3.20 Reduced output table

Current State Output
S1 S0 Unlock

0 0 0

0 1 0

1 0 1

Table 3.21 Symbolic next state table

Current State  
S

Input  
A

Next State  
S′

S0 0 S0

S0 1 S0

S0 2 S0

S0 3 S1

S1 0 S0

S1 1 S2

S1 2 S0

S1 3 S0

S2 X S0

Table 3.22 Symbolic output table

Current State  
S

Output 
Unlock

S0 0

S1 0

S2 1
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3 . 4 . 6   FSM Review

Finite state machines are a powerful way to systematically design 
sequential circuits from a written specification. Use the following  
procedure to design an FSM:

▸ Identify the inputs and outputs.

▸ Sketch a state transition diagram.

▸ For a Moore machine:

 – Write a state transition table. 

 – Write an output table.

▸ For a Mealy machine:

 – Write a combined state transition and output table.

▸ Select state encodings—your selection affects the hardware design.

▸ Write Boolean equations for the next state and output logic.

▸ Sketch the circuit schematic.

Reset

S1
0

S0
0

S2
1

A = 3

A = 1

A = 3

A = 1

Figure 3.36 State transition 
diagram of found FSM from 
Example 3.9

Alyssa writes down the state transition diagram shown in Figure 3.36 using 
Tables 3.21 and 3.22. By inspection, she can see that the finite state machine 
unlocks the door only after detecting an input value, A1:0, of three followed by 
an input value of one. The door is then locked again. Alyssa tries this code on 
the door keypad and the door opens!
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We will repeatedly use FSMs to design complex digital systems  
throughout this book.

3.5  TIMING OF SEQUENTIAL LOGIC
Recall that a flip-flop copies the input D to the output Q on the rising edge 
of the clock. This process is called sampling D on the clock edge. If D is 
stable at either 0 or 1 when the clock rises, this behavior is clearly defined. 
But what happens if D is changing at the same time the clock rises?

This problem is similar to that faced by a camera when snapping 
a picture. Imagine photographing a frog jumping from a lily pad into 
the lake. If you take the picture before the jump, you will see a frog on 
a lily pad. If you take the picture after the jump, you will see ripples in 
the water. But if you take it just as the frog jumps, you may see a blurred 
image of the frog stretching from the lily pad into the water. A camera is 
characterized by its aperture time, during which the object must remain 
still for a sharp image to be captured. Similarly, a sequential element has 
an aperture time around the clock edge, during which the input must be 
stable for the flip-flop to produce a well-defined output.

The aperture of a sequential element is defined by a setup time and a 
hold time, before and after the clock edge, respectively. Just as the static 
discipline limited us to using logic levels outside the forbidden zone, 
the dynamic discipline limits us to using signals that change outside the 
aperture time. By taking advantage of the dynamic discipline, we can 
think of time in discrete units called clock cycles, just as we think of sig-
nal levels as discrete 1’s and 0’s. A signal may glitch and oscillate wildly 
for some bounded amount of time. Under the dynamic discipline, we are 
concerned only about its final value at the end of the clock cycle, after it 
has settled to a stable value. Hence, we can simply write A[n], the value 
of signal A at the end of the nth clock cycle, where n is an integer, rather 
than A(t), the value of A at some instant t, where t is any real number.

The clock period has to be long enough for all signals to settle. This 
sets a limit on the speed of the system. In real systems, the clock does 
not reach all flip-flops at precisely the same time. This variation in time, 
called clock skew, further increases the necessary clock period.

Sometimes it is impossible to satisfy the dynamic discipline, especially 
when interfacing with the real world. For example, consider a circuit with 
an input coming from a button. A monkey might press the button just 
as the clock rises. This can result in a phenomenon called metastability, 
where the flip-flop captures a value partway between 0 and 1 that can 
take an unlimited amount of time to resolve into a good logic value. The 
solution to such asynchronous inputs is to use a synchronizer, which has 
a very small (but nonzero) probability of producing an illegal logic value.

We expand on all of these ideas in the rest of this section.
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3 . 5 . 1   The Dynamic Discipline

So far, we have focused on the functional specification of sequential cir-
cuits. Recall that a synchronous sequential circuit, such as a flip-flop or 
FSM, also has a timing specification, as illustrated in Figure 3.37. When 
the clock rises, the output (or outputs) may start to change after the clock-
to-Q contamination delay, tccq, and must definitely settle to the final value 
within the clock-to-Q propagation delay, tpcq. These represent the fastest 
and slowest delays through the circuit, respectively. For the circuit to sam-
ple its input correctly, the input (or inputs) must have stabilized at least 
some setup time, tsetup, before the rising edge of the clock and must remain 
stable for at least some hold time, thold, after the rising edge of the clock. 
The sum of the setup and hold times is called the aperture time of the 
circuit, because it is the total time for which the input must remain stable.

The dynamic discipline states that the inputs of a synchronous 
sequential circuit must be stable during the setup and hold aperture time 
around the clock edge. By imposing this requirement, we guarantee that 
the flip-flops sample signals while they are not changing. Because we are 
concerned only about the final values of the inputs at the time they are 
sampled, we can treat signals as discrete in time as well as in logic levels.

3 . 5 . 2   System Timing

The clock period or cycle time, Tc, is the time between rising edges of a 
repetitive clock signal. Its reciprocal, fc = 1/Tc, is the clock frequency. All 
else being the same, increasing the clock frequency increases the work that 
a digital system can accomplish per unit time. Frequency is measured in 
units of Hertz (Hz), or cycles per second: 1 megahertz (MHz) = 106 Hz, 
and 1 gigahertz (GHz) = 109 Hz.

Figure 3.38(a) illustrates a generic path in a synchronous sequen-
tial circuit whose clock period we wish to calculate. On the rising edge 
of the clock, register R1 produces output (or outputs) Q1. These sig-
nals enter a block of combinational logic, producing D2, the input (or 
inputs) to register R2. The timing diagram in Figure 3.38(b) shows that 
each output signal may start to change a contamination delay after its 

In the three decades from 
when one of the authors’ 
families bought an Apple II+ 
computer to the present time of 
writing, microprocessor clock 
frequencies have increased 
from 1 MHz to several GHz, 
a factor of more than 1000. 
This speedup partially explains 
the revolutionary changes 
computers have made in society. 

CLK

tccq

tpcq

t setup

output(s)

input(s)

t hold

Figure 3.37 Timing specification 
for synchronous sequential circuit
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input changes and settles to the final value within a propagation delay 
after its input settles. The gray arrows represent the contamination delay 
through R1 and the combinational logic, and the blue arrows represent 
the propagation delay through R1 and the combinational logic. We ana-
lyze the timing constraints with respect to the setup and hold time of the 
second register, R2.

Setup Time Constraint
Figure 3.39 is the timing diagram showing only the maximum delay 
through the path, indicated by the blue arrows. To satisfy the setup time 
of R2, D2 must settle no later than the setup time before the next clock 
edge. Hence, we find an equation for the minimum clock period:

 T t t tc pcq pd≥ + + setup  (3.13)

In commercial designs, the clock period is often dictated by the 
Director of Engineering or by the marketing department (to ensure a 
competitive product). Moreover, the flip-flop clock-to-Q propagation 
delay and setup time, tpcq and tsetup, are specified by the manufacturer. 
Hence, we rearrange Equation 3.13 to solve for the maximum propa-
gation delay through the combinational logic, which is usually the only 
variable under the control of the individual designer.

 t T t tpd c pcq≤ − +( )setup  (3.14)

The term in parentheses, tpcq +  tsetup, is called the sequencing over-
head. Ideally, the entire cycle time Tc would be available for useful 
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Figure 3.38 Path between 
registers and timing diagram
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Figure 3.39 Maximum delay for 
setup time constraint
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computation in the combinational logic, tpd. However, the sequencing 
overhead of the flip-flop cuts into this time. Equation 3.14 is called the 
setup time constraint or max-delay constraint because it depends on the 
setup time and limits the maximum delay through combinational logic.

If the propagation delay through the combinational logic is too 
great, D2 may not have settled to its final value by the time R2 needs it 
to be stable and samples it. Hence, R2 may sample an incorrect result or 
even an illegal logic level, a level in the forbidden region. In such a case, 
the circuit will malfunction. The problem can be solved by increasing the 
clock period or by redesigning the combinational logic to have a shorter 
propagation delay.

Hold Time Constraint
The register R2 in Figure 3.38(a) also has a hold time constraint. Its 
input, D2, must not change until some time, thold, after the rising edge of 
the clock. According to Figure 3.40, D2 might change as soon as tccq + tcd 
after the rising edge of the clock. Hence, we find

 t t tccq cd+ ≥ hold  (3.15)

Again, tccq and thold are characteristics of the flip-flop that are usu-
ally outside the designer’s control. Rearranging, we can solve for the 
minimum contamination delay through the combinational logic:

 t t tcd ccq≥ −hold  (3.16)

Equation 3.16 is called the hold time constraint or min-delay constraint 
because it limits the minimum delay through combinational logic.

We have assumed that any logic elements can be connected to each 
other without introducing timing problems. In particular, we would 
expect that two flip-flops may be directly cascaded as in Figure 3.41 
without causing hold time problems.

CLK

Q1

D2

tccq tcd

thold

CL

CLKCLK

Q1 D2

R1 R2

Figure 3.40 Minimum delay for 
hold time constraint
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In such a case, tcd = 0 because there is no combinational logic between 
flip-flops. Substituting into Equation 3.16 yields the requirement that

 t tccqhold ≤  (3.17)

In other words, a reliable flip-flop must have a hold time shorter 
than its contamination delay. Often, flip-flops are designed with thold = 0  
so that Equation 3.17 is always satisfied. Unless noted otherwise, we 
will usually make that assumption and ignore the hold time constraint 
in this book.

Nevertheless, hold time constraints are critically important. If they 
are violated, the only solution is to increase the contamination delay 
through the logic, which requires redesigning the circuit. Unlike setup 
time constraints, they cannot be fixed by adjusting the clock period. 
Redesigning an integrated circuit and manufacturing the corrected  
design takes months and millions of dollars in today’s advanced  
technologies, so hold time violations must be taken extremely seriously.

Putting It All Together
Sequential circuits have setup and hold time constraints that dictate the 
maximum and minimum delays of the combinational logic between flip-
flops. Modern flip-flops are usually designed so that the minimum delay 
through the combinational logic can be 0—that is, flip-flops can be 
placed back-to-back. The maximum delay constraint limits the number 
of consecutive gates on the critical path of a high-speed circuit because a 
high clock frequency means a short clock period.

Figure 3.41 Back-to-back 
flip-flops

CLK

Example 3.10 TIMING ANALYSIS

Ben Bitdiddle designed the circuit in Figure 3.42. According to the data sheets 
for the components he is using, flip-flops have a clock-to-Q contamination 
delay of 30 ps and a propagation delay of 80 ps. They have a setup time of 50 
ps and a hold time of 60 ps. Each logic gate has a propagation delay of 40 ps 

Figure 3.42 Sample circuit for 
timing analysis
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and a contamination delay of 25 ps. Help Ben determine the maximum clock  
frequency and whether any hold time violations could occur. This process is 
called timing analysis.

Solution Figure 3.43(a) shows waveforms illustrating when the signals might 
change. The inputs, A to D, are registered, so they only change shortly after CLK 
rises.

The critical path occurs when B = 1, C = 0, D = 0, and A rises from 0 to 1, 
triggering n1 to rise, X′ to rise, and Y′ to fall, as shown in Figure 3.43(b). This 
path involves three gate delays. For the critical path, we assume that each gate 
requires its full propagation delay. Y′ must set up before the next rising edge of 
the CLK. Hence, the minimum cycle time is

 T t t tc pcq pd≥ + + = + × + =3 80 3 40 50 250setup ps  (3.18)

The maximum clock frequency is fc = 1/Tc = 4 GHz.

A short path occurs when A = 0 and C rises, causing X′ to rise, as shown in 
Figure 3.43(c). For the short path, we assume that each gate switches after only 
a contamination delay. This path involves only one gate delay, so it may occur 
after tccq + tcd = 30 + 25 = 55 ps. But recall that the flip-flop has a hold time of 
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Figure 3.43 Timing diagram:  
(a) general case, (b) critical path, 
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60 ps, meaning that X′ must remain stable for 60 ps after the rising edge of CLK 
for the flip-flop to reliably sample its value. In this case, X′ = 0 at the first rising 
edge of CLK, so we want the flip-flop to capture X = 0. Because X′ did not hold 
stable long enough, the actual value of X is unpredictable. The circuit has a hold 
time violation and may behave erratically at any clock frequency.
 

Example 3.11 FIXING HOLD TIME VIOLATIONS

Alyssa P. Hacker proposes to fix Ben’s circuit by adding buffers to slow down 
the short paths, as shown in Figure 3.44. The buffers have the same delays as 
other gates. Help her determine the maximum clock frequency and whether any 
hold time problems could occur.

Solution Figure 3.45 shows waveforms illustrating when the signals might 
change. The critical path from A to Y is unaffected because it does not pass 
through any buffers. Therefore, the maximum clock frequency is still 4 GHz. 
However, the short paths are slowed by the contamination delay of the buffer. 
Now, X′ will not change until tccq + 2tcd = 30 + 2 × 25 = 80 ps. This is after the 
60 ps hold time has elapsed, so the circuit now operates correctly.

This example had an unusually long hold time to illustrate the point of hold 
time problems. Most flip-flops are designed with thold < tccq to avoid such 
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3 . 5 . 3   Clock Skew*

In the previous analysis, we assumed that the clock reaches all regis-
ters at exactly the same time. In reality, there is some variation in this 
time. This variation in clock edges is called clock skew. For example, 
the wires from the clock source to different registers may be of different 
lengths, resulting in slightly different delays, as shown in Figure 3.46. 
Noise also results in different delays. Clock gating, described in Section 
3.2.5, further delays the clock. If some clocks are gated and others 
are not, there will be substantial skew between the gated and ungated 
clocks. In Figure 3.46, CLK2 is early with respect to CLK1, because the 
clock wire between the two registers follows a scenic route. If the clock 
had been routed differently, CLK1 might have been early instead. When 
doing timing analysis, we consider the worst-case scenario so that we 
can guarantee that the circuit will work under all circumstances.

Figure 3.47 adds skew to the timing diagram from Figure 3.38. The 
heavy clock line indicates the latest time at which the clock signal might 
reach any register; the hashed lines show that the clock might arrive up 
to tskew earlier.

First, consider the setup time constraint shown in Figure 3.48. In the 
worst case, R1 receives the latest skewed clock and R2 receives the earli-
est skewed clock, leaving as little time as possible for data to propagate 
between the registers.

problems. However, some high-performance microprocessors, including the 
Pentium 4, use an element called a pulsed latch in place of a flip-flop. The pulsed 
latch behaves like a flip-flop but has a short clock-to-Q delay and a long hold 
time. In general, adding buffers can usually, but not always, solve hold time 
problems without slowing the critical path.
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CLK
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CLK

Figure 3.46 Clock skew caused 
by wire delay
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The data propagates through the register and combinational logic 
and must set up before R2 samples it. Hence, we conclude that

 T t t t tc pcq pd≥ + + +setup skew  (3.19)

 t T t t tpd c pcq≤ − + +( )setup skew  (3.20)

Next, consider the hold time constraint shown in Figure 3.49. In the 
worst case, R1 receives an early skewed clock, CLK1, and R2 receives a 
late skewed clock, CLK2. The data zips through the register and combi-
national logic, but must not arrive until a hold time after the late clock. 
Thus, we find that

 t t t tccq cd+ ≥ +hold skew  (3.21)

 t t t tcd ccq≥ + −hold skew  (3.22)

In summary, clock skew effectively increases both the setup time and 
the hold time. It adds to the sequencing overhead, reducing the time avail-
able for useful work in the combinational logic. It also increases the required 
minimum delay through the combinational logic. Even if thold = 0, a pair 
of back-to-back flip-flops will violate Equation 3.22 if tskew > tccq. To 
prevent serious hold time failures, designers must not permit too much 
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clock skew. Sometimes, flip-flops are intentionally designed to be partic-
ularly slow (i.e., large tccq), to prevent hold time problems even when the 
clock skew is substantial.

tcd

t hold

Q1

D2

t skew

CL

CLK2CLK1

R1 R 2

Q1 D2

CLK2

CLK1

tccq

Figure 3.49 Hold time constraint 
with clock skew

Example 3.12 TIMING ANALYSIS WITH CLOCK SKEW

Revisit Example 3.10 and assume that the system has 50 ps of clock skew.

Solution The critical path remains the same, but the setup time is effectively 
increased by the skew. Hence, the minimum cycle time is

 T t t t tc pcq pd≥ + + +
= + × + + =

3
80 3 40 50 50 300

setup skew

ps
 (3.23)

The maximum clock frequency is fc = 1/Tc = 3.33 GHz.

The short path also remains the same at 55 ps. The hold time is effectively increased 
by the skew to 60 + 50 = 110 ps, which is much greater than 55 ps. Hence, the 
circuit will violate the hold time and malfunction at any frequency. The circuit 
violated the hold time constraint even without skew. Skew in the system just 
makes the violation worse.
 

Example 3.13 FIXING HOLD TIME VIOLATIONS

Revisit Example 3.11 and assume that the system has 50 ps of clock skew.

Solution The critical path is unaffected, so the maximum clock frequency 
remains 3.33 GHz.
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3 . 5 . 4   Metastability

As noted earlier, it is not always possible to guarantee that the input to 
a sequential circuit is stable during the aperture time, especially when 
the input arrives from the external world. Consider a button connected 
to the input of a flip-flop, as shown in Figure 3.50. When the button 
is not pressed, D = 0. When the button is pressed, D = 1. A monkey 
presses the button at some random time relative to the rising edge of 
CLK. We want to know the output Q after the rising edge of CLK. In 
Case I, when the button is pressed much before CLK, Q = 1. In Case II, 
when the button is not pressed until long after CLK, Q = 0. But in Case 
III, when the button is pressed sometime between tsetup before CLK and 
thold after CLK, the input violates the dynamic discipline and the output 
is undefined.

Metastable State
When a flip-flop samples an input that is changing during its aper-
ture, the output Q may momentarily take on a voltage between 0 and 
VDD that is in the forbidden zone. This is called a metastable state. 
Eventually, the flip-flop will resolve the output to a stable state of either 
0 or 1. However, the resolution time required to reach the stable state is 
unbounded.

The metastable state of a flip-flop is analogous to a ball on the 
summit of a hill between two valleys, as shown in Figure 3.51. The two 
valleys are stable states, because a ball in the valley will remain there 
as long as it is not disturbed. The top of the hill is called metastable 
because the ball would remain there if it were perfectly balanced. But 
because nothing is perfect, the ball will eventually roll to one side or the 
other. The time required for this change to occur depends on how nearly 
well balanced the ball originally was. Every bistable device has a meta-
stable state between the two stable states.

Resolution Time
If a flip-flop input changes at a random time during the clock cycle, the 
resolution time, tres, required to resolve to a stable state is also a random 
variable. If the input changes outside the aperture, then tres = tpcq. But if 
the input happens to change within the aperture, tres can be substantially 
longer. Theoretical and experimental analyses (see Section 3.5.6) have 

The short path increases to 80 ps. This is still less than thold + tskew = 110 ps, so 
the circuit still violates its hold time constraint.

To fix the problem, even more buffers could be inserted. Buffers would need to 
be added on the critical path as well, reducing the clock frequency. Alternatively, 
a better flip-flop with a shorter hold time might be used.
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shown that the probability that the resolution time, tres, exceeds some 
arbitrary time, t, decreases exponentially with t:

 P t t
T
T

eres
c

t

( )> =
−0 τ  (3.24)

where Tc is the clock period, and T0 and τ are characteristic of the flip-
flop. The equation is valid only for t substantially longer than tpcq.

Intuitively, T0/Tc describes the probability that the input changes 
at a bad time (i.e., during the aperture time); this probability decreases 
with the cycle time, Tc. τ is a time constant indicating how fast the flip-
flop moves away from the metastable state; it is related to the delay 
through the cross-coupled gates in the flip-flop.

In summary, if the input to a bistable device such as a flip-flop 
changes during the aperture time, the output may take on a metastable 
value for some time before resolving to a stable 0 or 1. The amount of 
time required to resolve is unbounded because for any finite time, t, the 
probability that the flip-flop is still metastable is nonzero. However, this 
probability drops off exponentially as t increases. Therefore, if we wait 
long enough, much longer than tpcq, we can expect with exceedingly high 
probability that the flip-flop will reach a valid logic level.

3 . 5 . 5   Synchronizers

Asynchronous inputs to digital systems from the real world are inevi-
table. Human input is asynchronous, for example. If handled carelessly, 
these asynchronous inputs can lead to metastable voltages within the 
system, causing erratic system failures that are extremely difficult to 
track down and correct. The goal of a digital system designer should be 
to ensure that, given asynchronous inputs, the probability of encounter-
ing a metastable voltage is sufficiently small. “Sufficiently” depends on 
the context. For a cell phone, perhaps one failure in 10 years is accept-
able, because the user can always turn the phone off and back on if it 
locks up. For a medical device, one failure in the expected life of the 
universe (1010 years) is a better target. To guarantee good logic levels, all 
asynchronous inputs should be passed through synchronizers.

A synchronizer, shown in Figure 3.52, is a device that receives 
an asynchronous input D and a clock CLK. It produces an output Q 
within a bounded amount of time; the output has a valid logic level with 
extremely high probability. If D is stable during the aperture, Q should 
take on the same value as D. If D changes during the aperture, Q may 
take on either a HIGH or LOW value, but must not be metastable.

Figure 3.53 shows a simple way to build a synchronizer out of two 
flip-flops. F1 samples D on the rising edge of CLK. If D is changing at 
that time, the output D2 may be momentarily metastable. If the clock 
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period is long enough, D2 will, with high probability, resolve to a valid 
logic level before the end of the period. F2 then samples D2, which is 
now stable, producing a good output Q.

We say that a synchronizer fails if Q, the output of the synchro-
nizer, becomes metastable. This may happen if D2 has not resolved to 
a valid level by the time it must set up at F2—that is, if tres > Tc − tsetup. 
According to Equation 3.24, the probability of failure for a single input 
change at a random time is

 P
T
T

e
c

Tc t

( )failure
setup

=
−

−
0 τ  (3.25)

The probability of failure, P(failure), is the probability that the 
output Q will be metastable upon a single change in D. If D changes 
once per second, the probability of failure per second is just P(failure). 
However, if D changes N times per second, the probability of failure per 
second is N times as great:

 
P N

T
T

e
c

Tc t

( )failure /sec
setup

=
−

−
0 τ

 (3.26)

System reliability is usually measured in mean time between failures 
(MTBF). As the name suggests, MTBF is the average amount of time 
between failures of the system. It is the reciprocal of the probability that 
the system will fail in any given second

 
MTBF

P
T e

NT
c

Tc t

= =

−

1

0( )failure /sec

setup
τ  (3.27)

Equation 3.27 shows that the MTBF improves exponentially as the 
synchronizer waits for a longer time, Tc. For most systems, a synchronizer 
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that waits for one clock cycle provides a safe MTBF. In exceptionally 
high-speed systems, waiting for more cycles may be necessary.

Example 3.14 SYNCHRONIZER FOR FSM INPUT

The traffic light controller FSM from Section 3.4.1 receives asynchronous inputs 
from the traffic sensors. Suppose that a synchronizer is used to guarantee stable 
inputs to the controller. Traffic arrives on average 0.2 times per second. The flip-flops 
in the synchronizer have the following characteristics: τ = 200 ps, T0 = 150 ps, and 
tsetup = 500 ps. How long must the synchronizer clock period be for the MTBF 
to exceed 1 year?

Solution 1 year ≈ π × 107 seconds. Solve Equation 3.27.

 

π × =
×

− × −

× −

−10
0 2 150 10

7

500 10 12

200 10 12

12

T ec

Tc

( . )( )
 (3.28)

This equation has no closed form solution. However, it is easy enough to solve by 
guess and check. In a spreadsheet, try a few values of Tc and calculate the MTBF 
until discovering the value of Tc that gives an MTBF of 1 year: Tc = 3.036 ns.
 

3 . 5 . 6   Derivation of Resolution Time*

Equation 3.24 can be derived using a basic knowledge of circuit theory, 
differential equations, and probability. This section can be skipped if 
you are not interested in the derivation or if you are unfamiliar with the 
mathematics.

A flip-flop output will be metastable after some time, t, if the flip-
flop samples a changing input (causing a metastable condition) and the 
output does not resolve to a valid level within that time after the clock 
edge. Symbolically, this can be expressed as

 P t t P Pres( )> = ×(samples changing input) (unresolved) (3.29)

We consider each probability term individually. The asynchronous 
input signal switches between 0 and 1 in some time, tswitch, as shown in 
Figure 3.54. The probability that the input changes during the aperture 
around the clock edge is

 
P

t t t

Tc

(samples changing input) switch setup hold=
+ +

 (3.30)

If the flip-flop does enter metastability—that is, with probabil-
ity P(samples changing input)—the time to resolve from metastabil-
ity depends on the inner workings of the circuit. This resolution time 
determines P(unresolved), the probability that the flip-flop has not yet 



3.5 Timing of Sequential Logic 153

resolved to a valid logic level after a time t. The remainder of this section 
analyzes a simple model of a bistable device to estimate this probability.

A bistable device uses storage with positive feedback. Figure 3.55(a) 
shows this feedback implemented with a pair of inverters; this circuit’s 
behavior is representative of most bistable elements. A pair of inverters 
behaves like a buffer. Let us model the buffer as having the symmetric 
DC transfer characteristics shown in Figure 3.55(b), with a slope of G. 
The buffer can deliver only a finite amount of output current; we can 
model this as an output resistance, R. All real circuits also have some 
capacitance C that must be charged up. Charging the capacitor through 
the resistor causes an RC delay, preventing the buffer from switching 
instantaneously. Hence, the complete circuit model is shown in Figure 
3.55(c), where vout(t) is the voltage of interest conveying the state of the 
bistable device.

The metastable point for this circuit is vout(t) = vin(t) = VDD/2; if the 
circuit began at exactly that point, it would remain there indefinitely 
in the absence of noise. Because voltages are continuous variables, the 
chance that the circuit will begin at exactly the metastable point is van-
ishingly small. However, the circuit might begin at time 0 near metasta-
bility at vout(0) = VDD/2 + ΔV for some small offset ΔV. In such a case, 
the positive feedback will eventually drive vout(t) to VDD if ΔV > 0 and 
to 0 if ΔV < 0. The time required to reach VDD or 0 is the resolution 
time of the bistable device.

The DC transfer characteristic is nonlinear, but it appears linear  
near the metastable point, which is the region of interest to us. 
Specifically, if vin(t) = VDD/2 + ΔV/G, then vout(t) = VDD/2 + ΔV for 
small ΔV. The current through the resistor is i(t) = (vout(t) − vin(t))/R. 
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The capacitor charges at a rate dvin(t)/dt = i(t)/C. Putting these facts 
together, we find the governing equation for the output voltage.

 

dv t
dt
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v t
VDDout
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−
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1
2

 (3.31)

This is a linear first-order differential equation. Solving it with the initial 
condition vout(0) = VDD/2 + ΔV gives
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V
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G t
RC

out( )
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= +
−

2

1

∆  (3.32)

Figure 3.56 plots trajectories for vout(t), given various starting 
points. vout(t) moves exponentially away from the metastable point 
VDD/2 until it saturates at VDD or 0. The output eventually resolves to 1 
or 0. The amount of time this takes depends on the initial voltage offset 
(ΔV) from the metastable point (VDD/2).

Solving Equation 3.32 for the resolution time tres, such that  
vout(tres) = VDD or 0, gives
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 (3.33)
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In summary, the resolution time increases if the bistable device has 
high resistance or capacitance that causes the output to change slowly. 
It decreases if the bistable device has high gain, G. The resolution time 
also increases logarithmically as the circuit starts closer to the metasta-
ble point (ΔV → 0).

Define τ as RC
G−1 . Solving Equation 3.34 for ΔV finds the initial off-

set, ΔVres, that gives a particular resolution time, tres:

 
∆V

V
eres

DD tres= −

2
/τ  (3.35)

Suppose that the bistable device samples the input while it is chang-
ing. It measures a voltage, vin(0), which we will assume is uniformly dis-
tributed between 0 and VDD. The probability that the output has not 
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resolved to a legal value after time tres depends on the probability that 
the initial offset is sufficiently small. Specifically, the initial offset on 
vout must be less than ΔVres, so the initial offset on vin must be less than 
ΔVres/G. Then, the probability that the bistable device samples the input 
at a time to obtain a sufficiently small initial offset is

P P v(unresolved) = in
DD res res

DD

V V
G

V
GV

( )0
2

2
− <









 =

∆ ∆
 (3.36)

Putting this all together, the probability that the resolution time 
exceeds some time t is given by the following equation:

 
P t t

t t t

GT
eres

c

t

( )> =
+ + −switch setup hold τ  (3.37)

Observe that Equation 3.37 is in the form of Equation 3.24, where 
T0 = (tswitch + tsetup + thold)/G and τ = RC/(G − 1). In summary, we have 
derived Equation 3.24 and shown how T0 and τ depend on physical 
properties of the bistable device.

3.6  PARALLELISM
The speed of a system is characterized by the latency and throughput 
of information moving through it. We define a token to be a group of 
inputs that are processed to produce a group of outputs. The term con-
jures up the notion of placing subway tokens on a circuit diagram and 
moving them around to visualize data moving through the circuit. The 
latency of a system is the time required for one token to pass through 
the system from start to end. The throughput is the number of tokens 
that can be produced per unit time.

Example 3.15 COOKIE THROUGHPUT AND LATENCY

Ben Bitdiddle is throwing a milk and cookies party to celebrate the installation 
of his traffic light controller. It takes him 5 minutes to roll cookies and place 
them on his tray. It then takes 15 minutes for the cookies to bake in the oven. 
Once the cookies are baked, he starts another tray. What is Ben’s throughput 
and latency for a tray of cookies?

Solution In this example, a tray of cookies is a token. The latency is 1/3 hour per 
tray. The throughput is 3 trays/hour.
 

As you might imagine, the throughput can be improved by process-
ing several tokens at the same time. This is called parallelism, which 
comes in two forms: spatial and temporal. With spatial parallelism, 
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multiple copies of the hardware are provided so that multiple tasks can 
be done at the same time. With temporal parallelism, a task is broken 
into stages, like an assembly line. Multiple tasks can be spread across the 
stages. Although each task must pass through all stages, a different task 
will be in each stage at any given time, so multiple tasks can overlap. 
Temporal parallelism is commonly called pipelining. Spatial parallelism 
is sometimes just called parallelism, but we will avoid that naming con-
vention because it is ambiguous.

Example 3.16 COOKIE PARALLELISM

Ben Bitdiddle has hundreds of friends coming to his party and needs to bake 
cookies faster. He is considering using spatial and/or temporal parallelism.

Spatial Parallelism: Ben asks Alyssa P. Hacker to help out. She has her own 
cookie tray and oven.

Temporal Parallelism: Ben gets a second cookie tray. Once he puts one cookie 
tray in the oven, he starts rolling cookies on the other tray rather than waiting 
for the first tray to bake.

What is the throughput and latency using spatial parallelism? Using temporal 
parallelism? Using both?

Solution The latency is the time required to complete one task from start to fin-
ish. In all cases, the latency is 1/3 hour. If Ben starts with no cookies, the latency 
is the time he has to wait until he gets to eat the first cookie.

The throughput is the number of cookie trays per hour. With spatial parallelism, 
Ben and Alyssa each complete one tray every 20 minutes. Hence, the throughput 
doubles, to 6 trays/hour. With temporal parallelism, Ben puts a new tray in the 
oven every 15 minutes, for a throughput of 4 trays/hour. These are illustrated in 
Figure 3.57.

If Ben and Alyssa use both techniques, they can bake 8 trays/hour.
 

Consider a task with latency L. In a system with no parallelism, the 
throughput is 1/L. In a spatially parallel system with N copies of the 
hardware, the throughput is N/L. In a temporally parallel system, the 
task is ideally broken into N steps, or stages, of equal length. In such a 
case, the throughput is also N/L, and only one copy of the hardware is 
required. However, as the cookie example showed, finding N steps of 
equal length is often impractical. If the longest step has a latency L1, the 
pipelined throughput is 1/L1.

Pipelining (temporal parallelism) is particularly attractive because it 
speeds up a circuit without duplicating the hardware. Instead, registers 
are placed between blocks of combinational logic to divide the logic into 
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shorter stages that can run with a faster clock. The registers prevent a 
token in one pipeline stage from catching up with and corrupting the 
token in the next stage.

Figure 3.58 shows an example of a circuit with no pipelining. It con-
tains four blocks of logic between the registers. The critical path passes 
through blocks 2, 3, and 4. Assume that the register has a clock-to-Q 
propagation delay of 0.3 ns and a setup time of 0.2 ns. Then, the cycle 
time is Tc = 0.3 + 3 + 2 + 4 + 0.2 = 9.5 ns. The circuit has a latency of 
9.5 ns and a throughput of 1/9.5 ns = 105 MHz.

Figure 3.59 shows the same circuit partitioned into a two-stage 
pipeline by adding a register between blocks 3 and 4. The first stage has 
a minimum clock period of 0.3 + 3 + 2 + 0.2 = 5.5 ns. The second stage 
has a minimum clock period of 0.3 + 4 + 0.2 = 4.5 ns. The clock must 
be slow enough for all stages to work. Hence, Tc = 5.5 ns. The latency is 
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Figure 3.57 Spatial and temporal parallelism in the cookie kitchen
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two clock cycles, or 11 ns. The throughput is 1/5.5 ns = 182 MHz. This 
example shows that, in a real circuit, pipelining with two stages almost 
doubles the throughput and slightly increases the latency. In compari-
son, ideal pipelining would exactly double the throughput at no penalty 
in latency. The discrepancy comes about because the circuit cannot be 
divided into two exactly equal halves and because the registers introduce 
more sequencing overhead.

Figure 3.60 shows the same circuit partitioned into a three-stage 
pipeline. Note that two more registers are needed to store the results of 
blocks 1 and 2 at the end of the first pipeline stage. The cycle time is 
now limited by the third stage to 4.5 ns. The latency is three cycles, or 
13.5 ns. The throughput is 1/4.5 ns = 222 MHz. Again, adding a pipeline 
stage improves throughput at the expense of some latency.

Although these techniques are powerful, they do not apply to all 
situations. The bane of parallelism is dependencies. If a current task is 
dependent on the result of a prior task, rather than just prior steps in 
the current task, the task cannot start until the prior task has completed. 
For example, if Ben wants to check that the first tray of cookies tastes 
good before he starts preparing the second, he has a dependency that 
prevents pipelining or parallel operation. Parallelism is one of the most 
important techniques for designing high-performance digital systems. 
Chapter 7 discusses pipelining further and shows examples of handling 
dependencies.
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Figure 3.59 Circuit with two-stage 
pipeline
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3.7  SUMMARY
This chapter has described the analysis and design of sequential logic. In 
contrast to combinational logic, whose outputs depend only on the  
current inputs, sequential logic outputs depend on both current and 
prior inputs. In other words, sequential logic remembers information 
about prior inputs. This memory is called the state of the logic. 

Sequential circuits can be difficult to analyze and are easy to design 
incorrectly, so we limit ourselves to a small set of carefully designed 
building blocks. The most important element for our purposes is the 
flip-flop, which receives a clock and an input D and produces an output 
Q. The flip-flop copies D to Q on the rising edge of the clock and other-
wise remembers the old state of Q. A group of flip-flops sharing a com-
mon clock is called a register. Flip-flops may also receive reset or enable 
control signals.

Although many forms of sequential logic exist, we discipline our-
selves to use synchronous sequential circuits because they are easy to 
design. Synchronous sequential circuits consist of blocks of combinational 
logic separated by clocked registers. The state of the circuit is stored in 
the registers and updated only on clock edges.

Finite state machines are a powerful technique for designing  
sequential circuits. To design an FSM, first identify the inputs and out-
puts of the machine and sketch a state transition diagram, indicating 
the states and the transitions between them. Select an encoding for the 
states, and rewrite the diagram as a state transition table and output 
table, indicating the next state and output, given the current state and 
input. From these tables, design the combinational logic to compute the 
next state and output, and sketch the circuit.

Synchronous sequential circuits have a timing specification, includ-
ing the clock-to-Q propagation and contamination delays, tpcq and tccq, 
and the setup and hold times, tsetup and thold. For correct operation, 
their inputs must be stable during an aperture time that starts a setup 
time before the rising edge of the clock and ends a hold time after the 
rising edge of the clock. The minimum cycle time Tc of the system is 
equal to the propagation delay tpd through the combinational logic plus 
tpcq + tsetup of the register. For correct operation, the contamination delay 
through the register and combinational logic must be greater than thold. 
Despite the common misconception to the contrary, hold time does not 
affect the cycle time.

Overall system performance is measured in latency and throughput. 
The latency is the time required for a token to pass from start to end. 
The throughput is the number of tokens that the system can process per 
unit time. Parallelism improves system throughput.

Anyone who could invent logic 
whose outputs depend on future 
inputs would be fabulously 
wealthy! 
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Exercises

Exercise 3.1 Given the input waveforms shown in Figure 3.61, sketch the 
output, Q, of an SR latch.

S

R

Figure 3.61 Input waveforms of SR latch for Exercise 3.1

Exercise 3.2 Given the input waveforms shown in Figure 3.62, sketch the 
output, Q, of an SR latch.

Figure 3.62 Input waveforms of SR latch for Exercise 3.2

S

R

Exercise 3.3 Given the input waveforms shown in Figure 3.63, sketch the 
output, Q, of a D latch.

Figure 3.63 Input waveforms of D latch or flip-flop for Exercises 3.3 and 3.5

CLK

D

Exercise 3.4 Given the input waveforms shown in Figure 3.64, sketch the 
output, Q, of a D latch.

Figure 3.64 Input waveforms of D latch or flip-flop for Exercises 3.4 and 3.6

CLK

D
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Exercise 3.5 Given the input waveforms shown in Figure 3.63, sketch the 
output, Q, of a D flip-flop.

Exercise 3.6 Given the input waveforms shown in Figure 3.64, sketch the 
output, Q, of a D flip-flop.

Exercise 3.7 Is the circuit in Figure 3.65 combinational logic or sequential logic? 
Explain in a simple fashion what the relationship is between the inputs and 
outputs. What would you call this circuit?

S 

R 

Q 

Q 

Figure 3.65 Mystery circuit

Exercise 3.8 Is the circuit in Figure 3.66 combinational logic or sequential logic? 
Explain in a simple fashion what the relationship is between the inputs and 
outputs. What would you call this circuit?

Q

S

S
R

R
Q

D

CLK

R

Figure 3.66 Mystery circuit

Exercise 3.9 The toggle (T) flip-flop has one input, CLK, and one output, Q. 
On each rising edge of CLK, Q toggles to the complement of its previous value. 
Draw a schematic for a T flip-flop using a D flip-flop and an inverter.

Exercise 3.10 A JK flip-flop receives a clock and two inputs, J and K. On the 
rising edge of the clock, it updates the output, Q. If J and K are both 0, Q retains 
its old value. If only J is 1, Q becomes 1. If only K is 1, Q becomes 0. If both J 
and K are 1, Q becomes the opposite of its present state.

 (a) Construct a JK flip-flop, using a D flip-flop and some combinational logic.

 (b) Construct a D flip-flop, using a JK flip-flop and some combinational logic.

 (c) Construct a T flip-flop (see Exercise 3.9), using a JK flip-flop.
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Exercise 3.11 The circuit in Figure 3.67 is called a Muller C-element. Explain in 
a simple fashion what the relationship is between the inputs and output.

Exercise 3.19 You are designing an elevator controller for a building with 25 
floors. The controller has two inputs: UP and DOWN. It produces an output 
indicating the floor that the elevator is on. There is no floor 13. What is the 
minimum number of bits of state in the controller?

Figure 3.67 Muller C-element

A

B

A

B
C

weak

Exercise 3.12 Design an asynchronously resettable D latch, using logic gates.

Exercise 3.13 Design an asynchronously resettable D flip-flop, using logic gates.

Exercise 3.14 Design a synchronously settable D flip-flop, using logic gates.

Exercise 3.15 Design an asynchronously settable D flip-flop, using logic gates.

Exercise 3.16 Suppose that a ring oscillator is built from N inverters connected in 
a loop. Each inverter has a minimum delay of tcd and a maximum delay of tpd. If N 
is odd, determine the range of frequencies at which the oscillator might operate.

Exercise 3.17 Why must N be odd in Exercise 3.16?

Exercise 3.18 Which of the circuits in Figure 3.68 are synchronous sequential 
circuits? Explain.

(a)

CL CL

CLK

CL

CL

CL

CL

CLK

CL

(b)

(c) (d)

CL CL

CLK

Figure 3.68 Circuits
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Exercise 3.20 You are designing an FSM to keep track of the mood of four 
students working in the digital design lab. Each student’s mood is either HAPPY 
(the circuit works), SAD (the circuit blew up), BUSY (working on the circuit), 
CLUELESS (confused about the circuit), or ASLEEP (face down on the circuit 
board). How many states does the FSM have? What is the minimum number of 
bits necessary to represent these states?

Exercise 3.21 How would you factor the FSM from Exercise 3.20 into multiple 
simpler machines? How many states does each simpler machine have? What is 
the minimum total number of bits necessary in this factored design?

Exercise 3.22 Describe in words what the state machine in Figure 3.69 does. 
Using binary state encodings, complete a state transition table and output table 
for the FSM. Write Boolean equations for the next state and output and sketch a 
schematic of the FSM.

Exercise 3.23 Describe in words what the state machine in Figure 3.70 does. 
Using binary state encodings, complete a state transition table and output table 
for the FSM. Write Boolean equations for the next state and output and sketch a 
schematic of the FSM.

Exercise 3.24 Accidents are still occurring at the intersection of Academic 
Avenue and Bravado Boulevard. The football team is rushing into the 
intersection the moment light B turns green. They are colliding with sleep-
deprived CS majors who stagger into the intersection just before light A turns 

S0
Q : 0

S1
Q : 0

S2
Q : 1

Reset

A B

A

B

Figure 3.69 State transition 
diagram for Exercise 3.22

S0 S1 S2

Reset

A /0 B/0

A /0

B /0 AB/1

A + B/0

Figure 3.70 State transition 
diagram for Exercise 3.23
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red. Extend the traffic light controller from Section 3.4.1 so that both lights are 
red for 5 seconds before either light turns green again. Sketch your improved 
Moore machine state transition diagram, state encodings, state transition table, 
output table, next state and output equations, and your FSM schematic.

Exercise 3.25 Alyssa P. Hacker’s snail from Section 3.4.3 has a daughter with a 
Mealy machine FSM brain. The daughter snail smiles whenever she slides over 
the pattern 1101 or the pattern 1110. Sketch the state transition diagram for this 
happy snail using as few states as possible. Choose state encodings and write a 
combined state transition and output table, using your encodings. Write the next 
state and output equations and sketch your FSM schematic.

Exercise 3.26 You have been enlisted to design a soda machine dispenser for 
your department lounge. Sodas are partially subsidized by the student chapter 
of the IEEE, so they cost only 25 cents. The machine accepts nickels, dimes, 
and quarters. When enough coins have been inserted, it dispenses the soda and 
returns any necessary change. Design an FSM controller for the soda machine. 
The FSM inputs are Nickel, Dime, and Quarter, indicating which coin was 
inserted. Assume that exactly one coin is inserted on each cycle. The outputs are 
Dispense, ReturnNickel, ReturnDime, and ReturnTwoDimes. When the FSM 
reaches 25 cents, it asserts Dispense and the necessary Return outputs required 
to deliver the appropriate change. Then, it should be ready to start accepting 
coins for another soda.

Exercise 3.27 Gray codes have a useful property in that consecutive numbers 
differ in only a single bit position. Table 3.23 lists a 3-bit Gray code representing 
the numbers 0 to 7. Design a 3-bit modulo 8 Gray code counter FSM with 
no inputs and three outputs. (A modulo N counter counts from 0 to N − 1, 

Table 3.23 3-bit Gray code

Number Gray code

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

5 1 1 1

6 1 0 1

7 1 0 0



Exercises 165

then repeats. For example, a watch uses a modulo 60 counter for the minutes 
and seconds that counts from 0 to 59.) When reset, the output should be 000. 
On each clock edge, the output should advance to the next Gray code. After 
reaching 100, it should repeat with 000.

Exercise 3.28 Extend your modulo 8 Gray code counter from Exercise 3.27 
to be an UP/DOWN counter by adding an UP input. If UP = 1, the counter 
advances to the next number. If UP = 0, the counter retreats to the previous 
number.

Exercise 3.29 Your company, Detect-o-rama, would like to design an FSM that 
takes two inputs, A and B, and generates one output, Z. The output in cycle n, 
Zn, is either the Boolean AND or OR of the corresponding input An and the 
previous input An-1, depending on the other input, Bn:

 Z A A B
Z A A B

n n n n

n n n n

= =
= + =

−

−

1

1

0
1

 
if
if

 (a) Sketch the waveform for Z, given the inputs shown in Figure 3.71.

 (b) Is this FSM a Moore or a Mealy machine?

 (c) Design the FSM. Show your state transition diagram, encoded state 
transition table, next state and output equations, and schematic.

CLK

A

B

Figure 3.71 FSM input waveforms for Exercise 3.29

Exercise 3.30 Design an FSM with one input, A, and two outputs, X and Y. X 
should be 1 if A has been 1 for at least three cycles altogether (not necessarily 
consecutively). Y should be 1 if A has been 1 for at least two consecutive cycles. 
Show your state transition diagram, encoded state transition table, next state 
and output equations, and schematic.

Exercise 3.31 Analyze the FSM shown in Figure 3.72. Write the state transition 
and output tables and sketch the state transition diagram.
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Exercise 3.32 Repeat Exercise 3.31 for the FSM shown in Figure 3.73. Recall 
that the s and r register inputs indicate set and reset, respectively.

CLK CLK
X

Q
S0 S1Figure 3.72 FSM schematic for 

Exercise 3.31

Figure 3.73 FSM schematic for 
Exercise 3.32

CLK
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CLK
CLK

Q

reset

r

r

s

Exercise 3.33 Ben Bitdiddle has designed the circuit in Figure 3.74 to compute 
a registered four-input XOR function. Each two-input XOR gate has a 
propagation delay of 100 ps and a contamination delay of 55 ps. Each flip-flop 
has a setup time of 60 ps, a hold time of 20 ps, a clock-to-Q maximum delay of 
70 ps, and a clock-to-Q minimum delay of 50 ps.

 (a) If there is no clock skew, what is the maximum operating frequency of the 
circuit?

 (b) How much clock skew can the circuit tolerate if it must operate at 2 GHz?

 (c) How much clock skew can the circuit tolerate before it might experience a 
hold time violation?

 (d) Alyssa P. Hacker points out that she can redesign the combinational 
logic between the registers to be faster and tolerate more clock skew. Her 
improved circuit also uses three two-input XORs, but they are arranged 
differently. What is her circuit? What is its maximum frequency if there 
is no clock skew? How much clock skew can the circuit tolerate before it 
might experience a hold time violation?

CLK

CLK

Figure 3.74 Registered four-input 
XOR circuit for Exercise 3.33
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Exercise 3.34 You are designing an adder for the blindingly fast 2-bit RePentium 
Processor. The adder is built from two full adders, such that the carry out of 
the first adder is the carry in to the second adder, as shown in Figure 3.75. Your 
adder has input and output registers and must complete the addition in one 
clock cycle. Each full adder has the following propagation delays: 20 ps from 
Cin to Cout or to Sum (S), 25 ps from A or B to Cout, and 30 ps from A or B to 
S. The adder has a contamination delay of 15 ps from Cin to either output and 
22 ps from A or B to either output. Each flip-flop has a setup time of 30 ps, a 
hold time of 10 ps, a clock-to-Q propagation delay of 35 ps, and a clock-to-Q 
contamination delay of 21 ps.

 (a) If there is no clock skew, what is the maximum operating frequency of the 
circuit?

 (b) How much clock skew can the circuit tolerate if it must operate at 8 GHz?

 (c) How much clock skew can the circuit tolerate before it might experience a 
hold time violation?
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B

C in

Cout

S

CLK
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B1

S0
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CLK

Figure 3.75 2-bit adder schematic 
for Exercise 3.34

Exercise 3.35 A field programmable gate array (FPGA) uses configurable logic 
blocks (CLBs) rather than logic gates to implement combinational logic. The 
Xilinx Spartan 3 FPGA has propagation and contamination delays of 0.61 and 
0.30 ns, respectively, for each CLB. It also contains flip-flops with propagation 
and contamination delays of 0.72 and 0.50 ns, and setup and hold times of 0.53 
and 0 ns, respectively.

 (a) If you are building a system that needs to run at 40 MHz, how many 
consecutive CLBs can you use between two flip-flops? Assume that there is 
no clock skew and no delay through wires between CLBs.

 (b) Suppose that all paths between flip-flops pass through at least one CLB. 
How much clock skew can the FPGA have without violating the hold time?

Exercise 3.36 A synchronizer is built from a pair of flip-flops with tsetup = 50 ps, 
T0 = 20 ps, and τ = 30 ps. It samples an asynchronous input that changes 108 
times per second. What is the minimum clock period of the synchronizer to 
achieve a mean time between failures (MTBF) of 100 years?
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Exercise 3.37 You would like to build a synchronizer that can receive 
asynchronous inputs with an MTBF of 50 years. Your system is running at 
1 GHz, and you use sampling flip-flops with τ = 100 ps, T0 = 110 ps, and 
tsetup = 70 ps. The synchronizer receives a new asynchronous input on average 
0.5 times per second (i.e., once every 2 seconds). What is the required probability 
of failure to satisfy this MTBF? How many clock cycles would you have to wait 
before reading the sampled input signal to give that probability of error?

Exercise 3.38 You are walking down the hallway when you run into your lab 
partner walking in the other direction. The two of you first step one way and are 
still in each other’s way. Then, you both step the other way and are still in each 
other’s way. Then you both wait a bit, hoping the other person will step aside. 
You can model this situation as a metastable point and apply the same theory 
that has been applied to synchronizers and flip-flops. Suppose you create a 
mathematical model for yourself and your lab partner. You start the unfortunate 
encounter in the metastable state. The probability that you remain in this state 
after t seconds is e

t−
τ . τ indicates your response rate; today, your brain has been 

blurred by lack of sleep and has τ = 20 seconds.

 (a) How long will it be until you have 99% certainty that you will have 
resolved from metastability (i.e., figured out how to pass one another)?

 (b) You are not only sleepy, but also ravenously hungry. In fact, you will starve 
to death if you don’t get going to the cafeteria within 3 minutes. What is the 
probability that your lab partner will have to drag you to the morgue?

Exercise 3.39 You have built a synchronizer using flip-flops with T0  = 20 ps and 
τ = 30 ps. Your boss tells you that you need to increase the MTBF by a factor of 
10. By how much do you need to increase the clock period?

Exercise 3.40 Ben Bitdiddle invents a new and improved synchronizer in Figure 
3.76 that he claims eliminates metastability in a single cycle. He explains that 
the circuit in box M is an analog “metastability detector” that produces a 
HIGH output if the input voltage is in the forbidden zone between VIL and VIH. 
The metastability detector checks to determine whether the first flip-flop has 
produced a metastable output on D2. If so, it asynchronously resets the flip-
flop to produce a good 0 at D2. The second flip-flop then samples D2, always 
producing a valid logic level on Q. Alyssa P. Hacker tells Ben that there must 
be a bug in the circuit, because eliminating metastability is just as impossible 
as building a perpetual motion machine. Who is right? Explain, showing Ben’s 
error or showing why Alyssa is wrong.

CLK

D r

CLK

Q

M

D2Figure 3.76 “New and improved” 
synchronizer for Exercise 3.40



Interview Questions 169

Interview Questions

The following exercises present questions that have been asked at interviews for 
digital design jobs.

Question 3.1 Draw a state machine that can detect when it has received the serial 
input sequence 01010.

Question 3.2 Design a serial (one bit at a time) two’s complementer FSM with 
two inputs, Start and A, and one output, Q. A binary number of arbitrary length 
is provided to input A, starting with the least significant bit. The corresponding 
bit of the output appears at Q on the same cycle. Start is asserted for one cycle 
to initialize the FSM before the least significant bit is provided.

Question 3.3 What is the difference between a latch and a flip-flop? Under what 
circumstances is each one preferable?

Question 3.4 Design a 5-bit counter finite state machine.

Question 3.5 Design an edge detector circuit. The output should go HIGH for 
one cycle after the input makes a 0 → 1 transition.

Question 3.6 Describe the concept of pipelining and why it is used.

Question 3.7 Describe what it means for a flip-flop to have a negative hold time.

Question 3.8 Given signal A, shown in Figure 3.77, design a circuit that produces 
signal B.

A

B
Figure 3.77 Signal waveforms  
for Question 3.8

Question 3.9 Consider a block of logic between two registers. Explain the timing 
constraints. If you add a buffer on the clock input of the receiver (the second 
flip-flop), does the setup time constraint get better or worse?
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4.1  INTRODUCTION
Thus far, we have focused on designing combinational and sequential 
digital circuits at the schematic level. The process of finding an efficient 
set of logic gates to perform a given function is labor intensive and error 
prone, requiring manual simplification of truth tables or Boolean equa-
tions and manual translation of finite state machines (FSMs) into gates. 
In the 1990’s, designers discovered that they were far more productive if 
they worked at a higher level of abstraction, specifying just the logical 
function and allowing a computer-aided design (CAD) tool to produce 
the optimized gates. The specifications are generally given in a hardware 
description language (HDL). The two leading hardware description lan-
guages are SystemVerilog and VHDL.

SystemVerilog and VHDL are built on similar principles but have 
different syntax. Discussion of these languages in this chapter is divided 
into two columns for literal side-by-side comparison, with SystemVerilog 
on the left and VHDL on the right. When you read the chapter for the 
first time, focus on one language or the other. Once you know one, 
you’ll quickly master the other if you need it.

Subsequent chapters show hardware in both schematic and HDL 
form. If you choose to skip this chapter and not learn one of the HDLs, 
you will still be able to master the principles of computer organization 
from the schematics. However, the vast majority of commercial systems 
are now built using HDLs rather than schematics. If you expect to do 
digital design at any point in your professional life, we urge you to learn 
one of the HDLs.

4 . 1 . 1   Modules
A block of hardware with inputs and outputs is called a module. An AND 
gate, a multiplexer, and a priority circuit are all examples of hardware 
modules. The two general styles for describing module functionality are  
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behavioral and structural. Behavioral models describe what a module does. 
Structural models describe how a module is built from simpler pieces; it is 
an application of hierarchy. The SystemVerilog and VHDL code in HDL 
Example 4.1 illustrate behavioral descriptions of a module that computes 
the Boolean function from Example 2.6, y ab c abc abc= + + . In both 
languages, the module is named sillyfunction and has three inputs, a, 
b, and c, and one output, y. 

Some people still use Verilog, 
the original incarnation of 
SystemVerilog. So, we provide 
a version of this chapter 
describing Verilog on the 
companion website (see the 
Preface). 

HDL Example 4.1 COMBINATIONAL LOGIC

SystemVerilog
module sillyfunction(input logic a, b, c,

 output logic y);

 assign y = ~a & ~b & ~c |
 a & ~b & ~c |
 a & ~b &  c;

endmodule

A SystemVerilog module begins with the module name and a  
listing of the inputs and outputs. The assign statement 
describes combinational logic. ~ indicates NOT, & indicates 
AND, and | indicates OR.

logic signals such as the inputs and outputs are Boolean 
variables (0 or 1). They may also have floating and undefined 
values, as discussed in Section 4.2.8.

The logic type was introduced in SystemVerilog. It 
supersedes the reg type, which was a perennial source of 
confusion in Verilog. logic should be used everywhere except 
on signals with multiple drivers. Signals with multiple drivers 
are called nets and will be explained in Section 4.7.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is
    port(a, b, c: in    STD_LOGIC;
            y:           out STD_LOGIC);
end;

architecture synth of sillyfunction is
begin
    y <= (not a and not b and not c) or
           (a and not b and not c) or
           (a and not b and c);
end;

VHDL code has three parts: the library use clause, the 
entity declaration, and the architecture body. The library 
use clause will be discussed in Section 4.7.2. The entity 
declaration lists the module name and its inputs and outputs. 
The architecture body defines what the module does.

VHDL signals, such as inputs and outputs, must have a  
type declaration. Digital signals should be declared to be 
STD_LOGIC type. STD_LOGIC signals can have a value of '0'  
or '1' as well as floating and undefined values that will be 
described in Section 4.2.8. The STD_LOGIC type is defined in  
the IEEE.STD_LOGIC_1164 library, which is why the library 
must be used.

VHDL lacks a good default order of operations between 
AND and OR, so Boolean equations should be parenthesized.

A module, as you might expect, is a good application of modularity. It 
has a well-defined interface, consisting of its inputs and outputs, and it per-
forms a specific function. The particular way in which it is coded is unimport-
ant to others that might use the module, as long as it performs its function.

4 . 1 . 2   Language Origins

Universities are almost evenly split on which of these languages is taught 
in a first course. Industry is trending toward SystemVerilog, but many 
companies still use VHDL, so many designers need to be fluent in both. 
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Compared to SystemVerilog, VHDL is more verbose and cumbersome, 
as you might expect of a language developed by committee.

Both languages are fully capable of describing any hardware system, 
and both have their quirks. The best language to use is the one that is 
already being used at your site or the one that your customers demand. 
Most CAD tools today allow the two languages to be mixed so that dif-
ferent modules can be described in different languages.

4 . 1 . 3   Simulation and Synthesis

The two major purposes of HDLs are logic simulation and synthesis. 
During simulation, inputs are applied to a module, and the outputs are 
checked to verify that the module operates correctly. During synthesis, 
the textual description of a module is transformed into logic gates.

Simulation
Humans routinely make mistakes. Such errors in hardware designs are 
called bugs. Eliminating the bugs from a digital system is obviously 
important, especially when customers are paying money and lives depend 
on the correct operation. Testing a system in the laboratory is time- 
consuming. Discovering the cause of errors in the lab can be extremely 
difficult because only signals routed to the chip pins can be observed. 

The term “bug” predates the 
invention of the computer. 
Thomas Edison called the “little 
faults and difficulties” with his 
inventions “bugs” in 1878.

The first real computer bug  
was a moth, which got caught  
between the relays of the  
Harvard Mark II electro-
mechanical computer in 1947. 
It was found by Grace Hopper, 
who logged the incident, along 
with the moth itself and the 
comment “first actual case of 
bug being found.”

 

Source: Notebook entry 
courtesy Naval Historical 
Center, US Navy; photo No. 
NII 96566-KN 

SystemVerilog

Verilog was developed by Gateway Design Automation 
as a proprietary language for logic simulation in 1984. 
Gateway was acquired by Cadence in 1989 and Verilog 
was made an open standard in 1990, under the control of 
Open Verilog International. The language became an IEEE 
standard1 in 1995. The language was extended in 2005 to 
streamline idiosyncrasies and to better support modeling 
and verification of systems. These extensions have been 
merged into a single language standard, which is now called 
SystemVerilog (IEEE STD 1800-2009). SystemVerilog file 
names normally end in .sv.

VHDL

VHDL is an acronym for the VHSIC Hardware Description 
Language. VHSIC is, in turn, an acronym for the Very High 
Speed Integrated Circuits program of the US Department of 
Defense.

VHDL was originally developed in 1981 by the Department 
of Defense to describe the structure and function of hardware. Its 
roots draw from the Ada programming language. The language 
was first envisioned for documentation but was quickly adopted 
for simulation and synthesis. The IEEE standardized it in 1987 and 
has updated the standard several times since. This chapter is based 
on the 2008 revision of the VHDL standard (IEEE STD 1076-
2008), which streamlines the language in a variety of ways. To use 
VHDL 2008 in ModelSim, you may need to set VHDL93 = 
2008 in the modelsim.ini configuration file. VHDL file names 
normally end in .vhd. 

1  The Institute of Electrical and Electronics Engineers (IEEE) is a professional society 
responsible for many computing standards, including Wi-Fi (802.11), Ethernet (802.3), 
and floating-point numbers (754).
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There is no way to directly observe what is happening inside a chip. 
Correcting errors after the system is built can be devastatingly expensive. 
For example, correcting a mistake in a cutting-edge integrated circuit costs 
more than a million dollars and takes several months. Intel’s infamous 
FDIV (floating point division) bug in the Pentium processor forced the com-
pany to recall chips after they had shipped at a total cost of $475 million in 
1984. Logic simulation is essential to test a system before it is built.

Figure 4.1 shows waveforms from a simulation2 of the previous 
sillyfunction module, demonstrating that the module works cor-
rectly. y is TRUE when a, b, and c are 000, 100, or 101, as specified by 
the Boolean equation.

Synthesis
Logic synthesis transforms HDL code into a netlist describing the hard-
ware (e.g., the logic gates and the wires connecting them). The logic syn-
thesizer might perform optimizations to reduce the amount of hardware 
required. The netlist may be a text file, or it may be drawn as a sche-
matic to help visualize the circuit. Figure 4.2 shows the results of synthe-
sizing the sillyfunction module.3 Notice how the three three-input 
AND gates are simplified into two two-input AND gates, as we discov-
ered in Example 2.6 using Boolean algebra.

Circuit descriptions in HDL resemble code in a programming language. 
However, you must remember that the code is intended to represent hard-
ware. SystemVerilog and VHDL are rich languages with many commands. 

The synthesis tool labels each 
of the synthesized gates. In 
Figure 4.2, they are un5_y, 
un8_y, and y. 

0 ns

0
0a

Now:
800 ns

b
c
y 0

0

320 ns 480 800640 ns160

Figure 4.1 Simulation waveforms

un5_y

un8_y

y

yc
b

a

Figure 4.2 Synthesized circuit

3  Throughout this chapter, synthesis was performed using Synplify Premier from Synopsys. 
However, many synthesis tools exist, such as those included in Vivado and Quartus, the 
freely available Xilinx and Intel design tools for synthesizing HDL to field programmable 
gate arrays (see Section 5.6.2).

2  The simulations in this chapter were performed with the ModelSim PE Student Edition 
Version 10.3c. ModelSim was selected because it is used commercially, yet a student ver-
sion with a capacity of 10,000 lines of code is freely available.
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Not all of these commands can be synthesized into hardware. For exam-
ple, a command to print results on the screen during simulation does not 
translate into hardware. Because our primary interest is to build hardware, 
we will emphasize a synthesizable subset of the languages. Specifically, we 
will divide HDL code into synthesizable modules and a testbench. The syn-
thesizable modules describe the hardware. The testbench contains code to 
apply inputs to a module, check whether the output results are correct, and 
print discrepancies between expected and actual outputs. Testbench code is 
intended only for simulation and cannot be synthesized.

One of the most common mistakes for beginners is to think of HDL 
as a computer program rather than as a shorthand for describing digital 
hardware. If you don’t know approximately what hardware your HDL 
should synthesize into, you probably won’t like what you get. You might 
create far more hardware than is necessary, or you might write code that 
simulates correctly but cannot be implemented in hardware. Instead, 
think of your system in terms of blocks of combinational logic, registers, 
and finite state machines. Sketch these blocks on paper and show how 
they are connected before you start writing code.

In our experience, the best way to learn an HDL is by exam-
ple. HDLs have specific ways of describing various classes of logic; 
these ways are called idioms. This chapter will teach you how to 
write the proper HDL idioms for each type of block and then how to 
put the blocks together to produce a working system. When you need 
to describe a particular kind of hardware, look for a similar example 
and adapt it to your purpose. We do not attempt to rigorously define 
all the syntax of the HDLs, because that is deathly boring and it tends 
to encourage thinking of HDLs as programming languages, not short-
hand for hardware. The IEEE SystemVerilog and VHDL specifications, 
and numerous dry but exhaustive textbooks, contain all of the details, 
should you find yourself needing more information on a particular 
topic. (See the Further Readings section at the back of the book.)

4.2  COMBINATIONAL LOGIC
Recall that we are disciplining ourselves to design synchronous sequential 
circuits, which consist of combinational logic and registers. The outputs 
of combinational logic depend only on the current inputs. This section 
describes how to write behavioral models of combinational logic with 
HDLs.

4 . 2 . 1   Bitwise Operators

Bitwise operators act on single-bit signals or on multibit busses. For 
example, the inv module in HDL Example 4.2 describes four inverters 
connected to 4-bit busses.
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SystemVerilog
module inv(input logic [3:0] a,
  output logic [3:0] y);

    assign y = ~a;
endmodule

a[3:0] represents a 4-bit bus. The bits, from most significant 
to least significant, are a[3], a[2], a[1], and a[0]. This is  
called little-endian order, because the least significant bit  
has the smallest bit number. We could have named the bus  
a[4:1], in which case a[4] would have been the most signi fi-
cant. Or we could have used a[0:3], in which case the bits, 
from most significant to least significant, would be a[0], a[1], 
a[2], and a[3]. This is called big-endian order.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
    port(a: in   STD_LOGIC_VECTOR(3 downto 0);
            y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of inv is
begin
    y <= not a;
end;

VHDL uses STD_LOGIC_VECTOR to indicate busses of STD_LOGIC. 
STD_LOGIC_VECTOR(3 downto 0) represents a 4-bit bus. The 
bits, from most significant to least significant, are a(3), a(2), 
a(1), and a(0). This is called little-endian order, because the 
least significant bit has the smallest bit number. We could have 
declared the bus to be STD_LOGIC_VECTOR(4 downto 1), in 
which case bit 4 would have been the most significant. Or we 
could have written STD_LOGIC_VECTOR(0 to 3), in which case 
the bits, from most significant to least significant, would be  
a(0), a(1), a(2), and a(3). This is called big-endian order.

HDL Example 4.2 INVERTERS

y [3:0]

y [3:0]a[3:0]
[3:0][3:0]

Figure 4.3 inv synthesized circuit

The endianness of a bus is purely arbitrary. (See the sidebar in 
Section 6.6.1 for the origin of the term.) Indeed, endianness is also irrel-
evant to this example because a bank of inverters doesn’t care what the 
order of the bits are. Endianness matters only for operators, such as 
addition, where the sum of one column carries over into the next. Either 
ordering is acceptable as long as it is used consistently. We will consistently 
use the little-endian order, [N − 1:0] in SystemVerilog and (N − 1 downto 0) 
in VHDL, for an N-bit bus.

After each code example in this chapter is a schematic produced 
from the SystemVerilog code by the Synplify Premier synthesis tool. 
Figure 4.3 shows that the inv module synthesizes to a bank of four 
inverters, indicated by the inverter symbol labeled y[3:0]. The bank of 
inverters connects to 4-bit input and output busses. Similar hardware is 
produced from the synthesized VHDL code.

The gates module in HDL Example 4.3 demonstrates bitwise  
operations acting on 4-bit busses for other basic logic functions.
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SystemVerilog
module gates(input  logic [3:0] a, b,
                       output logic [3:0] y1, y2,  
 y3, y4, y5);

   /* five different two-input logic
        gates acting on 4-bit busses */
   assign y1 = a & b;         // AND
   assign y2 = a | b;         // OR
   assign y3 = a ̂  b;         // XOR
   assign y4 = ~(a & b);   // NAND
   assign y5 = ~(a | b);   // NOR
endmodule

~, ^, and | are examples of SystemVerilog operators, whereas 
a, b, and y1 are operands. A combination of operators and 
operands, such as a & b, or ~(a | b), is called an expression. A 
complete command such as assign y4  =   ~(a & b); is called a 
statement.

assign out  =  in1 op in2; is called a continuous assign-
ment statement. Continuous assignment statements end with 
a semicolon. Whenever the inputs on the right side of the = in  
a continuous assignment statement change, the output on the 
left side is recomputed. Thus, continuous assignment state-
ments describe combinational logic.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity gates is
port(a, b:   in    STD_LOGIC_VECTOR(3 downto 0);
   y1, y2, y3, y4,
  y5:     out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of gates is
begin
   –– five different two-input logic gates
   –– acting on 4-bit busses
   y1 <= a and b;
   y2 <= a or b;
   y3 <= a xor b;
   y4 <= a nand b;
   y5 <= a nor b;
end;

not, xor, and or are examples of VHDL operators, whereas a,  
b, and y1 are operands. A combination of operators and  
oper ands, such as a and b, or a nor b, is called an expression. 
A complete command such as y4 <= a nand b; is called a 
statement.

out <= in1 op in2; is called a concurrent signal assign-
ment statement. VHDL assignment statements end with a 
semicolon. Whenever the inputs on the right side of the <= in  
a concurrent signal assignment statement change, the output 
on the left side is recomputed. Thus, concurrent signal  
assign ment statements describe combinational logic.

HDL Example 4.3 LOGIC GATES

Figure 4.4 gates synthesized circuit
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SystemVerilog

SystemVerilog comments are just like those in C or Java. 
Comments beginning with /* continue, possibly across 
multiple lines, to the next */. Comments beginning with // 
continue to the end of the line.

SystemVerilog is case-sensitive. y1 and Y1 are different 
signals in SystemVerilog. However, it is confusing to use 
multiple signals that differ only in case.

VHDL

Comments beginning with /* continue, possibly across multiple 
lines, to the next */. Comments beginning with –– continue  
to the end of the line.

VHDL is not case-sensitive. y1 and Y1 are the same signal  
in VHDL. However, other tools that may read your file might 
be case-sensitive, leading to nasty bugs if you blithely mix upper 
and lower case. 

4 . 2 . 3   Reduction Operators

Reduction operators imply a multiple-input gate acting on a single 
bus. HDL Example 4.4 describes an eight-input AND gate with inputs  
a7, a6,...,a0. Analogous reduction operators exist for OR, XOR, 
NAND, NOR, and XNOR gates. Recall that a multiple-input XOR  
performs parity, returning TRUE if an odd number of inputs are TRUE.

SystemVerilog
module and8(input   logic  [7:0] a,
      output  logic           y);

    assign y = &a;

    // &a is much easier to write than
    // assign y  =  a[7] & a[6] & a[5] & a[4] &
    //                  a[3] & a[2] & a[1] & a[0];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and8 is
    port(a: in   STD_LOGIC_VECTOR(7 downto 0);
             y: out STD_LOGIC);
end;

architecture synth of and8 is
begin
    y <= and a;
    –– and a is much easier to write than
    –– y <= a(7) and a(6) and a(5) and a(4) and
    ––        a(3) and a(2) and a(1) and a(0);
end;

HDL Example 4.4 EIGHT-INPUT AND

4 . 2 . 2   Comments and White Space
The gates example showed how to format comments. SystemVerilog 
and VHDL are not picky about the use of white space (i.e., spaces, tabs, 
and line breaks). Nevertheless, proper indenting and use of blank lines 
is helpful to make nontrivial designs readable. Be consistent in your use 
of capitalization and underscores in signal and module names. This text 
uses all lower case. Module and signal names must not begin with a digit.
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4 . 2 . 4   Conditional Assignment

Conditional assignments select the output from among alternatives 
based on an input called the condition. HDL Example 4.5 illustrates a 
2:1 multiplexer using conditional assignment.

y

y

a[7:0]
[7:0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Figure 4.5 and8 synthesized circuit

SystemVerilog

The conditional operator ?: chooses, based on a first expres-
sion, between a second and third expression. The first expres-
sion is called the condition. If the condition is 1, the operator 
chooses the second expression. If the condition is 0, the opera-
tor chooses the third expression.

?: is especially useful for describing a multiplexer because, 
based on the first input, it selects between two others. The 
following code demonstrates the idiom for a 2:1 multiplexer 
with 4-bit inputs and outputs using the conditional operator.

module mux2(input   logic [3:0] d0, d1,
   input   logic s,
  output logic [3:0] y);

    assign y  =  s ? d1 : d0;
endmodule

If s is 1, then y = d1. If s is 0, then y = d0.
?: is also called a ternary operator because it takes three 

inputs. It is used for the same purpose in the C and Java 
programming languages.

VHDL

Conditional signal assignments perform different operations, 
depending on some condition. They are especially useful for 
describing a multiplexer. For example, a 2:1 multiplexer can 
use conditional signal assignment to select one of two 4-bit 
inputs.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
     port(d0, d1: in   STD_LOGIC_VECTOR(3 downto 0);
             s:         in   STD_LOGIC;
             y:          out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of mux2 is
begin
    y <= d1 when s else d0;
end;

The conditional signal assignment sets y to d1 if s is 1. Other-
wise, it sets y to d0. Note that prior to the 2008 revision of 
VHDL, one had to write when s = '1' rather than when s.

HDL Example 4.5 2:1 MULTIPLEXER

Figure 4.6 mux2 synthesized circuit
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HDL Example 4.6 shows a 4:1 multiplexer based on the same princi-
ple as the 2:1 multiplexer in HDL Example 4.5. Figure 4.7 shows the 
schematic for the 4:1 multiplexer produced by the synthesis tool. The 
software uses a different multiplexer symbol than this text has shown so  
far. The multiplexer has multiple data (d) and one-hot enable (e) inputs. 
When one of the enables is asserted, the associated data is passed to the 
output. For example, when s[1] = s[0] = 0, the bottom AND gate, 
un1_s_5, produces a 1, enabling the bottom input of the multiplexer 
and causing it to select d0[3:0].

4 . 2 . 5   Internal Variables

Often it is convenient to break a complex function into intermediate 
steps. For example, a full adder, which will be described in Section 5.2.1, 

SystemVerilog

A 4:1 multiplexer can select one of four inputs, using 
nested conditional operators.

module mux4(input   logic [3:0] d0, d1, d2, d3,
input      logic [1:0] s,
output logic [3:0] y);

    assign y  =  s[1]  ? (s[0] ? d3 : d2)
                          : (s[0] ? d1 : d0);
endmodule

If s[1] is 1, then the multiplexer chooses the first expression, 
(s[0] ? d3 : d2). This expression, in turn, chooses either d3 
or d2 based on s[0] (y = d3 if s[0] is 1 and d2 if s[0] is 0). 
If s[1] is 0, then the multiplexer similarly chooses the second 
expression, which gives either d1 or d0 based on s[0].

VHDL

A 4:1 multiplexer can select one of four inputs, using 
multiple else clauses in the conditional signal assignment.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
    port(d0, d1,
             d2, d3: in   STD_LOGIC_VECTOR(3 downto 0);
             s:          in   STD_LOGIC_VECTOR(1 downto 0);
             y:            out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth1 of mux4 is
begin
    y <= d0 when s = "00" else
           d1 when s = "01" else
           d2 when s = "10" else
           d3;
end;

VHDL also supports selected signal assignment statements to  
provide a shorthand when selecting from one of several possi-
bilities. This is analogous to using a switch/case statement in 
place of multiple if/else statements in some programming 
languages. The 4:1 multiplexer can be rewritten with selected 
signal assignment as follows:

architecture synth2 of mux4 is
begin
    with s select y <=
        d0  when "00",
        d1  when "01",
        d2  when "10",
        d3  when others;
end;

HDL Example 4.6 4:1 MULTIPLEXER
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is a circuit with three inputs and two outputs defined by the following 
equations:

 
S A B C

C AB AC BC
=
= + +

⊕ ⊕ in

out in in
 (4.1)

If we define intermediate signals, P and G,

 P A B
G AB
=
=

⊕  (4.2)

we can rewrite the full adder as follows:

 S P C
C G PC

=
= +

⊕ in

out in
 (4.3)

P and G are called internal variables because they are neither inputs nor 
outputs; rather, they are used only internal to the module. They are  
similar to local variables in programming languages. HDL Example 4.7 
shows how they are used in HDLs.

HDL assignment statements (assign in SystemVerilog and <= in 
VHDL) take place concurrently. This is different from conventional pro-
gramming languages, such as C or Java, in which statements are evaluated 
in the order in which they are written. In a conventional language, it is  

Check this by filling out 
the truth table to convince 
yourself it is correct. 
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Figure 4.7 mux4 synthesized 
circuit
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important that S = P ⊕ Cin comes after P  = A⊕B because statements are 
executed sequentially. In an HDL, the order does not matter. Like hard-
ware, HDL assignment statements are evaluated whenever the inputs, 
signals on the right-hand side, change their value regardless of the order 
in which the assignment statements appear in a module.

4 . 2 . 6   Precedence

Notice that we parenthesized the cout computation in HDL Example 4.7  
to define the order of operations as Cout = G + (P · Cin) rather than  
Cout = (G + P) · Cin. If we had not used parentheses, the default oper-
ation order would be defined by the language. HDL Example 4.8 

SystemVerilog

In SystemVerilog, internal signals are usually declared as 
logic.

module fulladder(input   logic a, b, cin,
  output logic s, cout);

    logic p, g;

    assign p = a ̂  b;
    assign g = a & b;

 assign s = p ̂  cin;
 assign cout = g | (p & cin);

endmodule

VHDL

In VHDL, signals are used to represent internal variables whose 
values are defined by concurrent signal assignment state  ments, 
such as p  <=  a  xor  b;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
    port(a, b, cin: in    STD_LOGIC;
            s, cout:     out STD_LOGIC);
end;

architecture synth of fulladder is
    signal p, g: STD_LOGIC;
begin
    p <= a xor b;
    g <= a and b;

    s <= p xor cin;
    cout <= g or (p and cin);
end;

HDL Example 4.7 FULL ADDER
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Figure 4.8 fulladder synthesized circuit
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SystemVerilog

The operator precedence for SystemVerilog is much like 
you would expect in other programming languages. In 
particular, AND has precedence over OR. We could take 
advantage of this precedence to eliminate the parentheses:

assign cout = g | p & cin;

VHDL

Multiplication has precedence over addition in VHDL, as 
you would expect. However, unlike SystemVerilog, all of the 
logical operations (and, or, etc.) have equal precedence, unlike 
what one might expect in Boolean algebra. Thus, parentheses 
are necessary. Otherwise, cout <= g or p and cin would be 
interpreted from left to right as cout <= (g or p) and cin.

HDL Example 4.8 OPERATOR PRECEDENCE

specifies operator precedence from highest to lowest for each language. 
The tables include arithmetic, shift, and comparison operators that will 
be defined in Chapter 5.

4 . 2 . 7   Numbers

Numbers can be specified in binary, octal, decimal, or hexadecimal (bases 
2, 8, 10, and 16, respectively). The size, that is, the number of bits, may 
be given optionally, and leading zeros are inserted to reach this size. 
Underscores in numbers are ignored and can be helpful in breaking long 
numbers into more readable chunks. HDL Example 4.9 explains how 
numbers are written in each language.

Table 4.1 SystemVerilog operator precedence

Op Meaning

H 
i 
g 
h 
e 
s 
t

~ NOT

*, /, % MUL, DIV, MOD

+, – PLUS, MINUS

<<, >> Logical Left/Right Shift

<<<, >>> Arithmetic Left/Right Shift

<, <=, >, >= Relative Comparison

L 
o 
w 
e 
s 
t

= =, != Equality Comparison

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

?: Conditional

Table 4.2 VHDL operator precedence

Op Meaning

H 
i 
g 
h 
e 
s 
t

not NOT

*, /, mod, 
rem

MUL, DIV, MOD, REM

+, – PLUS, MINUS

rol, ror, 
srl, sll

Rotate, Shift logical

L 
o 
w 
e 
s 
t

<, <=, >, >= Relative Comparison

=, /= Equality Comparison

and, or,  
nand, nor, 
xor, xnor

Logical Operations
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4 . 2 . 8   Z’s and X’s

HDLs use z to indicate a floating value. z is particularly useful for describ-
ing a tristate buffer, whose output floats when the enable is 0. Recall from 
Section 2.6.2 that a bus can be driven by several tristate buffers, exactly 
one of which should be enabled. HDL Example 4.10 shows the idiom for a 
tristate buffer. If the buffer is enabled, the output is the same as the input. If 
the buffer is disabled, the output is assigned a floating value (z).

Similarly, HDLs use x to indicate an invalid logic level. If a bus is 
simultaneously driven to 0 and 1 by two enabled tristate buffers (or other 
gates), the result is x, indicating contention. If all of the tristate buffers 
driving a bus are simultaneously OFF, the bus will float, indicated by z.

SystemVerilog

The format for declaring constants is N'Bvalue, where N is the 
size in bits, B is a letter indicating the base, and value gives the 
value. For example, 9'h25 indicates a 9-bit number with a value 
of 2516 = 3710 = 0001001012. SystemVerilog supports 'b for 
binary, 'o for octal, 'd for decimal, and 'h for hexadecimal.

If the base is omitted, it defaults to decimal. If the size is not 
given, the number is assumed to have as many bits as the expression 
in which it is being used. Zeros are automatically padded on the 
front of the number to bring it up to full size. For example, if w is a 
6-bit bus, assign w   = 'b11 gives w the value 000011. It is better 
practice to explicitly give the size. An exception is that '0 and  
'1 are SystemVerilog idioms to fill all of the bits with 0 and 1, 
respectively.

VHDL

In VHDL, STD_LOGIC numbers are written in binary and enclosed 
in single quotes: '0' and'1' indicate logic 0 and 1. The format for 
declaring STD_LOGIC_VECTOR constants is NB"value", where N  
is the size in bits, B is a letter indicating the base, and value gives the  
value. For example, 9X"25" indicates a 9-bit number with a value of  
2516   =   3710   =   0001001012. VHDL 2008 supports B for binary, O for 
octal, D for decimal, and X for hexadecimal.

If the base is omitted, it defaults to binary. If the size is 
not given, the number is assumed to have a size matching the 
number of bits specified in the value. For example, y <= X"7B" 
requires that  y  be an 8-bit signal. If y has more bits, VHDL does 
not pad the number with 0’s on the left. Instead, an error occurs 
during compilation. others => '0' and others => '1' are 
VHDL idioms to fill all of the bits with 0 and 1, respectively.

HDL Example 4.9 NUMBERS

Table 4.3 SystemVerilog numbers

Numbers Bits Base Val Stored

3'b101 3 2 5 101

'b11 ? 2 3 000 … 0011

8'b11 8 2 3 00000011

8'b1010_1011 8 2 171 10101011

3'd6 3 10 6 110

6'o42 6 8 34 100010

8'hAB 8 16 171 10101011

42 ? 10 42 00 … 0101010

Table 4.4 VHDL numbers

Numbers Bits Base Val Stored

3B"101" 3 2 5 101

B"11" 2 2 3 11

8B"11" 8 2 3 00000011

8B"1010_1011" 8 2 171 10101011

3D"6" 3 10 6 110

6O"42" 6 8 34 100010

8X"AB" 8 16 171 10101011

"101" 3 2 5 101

B"101" 3 2 5 101

X"AB" 8 16 171 10101011
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At the start of simulation, state nodes such as flip-flop outputs are 
initialized to an unknown state (x in SystemVerilog and u in VHDL). 
This is helpful to track errors caused by forgetting to reset a flip-flop 
before its output is used.

SystemVerilog
module tristate(input   logic  [3:0] a,
  input   logic        en,
   output tri     [3:0] y);

    assign y  =  en ? a : 4'bz;
endmodule

Notice that y is declared as tri rather than logic. logic 
signals can only have a single driver. Tristate busses can have 
multiple drivers, so they should be declared as a net. Two types 
of nets in SystemVerilog are called tri and trireg. Typically, 
exactly one driver on a net is active at a time, and the net takes 
on that value. If no driver is active, a tri floats (z), while a 
trireg retains the previous value. If no type is specified for 
an input or output, tri is assumed. Also, note that a tri 
output from a module can be used as a logic input to another 
module. Section 4.7 further discusses nets with multiple drivers.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity tristate is
    port(a:   in   STD_LOGIC_VECTOR(3 downto 0);
            en: in   STD_LOGIC;
            y:    out  STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of tristate is
begin
    y  <=  a when en else "ZZZZ";
end;

HDL Example 4.10 TRISTATE BUFFER

y_1[3:0]

y[3:0]

en

a[3:0]
[3:0][3:0]

Figure 4.9 tristate synthesized circuit

If a gate receives a floating input, it may produce an x output when it 
can’t determine the correct output value. Similarly, if it receives an illegal 
or uninitialized input, it may produce an x output. HDL Example 4.11 

SystemVerilog

SystemVerilog signal values are 0, 1, z, and x. SystemVerilog 
constants starting with z or x are padded with leading z’s or 
x’s (instead of 0’s) to reach their full length when necessary.

Table 4.5 shows a truth table for an AND gate using all 
four possible signal values. Note that the gate can sometimes 
determine the output despite some inputs being unknown. For 
example, 0 & z returns 0 because the output of an AND gate is 
always 0 if either input is 0. Otherwise, floating or invalid inputs 
cause invalid outputs, displayed as x in SystemVerilog.

VHDL

VHDL STD_LOGIC signals are '0', '1', 'z', 'x', and 'u'.
Table 4.6 shows a truth table for an AND gate using all 

five possible signal values. Notice that the gate can sometimes 
determine the output despite some inputs being unknown. 
For example, '0' and 'z' returns'0' because the output of 
an AND gate is always '0' if either input is'0'. Otherwise, 
floating or invalid inputs cause invalid outputs, displayed as 
'x' in VHDL. Uninitialized inputs cause uninitialized outputs, 
displayed as 'u' in VHDL.

HDL Example 4.11 TRUTH TABLES WITH UNDEFINED AND FLOATING INPUTS
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shows how SystemVerilog and VHDL combine these different signal  
values in logic gates.

Seeing x or u values in simulation is almost always an indication of a 
bug or bad coding practice. In the synthesized circuit, this corresponds to a 
floating gate input, uninitialized state, or contention. The x or u may be inter-
preted randomly by the circuit as 0 or 1, leading to unpredictable behavior.

4 . 2 . 9   Bit Swizzling

Often it is necessary to operate on a subset of a bus or to concatenate 
(join together) signals to form busses. These operations are collectively 
known as bit swizzling. In HDL Example 4.12, y is given the 9-bit value 
c2c1d0d0d0c0101 using bit swizzling operations.

4 . 2 . 1 0   Delays

HDL statements may be associated with delays specified in arbitrary 
units. They are helpful during simulation to predict how fast a circuit will 
work (if you specify meaningful delays) and for debugging purposes to 

SystemVerilog
assign y = {c[2:1], {3{d[0]}}, c[0], 3'b101};

The {} operator is used to concatenate busses. {3{d[0]}} 
indicates three copies of d[0].

Don’t confuse the 3-bit binary constant 3'b101 with a bus 
named b. Note that it was critical to specify the length of 3 bits 
in the constant. Otherwise, it would have had an unknown 
number of leading zeros that might appear in the middle of y.

If y were wider than 9 bits, zeros would be placed in the 
most significant bits.

VHDL
y <= (c(2 downto 1), d(0), d(0), d(0), c(0), 3B"101");

The () aggregate operator is used to concatenate busses. y 
must be a 9-bit STD_LOGIC_VECTOR.

Another example demonstrates the power of VHDL 
aggregations. Assuming that z is an 8-bit STD_LOGIC_VECTOR, 
z is given the value 10010110 using the following command 
aggregation.

z <= ("10", 4 => '1', 2 downto 1 =>'1', others =>'0')

The "10" goes in the leading pair of bits. 1’s are also placed 
into bit 4 and bits 2 and 1. The other bits are 0.

HDL Example 4.12 BIT SWIZZLING

Table 4.6 VHDL AND gate truth table with z, x, and u

AND A
0 1 z x u

B

0 0 0 0 0 0

1 0 1 x x u

z 0 x x x u

x 0 x x x u

u 0 u u u u

Table 4.5 SystemVerilog AND gate truth table with z and x

& A
0 1 z x

B

0 0 0 0 0

1 0 1 x x

z 0 x x x

x 0 x x x



4.2 Combinational Logic 187

understand cause and effect (deducing the source of a bad output is tricky 
if all signals change simultaneously in the simulation results). These delays 
are ignored during synthesis; the delay of a gate produced by the synthe-
sizer depends on its tpd and tcd specifications, not on numbers in HDL code.

HDL Example 4.13 adds delays to the original function from HDL 
Example 4.1, y ab c abc abc= + + . It assumes that inverters have a delay 
of 1 ns, three-input AND gates have a delay of 2 ns, and three-input OR 
gates have a delay of 4 ns. Figure 4.10 shows the simulation waveforms, 
with y lagging 7 ns after the inputs. Note that y is initially unknown at 
the beginning of the simulation.

Figure 4.10 Example simulation waveforms with delays (from the ModelSim simulator)

SystemVerilog
'timescale 1ns/1ps

module example(input logic a, b, c,
                          output logic y);

    logic ab, bb, cb, n1, n2, n3;

    assign #1 {ab, bb, cb}  =   ~{a, b, c};
    assign #2  n1 = ab & bb & cb;
    assign #2  n2 = a & bb & cb;
    assign #2  n3 = a & bb & c;
    assign #4     y = n1 | n2 | n3;
endmodule

SystemVerilog files can include a timescale directive that 
indicates the value of each time unit. The statement is of the 
form 'timescale  unit/precision. In this file, each unit is 1 ns 
and the simulation has 1 ps precision. If no timescale directive 
is given in the file, a default unit and precision (usually 1 ns 
for both) are used. In SystemVerilog, a # symbol is used to 
indicate the number of units of delay. It can be placed in 
assign statements, as well as nonblocking (<=) and blocking 
(=) assignments, which will be discussed in Section 4.5.4.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity example is
    port(a, b, c: in    STD_LOGIC;

    y:           out STD_LOGIC);
end;

architecture synth of example is
    signal ab, bb, cb, n1, n2, n3: STD_LOGIC;
begin
    ab <= not a after 1 ns;
    bb <= not b after 1 ns;
    cb <= not c after 1 ns;
    n1 <= ab and bb and cb after 2 ns;
    n2 <= a and bb and cb after 2 ns;
    n3 <= a and bb and c after 2 ns;
    y     <= n1 or n2 or n3 after 4 ns;
end;

In VHDL, the after clause is used to indicate delay. The 
units, in this case, are specified as nanoseconds.

HDL Example 4.13 LOGIC GATES WITH DELAYS
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4.3  STRUCTURAL MODELING
The previous section discussed behavioral modeling, describing a module 
in terms of the relationships between inputs and outputs. This section 
examines structural modeling, which describes a module in terms of how 
it is composed of simpler modules.

For example, HDL Example 4.14 shows how to assemble a 4:1 multi-
plexer from three 2:1 multiplexers. Each copy of the 2:1 multiplexer is called 

SystemVerilog
module mux4(input   logic [3:0] d0, d1, d2, d3,
                     input    logic [1:0] s,
                     output logic [3:0] y);

   logic [3:0] low, high;

   mux2 lowmux(d0, d1, s[0], low);
   mux2 highmux(d2, d3, s[0], high);
   mux2 finalmux(low, high, s[1], y);
endmodule

The three mux2 instances are called lowmux, highmux, and 
finalmux. The mux2 module must be defined elsewhere in the 
SystemVerilog code—see HDL Example 4.5, 4.15, or 4.34.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
    port(d0, d1,
            d2, d3: in   STD_LOGIC_VECTOR(3 downto 0);
             s:         in   STD_LOGIC_VECTOR(1 downto 0);
             y:         out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture struct of mux4 is
    component mux2
       port(d0,
                d1: in   STD_LOGIC_VECTOR(3 downto 0);
                 s:  in   STD_LOGIC;
                y:   out STD_LOGIC_VECTOR(3 downto 0));
   end component;
   signal low, high: STD_LOGIC_VECTOR(3 downto 0);
begin
    lowmux:      mux2  port  map(d0, d1, s(0), low);
    highmux:   mux2  port     map(d2, d3, s(0), high);
    finalmux:  mux2  port   map(low, high, s(1), y);
end;

The architecture must first declare the mux2 ports using the 
component declaration statement. This allows VHDL tools to 
check that the component you wish to use has the same ports 
as the entity that was declared somewhere else in another 
entity statement, preventing errors caused by changing the 
entity but not the instance. However, component declaration 
makes VHDL code rather cumbersome.

Note that this architecture of mux4 was named struct,  
whereas architectures of modules with behavioral descriptions 
from Section 4.2 were named synth. VHDL allows multiple  
architectures (implementations) for the same entity; the archi-
tectures are distinguished by name. The names themselves 
have no significance to the CAD tools, but struct and synth 
are common. Synthesizable VHDL code generally contains 
only one architecture for each entity, so we will not discuss the 
VHDL syntax to configure which architecture is used when 
multiple architectures are defined.

HDL Example 4.14 STRUCTURAL MODEL OF 4:1 MULTIPLEXER
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an instance. Multiple instances of the same module are distinguished by 
distinct names, in this case lowmux, highmux, and finalmux. This is an 
example of regularity, in which the 2:1 multiplexer is reused many times.

HDL Example 4.15 uses structural modeling to construct a 2:1 mul-
tiplexer from a pair of tristate buffers. Building logic out of tristates is 
not recommended, however.

Figure 4.11 mux4 synthesized circuit
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SystemVerilog
module mux2(input   logic [3:0] d0, d1,
     input   logic             s,
     output tri      [3:0]  y);

    tristate t0(d0, ~s, y);
    tristate t1(d1, s, y);
endmodule

In SystemVerilog, expressions such as ~s are permitted in the 
port list for an instance. Arbitrarily complicated expressions 
are legal but discouraged because they make the code difficult 
to read.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
   port(d0, d1: in  STD_LOGIC_VECTOR(3 downto 0);
            s:         in    STD_LOGIC;
            y:          out  STD_LOGIC_VECTOR(3 downto 0));
end;

architecture struct of mux2 is
    component tristate
       port(a:   in   STD_LOGIC_VECTOR(3 downto 0);
               en: in   STD_LOGIC;
                y:   out STD_LOGIC_VECTOR(3 downto 0));
    end component;
    signal sbar: STD_LOGIC;
begin
    sbar <= not s;
    t0:  tristate  port  map(d0, sbar, y);
    t1:  tristate  port  map(d1, s, y);
end;

In VHDL, expressions such as not s are not permitted in the 
port map for an instance. Thus, sbar must be defined as a 
separate signal.

HDL Example 4.15 STRUCTURAL MODEL OF 2:1 MULTIPLEXER
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HDL Example 4.16 shows how modules can access part of a bus. An 
8-bit-wide 2:1 multiplexer is built using two of the 4-bit 2:1 multiplexers 
already defined, operating on the low and high nibbles of the byte.

In general, complex systems are designed hierarchically. The overall 
system is described structurally by instantiating its major components. 
Each of these components is described structurally from its building 
blocks and so forth recursively until the pieces are simple enough to 
describe behaviorally. It is good style to avoid (or at least to minimize) 
mixing structural and behavioral descriptions within a single module.

Figure 4.12 mux2 synthesized circuit
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SystemVerilog
module mux2_8(input   logic [7:0] d0, d1,

 input    logic           s,
 output logic [7:0] y);

    mux2 lsbmux (d0[3:0], d1[3:0], s, y[3:0]);
    mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2_8 is
    port(d0, d1:  in   STD_LOGIC_VECTOR(7 downto 0);
            s:  in    STD_LOGIC;
             y:   out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture struct of mux2_8 is
    component mux2
       port(d0, d1:  in   STD_LOGIC_VECTOR(3 downto 0);
               s:          in    STD_LOGIC;
               y:          out STD_LOGIC_VECTOR(3 downto 0));
    end component;
begin

    lsbmux: mux2
        port map(d0(3 downto 0), d1(3 downto 0),
                      s, y(3 downto 0));
    msbmux: mux2
        port map(d0(7 downto 4), d1(7 downto 4),
                      s, y(7 downto 4));
end;

HDL Example 4.16 ACCESSING PARTS OF BUSSES
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4.4  SEQUENTIAL LOGIC
HDL synthesizers recognize certain idioms and turn them into specific 
sequential circuits. Other coding styles may simulate correctly but syn-
thesize into circuits with blatant or subtle errors. This section presents 
the proper idioms to describe registers and latches.

4 . 4 . 1   Registers

The vast majority of modern commercial systems are built with registers 
using positive edge-triggered D flip-flops. HDL Example 4.17 shows the 
idiom for such flip-flops.

In SystemVerilog always statements and VHDL process state-
ments, signals keep their old value until an event in the sensitivity list 
takes place that explicitly causes them to change. Hence, such code, with 
appropriate sensitivity lists, can be used to describe sequential circuits 
with memory. For example, the flip-flop includes only clk in the sensi-
tive list. It remembers its old value of q until the next rising edge of the 
clk, even if d changes in the interim.

In contrast, SystemVerilog continuous assignment statements 
(assign) and VHDL concurrent assignment statements (<=) are reeval-
uated whenever any of the inputs on the right-hand side change. 
Therefore, such code necessarily describes combinational logic.

Figure 4.13 mux2_8 synthesized circuit
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4 . 4 . 2   Resettable Registers

When simulation begins or power is first applied to a circuit, the output 
of a flop or register is unknown. This is indicated with x in SystemVerilog 
and u in VHDL. Generally, it is good practice to use resettable registers so 
that on powerup you can put your system in a known state. The reset may 
be either asynchronous or synchronous. Recall that asynchronous reset 
occurs immediately, whereas synchronous reset clears the output only on 

Figure 4.14 flop synthesized circuit
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SystemVerilog
module flop(input  logic   clk,

 input   logic [3:0] d,
 output  logic [3:0] q);

   always_ff @(posedge clk)
       q <= d;
endmodule

In general, a SystemVerilog always statement is written in 
the form

always @(sensitivity list)
    statement;

The statement is executed only when the event specified in 
the sensitivity list occurs. In this example, the statement is  
q <= d (pronounced “q gets d”). Hence, the flip-flop copies d to 
q on the positive edge of the clock and otherwise remembers 
the old state of q. Note that sensitivity lists are also referred to 
as stimulus lists.

<= is called a nonblocking assignment. Think of it as a 
regular = sign for now; we’ll return to the more subtle points in 
Section 4.5.4. Note that <= is used instead of assign inside an 
always statement.

As will be seen in subsequent sections, always statements 
can be used to imply flip-flops, latches, or combinational 
logic, depending on the sensitivity list and statement. 
Because of this flexibility, it is easy to produce the wrong  
hardware inadvertently. SystemVerilog introduces always_ff,  
always_latch, and always_comb to reduce the risk of common 
errors. always_ff behaves like always but is used exclusively 
to imply flip-flops and allows tools to produce a warning if 
anything else is implied.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flop is
    port(clk:  in   STD_LOGIC;
            d:     in   STD_LOGIC_VECTOR(3 downto 0);
              q:     out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of flop is
begin
    process(clk) begin
       if rising_edge(clk) then
          q <= d;
       end if;
   end process;
end;

A VHDL process is written in the form

process(sensitivity list) begin
    statement;
end process;

The statement is executed when any of the variables in the 
sensitivity list change. In this example, the if statement 
checks whether the change was a rising edge on clk. If so, then 
q   <=   d (pronounced “q gets d”). Hence, the flip-flop copies d to 
q on the positive edge of the clock and otherwise remembers the 
old state of q.

An alternative VHDL idiom for a flip-flop is

process(clk) begin
    if clk'event and clk = '1' then
       q <= d;
    end if;
end process;

rising_edge(clk) is synonymous with clk'event and 
clk = '1'.

HDL Example 4.17 REGISTER



4.4 Sequential Logic 193

the next rising edge of the clock. HDL Example 4.18 demonstrates the idi-
oms for flip-flops with asynchronous and synchronous resets. Note that 
distinguishing synchronous and asynchronous reset in a schematic can be 
difficult.

SystemVerilog
module flopr(input  logic   clk,

 input  logic   reset,
 input  logic [3:0] d,
 output logic [3:0] q);

  // asynchronous reset
  always_ff @(posedge clk, posedge reset)

 if (reset) q <= 4'b0;
 else  q <= d;

endmodule

module flopr(input   logic           clk,
input   logic          reset,
input   logic [3:0] d,
output logic [3:0] q);

  // synchronous reset
  always_ff @(posedge clk)
     if (reset)   q <= 4'b0;
     else    q <= d;
endmodule

Multiple signals in an always statement sensitivity list are 
separated with a comma or the word or. Notice that posedge 
reset is in the sensitivity list on the asynchronously resettable 
flop, but not on the synchronously resettable flop. Thus, the 
asynchronously resettable flop immediately responds to a 
rising edge on reset, but the synchronously resettable flop 
responds to reset only on the rising edge of the clock.

Because the modules have the same name, flopr, you may 
include only one or the other in your design. If you wanted to 
use both, you would need to rename one of the modules.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is
    port(clk, reset: in    STD_LOGIC;
            d:                in   STD_LOGIC_VECTOR(3 downto 0);
            q:                out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture asynchronous of flopr is
begin
    process(clk, reset) begin
        if reset then
          q <= "0000";
       elsif rising_edge(clk) then
          q <= d;
        end if;
    end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is
    port(clk, reset: in    STD_LOGIC;
            d:                in    STD_LOGIC_VECTOR(3 downto 0);
            q:                out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopr is
begin
    process(clk) begin
       if rising_edge(clk) then
          if reset then q <= "0000";
          else q <= d;
          end if;
       end if;
    end process;
end;

Multiple signals in a process sensitivity list are separated 
with a comma. Notice that reset is in the sensitivity 
list on the asynchronously resettable flop but not on the 
synchronously resettable flop. Thus, the asynchronously 
resettable flop immediately responds to a rising edge on reset, 
but the synchronously resettable flop responds to reset only 
on the rising edge of the clock.

As mentioned earlier, the name of the architecture 
(asynchronous or synchronous, in this example) is ignored by 
the VHDL tools but may be helpful to the human reading the 
code. Because both architectures describe the entity flopr, you 
may include only one or the other in your design. If you wanted 
to use both, you would need to rename one of the modules.

HDL Example 4.18 RESETTABLE REGISTER
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4 . 4 . 3   Enabled Registers

Enabled registers respond to the clock only when the enable is asserted. 
HDL Example 4.19 shows an asynchronously resettable enabled register 
that retains its old value if both reset and en are FALSE.

Figure 4.15 flopr synthesized circuit (a) asynchronous reset, (b) synchronous reset
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SystemVerilog
module flopenr(input logic       clk,

 input  logic           reset,
 input  logic           en,
 input  logic [3:0] d,
 output logic [3:0] q);

   // asynchronous reset
   always_ff @(posedge clk, posedge reset)
      if          (reset) q <= 4'b0;
      else if  (en)      q <= d;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is
   port(clk,
           reset,
           en: in    STD_LOGIC;
          d:  in   STD_LOGIC_VECTOR(3 downto 0);
           q:   out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture asynchronous of flopenr is
–– asynchronous reset
begin
 process(clk, reset) begin
 if reset then
    q <= "0000";
 elsif rising_edge(clk) then

          if en then
             q <= d;

 end if;
       end if;
   end process;
end;

HDL Example 4.19 RESETTABLE ENABLED REGISTER
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4 . 4 . 4   Multiple Registers

A single always/process statement can be used to describe multiple 
pieces of hardware. For example, consider the synchronizer from Section 
3.5.5 made of two back-to-back flip-flops, as shown in Figure 4.17. 
HDL Example 4.20 describes the synchronizer. On the rising edge of 
clk, d is copied to n1. At the same time, n1 is copied to q.

Figure 4.16 flopenr synthesized circuit
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Figure 4.17 Synchronizer circuit

Figure 4.18 sync synthesized circuit
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SystemVerilog
module sync(input  logic  clk,

input    logic   d,
  output logic  q);

   logic n1;

   always_ff @(posedge clk)
      begin
        n1 <= d; // nonblocking
        q <= n1; // nonblocking
        end
endmodule

Notice that the begin/end construct is necessary because 
mul tiple statements appear in the always statement. This is 
analogous to {} in C or Java. The begin/end was not needed in 
the flopr example because if/else counts as a single statement.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sync is
   port(clk: in   STD_LOGIC;
            d:    in   STD_LOGIC;
            q:    out STD_LOGIC);
end;

architecture good of sync is
   signal n1: STD_LOGIC;
begin
 process(clk) begin
 if rising_edge(clk) then

 n1 <= d;
 q <= n1;

 end if;
 end process;

end;

n1 must be declared as a signal because it is an internal 
signal used in the module.

HDL Example 4.20 SYNCHRONIZER
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4 . 4 . 5   Latches

Recall from Section 3.2.2 that a D latch is transparent when the clock is 
HIGH, allowing data to flow from input to output. The latch becomes 
opaque when the clock is LOW, retaining its old state. HDL Example 
4.21 shows the idiom for a D latch.

Not all synthesis tools support latches well. Unless you know that 
your tool does support latches and you have a good reason to use them, 
avoid them and use edge-triggered flip-flops instead. Furthermore, take 
care that your HDL does not imply any unintended latches, something 
that is easy to do if you aren’t attentive. Many synthesis tools warn you 
when a latch is created; if you didn’t expect one, track down the bug 
in your HDL. And if you don’t know whether you intended to have a 
latch or not, you are probably approaching HDLs like a programming  
language and have bigger problems lurking.

4.5  MORE COMBINATIONAL LOGIC
In Section 4.2, we used assignment statements to describe combinational 
logic behaviorally. SystemVerilog always statements and VHDL process 

Figure 4.19 latch synthesized circuit
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SystemVerilog
module latch(input  logic          clk,

 input   logic [3:0] d,
 output logic [3:0] q);

   always_latch
     if (clk) q <= d;
endmodule

always_latch is equivalent to always @(clk, d) and is the pre-
ferred idiom for describing a latch in SystemVerilog. It evaluates 
whenever clk or d changes. If clk is HIGH, d flows through 
to q, so this code describes a positive level-sensitive latch. 
Otherwise, q keeps its old value. SystemVerilog can generate a 
warning if the always_latch block doesn’t imply a latch.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity latch is
    port(clk: in   STD_LOGIC;
             d:    in   STD_LOGIC_VECTOR(3 downto 0);
             q:    out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of latch is
begin
 process(clk, d) begin
 if clk = '1' then
 q <= d;

  end if;
 end process;

end;

The sensitivity list contains both clk and d, so the process 
evaluates whenever clk or d changes. If clk is HIGH, d flows 
through to q.

HDL Example 4.21 D LATCH
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statements are used to describe sequential circuits because they remember 
the old state when no new state is prescribed. However, always/process 
statements can also be used to describe combinational logic behaviorally 
if the sensitivity list is written to respond to changes in all of the inputs 
and the body prescribes the output value for every possible input combi-
nation. HDL Example 4.22 uses always/process statements to describe 
a bank of four inverters (see Figure 4.3 for the synthesized circuit).

HDLs support blocking and nonblocking assignments in an 
always/process statement. A group of blocking assignments are eval-
uated in the order in which they appear in the code, just as one would 
expect in a standard programming language. A group of nonblocking 
assignments are evaluated concurrently; all of the statements are evalu-
ated before any of the signals on the left-hand sides are updated.

HDL Example 4.23 defines a full adder using intermediate sig-
nals p and g to compute s and cout. It produces the same circuit from 
Figure 4.8, but uses always/process statements in place of assignment 
statements.

HDL Examples 4.22 and 4.23 are poor applications of always/
process statements for modeling combinational logic because they 
require more lines than the equivalent approach with assignment state-
ments from HDL Examples 4.2 and 4.7. However, case and if state-
ments are convenient for modeling more complicated combinational 
logic. case and if statements must appear within always/process 
statements and are examined in the next sections.

SystemVerilog
module inv(input  logic  [3:0] a,

 output logic [3:0] y);

   always_comb
      y = ~a;
endmodule

always_comb reevaluates the statements inside the always 
statement whenever any of the signals on the right-hand 
side of <= or = in the always statement change. In this case, 
it is equivalent to always @(a) but is better because it avoids 
mistakes if signals in the always statement are renamed or 
added. If the code inside the always block is not combinational 
logic, SystemVerilog will report a warning. always_comb is 
equivalent to always @(*) but is preferred in SystemVerilog.

The = in the always statement is called a blocking assign-
ment, in contrast to the <= nonblocking assignment. In 
SystemVerilog, it is good practice to use blocking assignments 
for combinational logic and nonblocking assignments for 
sequential logic. This will be discussed further in Section 4.5.4.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
 port(a: in    STD_LOGIC_VECTOR(3 downto 0);
         y:  out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture proc of inv is
begin
 process(all) begin
 y <= not a;

 end process;
end;

process(all) reevaluates the statements inside the process 
whenever any of the signals in the process change. It is 
equivalent to process(a) but is better because it avoids 
mistakes if signals in the process are renamed or added.

The begin and end process statements are required in 
VHDL even though the process contains only one assignment.

HDL Example 4.22 INVERTER USING always/process
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SystemVerilog

In a SystemVerilog always statement, = indicates a blocking 
assignment and <= indicates a nonblocking assignment (also 
called a concurrent assignment).

Do not confuse either type with continuous assignment, i.e.,  
the assign statement. assign statements must be used outside 
always statements and are also evaluated concurrently.

VHDL

In a VHDL process statement, := indicates a blocking 
assignment and <= indicates a nonblocking assignment (also 
called a concurrent assignment). This is the first section 
where := is introduced.

Nonblocking assignments are made to outputs and signals. 
Blocking assignments are made to variables, which are declared 
in process statements (see HDL Example 4.23). <= can also 
appear outside process statements, where it is also evaluated 
concurrently. 

SystemVerilog
module fulladder(input   logic a, b, cin,
                             output logic  s, cout);
 logic p, g;

 always_comb
 begin
 p = a ̂  b;                     // blocking
 g = a & b;                     // blocking
 s = p ̂  cin;                 // blocking
 cout = g | (p & cin);    // blocking

 end
endmodule

In this case, always @(a, b, cin) would have been equivalent 
to always_comb. However, always_comb is better because it 
avoids common mistakes of missing signals in the sensitivity 
list.

For reasons that will be discussed in Section 4.5.4, it is best 
to use blocking assignments for combinational logic. This 
example uses blocking assignments, first computing p, then g, 
then s, and,  finally, cout.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in   STD_LOGIC;

 s, cout:     out STD_LOGIC);
end;

architecture synth of fulladder is
begin
 process(all)
 variable p, g: STD_LOGIC;

 begin
 p := a xor b; –– blocking
 g := a and b; –– blocking
 s <= p xor cin;
 cout <= g or (p and cin);

 end process;
end;

In this case, process(a, b, cin) would have been equivalent 
to process(all). However, process(all) is better because it 
avoids common mistakes of missing signals in the sensitivity list.

For reasons that will be discussed in Section 4.5.4, it is 
best to use blocking assignments for intermediate variables in 
combinational logic. This example uses blocking assignments 
for p and g so that they get their new values before being used to 
compute s and cout that depend on them.

Because p and g appear on the left-hand side of a blocking 
assignment (:=) in a process statement, they must be declared 
to be variable rather than signal. The variable declaration 
appears before the begin in the process where the variable is 
used.

HDL Example 4.23 FULL ADDER USING always/process
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4 . 5 . 1   Case Statements

A better application of using the always/process statement for combina-
tional logic is a seven-segment display decoder that takes advantage of the 
case statement that must appear inside an always/process statement.

As you might have noticed in the seven-segment display decoder of 
Example 2.10, the design process for large blocks of combinational logic 
is tedious and prone to error. HDLs offer a great improvement, allow-
ing you to specify the function at a higher level of abstraction and then 
automatically synthesize the function into gates. HDL Example 4.24 uses 
case statements to describe a seven-segment display decoder based on its 
truth table. The case statement performs different actions depending on 
the value of its input. A case statement implies combinational logic if all 

SystemVerilog
module sevenseg(input   logic [3:0] data,
                            output logic [6:0] segments);
 always_comb
 case(data)
 //                                  abc_defg
 0:  segments = 7'b111_1110;
 1:  segments = 7'b011_0000;
 2:  segments = 7'b110_1101;
 3:  segments = 7'b111_1001;
 4:  segments = 7'b011_0011;
 5:  segments = 7'b101_1011;
 6:  segments = 7'b101_1111;
 7:  segments = 7'b111_0000;
 8:  segments = 7'b111_1111;
 9:  segments = 7'b111_0011;
 default:  segments = 7'b000_0000;

 endcase
   endmodule

The case statement checks the value of data. When data is 
0, the statement performs the action after the colon, setting 
segments to 1111110. The case statement similarly checks other 
data values up to 9 (note the use of the default base, base 10).

The default clause is a convenient way to define the output 
for all cases not explicitly listed, guaranteeing combinational 
logic.

In SystemVerilog, case statements must appear inside 
always statements.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity seven_seg_decoder is
    port(data:        in   STD_LOGIC_VECTOR(3 downto 0);
            segments: out STD_LOGIC_VECTOR(6 downto 0));
end;

architecture synth of seven_seg_decoder is
begin
   process(all) begin
      case data is
       ––  abcdefg
       when X"0"     => segments <= "1111110";
       when X"1"     => segments <= "0110000";
       when X"2"     => segments <= "1101101";
       when X"3"     => segments <= "1111001";
       when X"4"     => segments <= "0110011";
       when X"5"     => segments <= "1011011";
       when X"6"     => segments <= "1011111";
       when X"7"     => segments <= "1110000";
       when X"8"     => segments <= "1111111";
       when X"9"     => segments <= "1110011";
       when others => segments <= "0000000";
     end case;
   end process;
end;

The case statement checks the value of data. When data is 0, 
the statement performs the action after the =>, setting segments 
to 1111110. The case statement similarly checks other data 
values up to 9 (note the use of X for hexadecimal numbers). The 
others clause is a convenient way to define the output for all 
cases not explicitly listed, guaranteeing combinational logic.

Unlike SystemVerilog, VHDL supports selected signal 
assignment statements (see HDL Example 4.6), which are much 
like case statements but can appear outside processes. Thus, 
there is less reason to use processes to describe combinational 
logic.

HDL Example 4.24 SEVEN-SEGMENT DISPLAY DECODER
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possible input combinations are defined. Otherwise, it implies sequential 
logic, because the output will keep its old value in the undefined cases.

The HDL for the seven-segment display decoder synthesizes into a 
read-only memory (ROM) containing the 7 outputs for each of the 16 
possible inputs. ROMs are discussed further in Section 5.5.6.

If the default or others clause were left out of the case statement, 
the decoder would have remembered its previous output any time data 
were in the range of 10–15. This is strange behavior for hardware.

Ordinary decoders are also commonly written with case state-
ments. HDL Example 4.25 describes a 3:8 decoder.

4 . 5 . 2   If Statements

always/process statements may also contain if statements. The if 
statement may be followed by an else statement. If all possible input 

Figure 4.20 sevenseg synthesized circuit
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SystemVerilog
module decoder3_8(input   logic   [2:0]   a,

 output logic [7:0] y);

   always_comb
 case(a)

 3'b000:   y = 8'b00000001;
 3'b001:   y = 8'b00000010;
 3'b010:   y = 8'b00000100;
 3'b011:   y = 8'b00001000;
 3'b100:   y = 8'b00010000;
 3'b101:   y = 8'b00100000;
 3'b110:   y = 8'b01000000;
 3'b111:   y = 8'b10000000;
 default: y = 8'bxxxxxxxx;

 endcase
endmodule

The default statement isn’t strictly necessary for logic 
synthesis in this case because all possible input combinations 
are defined, but it is prudent for simulation in case one of the 
inputs is an x or z.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder3_8 is
   port(a: in   STD_LOGIC_VECTOR(2 downto 0);
           y: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of decoder3_8 is
begin
   process(all) begin
     case a is

 when "000"    => y <= "00000001";
 when "001"    => y <= "00000010";
 when "010"    => y <= "00000100";
 when "011"    => y <= "00001000";
 when "100"    => y <= "00010000";
 when "101"    => y <= "00100000";
 when "110"    => y <= "01000000";
 when "111"    => y <= "10000000";
 when others => y <= "XXXXXXXX";

     end case;
   end process;
end;

The others clause isn’t strictly necessary for logic synthesis in this 
case because all possible input combinations are defined, but it is 
prudent for simulation in case one of the inputs is an x, z, or u.

HDL Example 4.25 3:8 DECODER
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Figure 4.21 decoder3_8 synthesized circuit
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Figure 4.22 priorityckt synthesized circuit

SystemVerilog
module priorityckt(input  logic [3:0] a,

 output logic [3:0] y);
 always_comb
 if         (a[3])  y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;
 else                 y = 4'b0000;

endmodule

In SystemVerilog, if statements must appear inside of 
always statements.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priorityckt is
 port(a: in    STD_LOGIC_VECTOR(3 downto 0);

 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of priorityckt is
begin
 process(all) begin
 if       a(3) then  y <= "1000";
 elsif a(2) then y <= "0100";
 elsif a(1) then y <= "0010";
 elsif a(0) then y <= "0001";
 else                    y <= "0000";
 end if;

 end process;
end;

Unlike SystemVerilog, VHDL supports conditional signal 
assignment statements (see HDL Example 4.6), which 
are much like if statements but can appear outside 
processes. Thus, there is less reason to use processes to 
describe combinational logic.

HDL Example 4.26 PRIORITY CIRCUIT
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combinations are handled, the statement implies combinational logic. 
Otherwise, it produces sequential logic (like the latch in Section 4.4.5).

HDL Example 4.26 uses if statements to describe a priority circuit, 
defined in Section 2.4. Recall that an N-input priority circuit sets the  
output TRUE that corresponds to the most significant input that is TRUE.

4 . 5 . 3   Truth Tables with Don’t Cares

As examined in Section 2.7.3, truth tables may include don’t cares to 
allow more logic simplification. HDL Example 4.27 shows how to 
describe a priority circuit with don’t cares.

The synthesis tool generates a slightly different circuit for this module, 
shown in Figure 4.23, than it did for the priority circuit in Figure 4.22. 
However, the circuits are logically equivalent.

4 . 5 . 4   Blocking and Nonblocking Assignments

The guidelines on page 204 explain when and how to use each type of 
assignment. If these guidelines are not followed, it is possible to write 
code that appears to work in simulation but synthesizes to incorrect 
hardware. The optional remainder of this section explains the principles 
behind the guidelines.

SystemVerilog
module priority_casez(input  logic [3:0] a,

 output logic [3:0] y);
 always_comb
 casez(a)
 4'b1???: y = 4'b1000;
 4'b01??: y = 4'b0100;
 4'b001?: y = 4'b0010;
 4'b0001: y = 4'b0001;
 default: y = 4'b0000;

 endcase
endmodule

The casez statement acts like a case statement except 
that it also recognizes ? as don’t care.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority_casez is
 port(a: in   STD_LOGIC_VECTOR(3 downto 0);

 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture dontcare of priority_casez is
begin
 process(all) begin
 case? a is
 when "1---" => y <= "1000";
 when "01--" => y <= "0100";
 when "001-" => y <= "0010";
 when "0001" => y <= "0001";
 when others => y <= "0000";

 end case?;
 end process;

end;

The case? statement acts like a case statement except 
that it also recognizes – as don’t care.

HDL Example 4.27 PRIORITY CIRCUIT USING DON’T CARES
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 BLOCKING AND NONBLOCKING ASSIGNMENT GUIDELINES
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Figure 4.23 priority_casez synthesized circuit

SystemVerilog

 1. Use always_ff @(posedge clk) and nonblocking assign-
ments to model synchronous sequential logic.

always_ff @(posedge clk)
 begin
 n1 <= d; // nonblocking
 q <= n1; // nonblocking

 end

 2. Use continuous assignments to model simple combinational 
logic.

assign y = s ? d1 : d0;

 3. Use always_comb and blocking assignments to model 
more complicated combinational logic where the 
always statement is helpful.

always_comb
 if         (a[3]) y = 4’b1000;
 else if (a[2]) y = 4’b0100;
 else if (a[1]) y = 4’b0010;
 else if (a[0]) y = 4’b0001;
 else                 y = 4’b0000;

 4. Do not make assignments to the same signal in more than 
one always statement or continuous assignment statement.

VHDL

 1. Use process(clk) and nonblocking assignments to model 
synchronous sequential logic.

process(clk) begin
 if rising_edge(clk) then

 n1 <= d; –– nonblocking
 q <= n1; –– nonblocking

 end if;
end process;

 2. Use concurrent assignments outside process statements to 
model simple combinational logic.

y <= d0 when s = '0' else d1;

 3. Use process(all) to model more complicated combina-
tional logic where the process is helpful. Use blocking 
assignments for internal variables.

process(all)
 variable p, g: STD_LOGIC;

begin
 p := a xor b; –– blocking
 g := a and b; –– blocking
 s <= p xor cin;
 cout <= g or (p and cin);

end process;

 4. Do not make assignments to the same variable in more 
than one process or concurrent assignment statement. 
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Combinational Logic*

The full adder from HDL Example 4.23 is correctly modeled using 
blocking assignments. This section explores how it operates and how it 
would differ if nonblocking assignments had been used.

Imagine that a, b, and cin are all initially 0. p, g, s, and cout are 
thus 0 as well. At some time, a changes to 1, triggering the always/process 
statement. The four blocking assignments evaluate in the order shown 
here. (In the VHDL code, s and cout are assigned concurrently.) Note 
that p and g get their new values before s and cout are computed 
because of the blocking assignments. This is important because we want 
to compute s and cout using the new values of p and g.

 1. p ← 1 ⊕ 0 = 1
 2. g ← 1 ∙ 0 = 0
 3. s ← 1 ⊕ 0 = 1
 4. cout ← 0 +  1 ∙ 0 = 0

In contrast, HDL Example 4.28 illustrates the use of nonblocking 
assignments.

Now, consider the same case of a rising from 0 to 1 while b and cin 
are 0. The four nonblocking assignments evaluate concurrently:

p ← 1 ⊕ 0 = 1 g ← 1 ∙ 0 = 0 s ← 0 ⊕ 0 = 0 cout ← 0 + 0 ∙ 0 = 0

SystemVerilog
// nonblocking assignments (not recommended)
module fulladder(input   logic a, b, cin,

 output logic s, cout);
  logic p, g;

   always_comb
       begin
      p <= a ̂  b; // nonblocking
      g <= a & b; // nonblocking

      s <= p ̂  cin;
     cout <= g | (p & cin);
     end
endmodule

VHDL
–– nonblocking assignments (not recommended)
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in   STD_LOGIC;

 s, cout:   out STD_LOGIC);
end;

architecture nonblocking of fulladder is
    signal p, g: STD_LOGIC;
begin
    process(all) begin
       p <= a xor b; –– nonblocking
        g <= a and b; –– nonblocking
        s <= p xor cin;
        cout <= g or (p and cin);
    end process;
end;

Because p and g appear on the left-hand side of a nonblocking 
assignment in a process statement, they must be declared to be 
signal rather than variable. The signal declaration appears 
before the begin in the architecture, not the process.

HDL Example 4.28 FULL ADDER USING NONBLOCKING ASSIGNMENTS



Hardware Description LanguagesCHAPTER FOUR206

Observe that s is computed concurrently with p. Hence, it uses the 
old value of p, not the new value. Therefore, s remains 0 rather than 
becoming 1. However, p does change from 0 to 1. This change triggers 
the always/process statement to evaluate a second time, as follows:

p ← 1 ⊕ 0 = 1 g ← 1 ∙ 0 = 0 s ← 1 ⊕ 0 = 1 cout ← 0 + 1 ∙ 0 = 0

This time, p is already 1, so s correctly changes to 1. The nonblocking  
assignments eventually reach the right answer, but the always/process 
statement had to evaluate twice. This makes simulation slower, though it 
synthesizes to the same hardware.

Another drawback of nonblocking assignments in modeling combi-
national logic is that the HDL will produce the wrong result if you forget 
to include the intermediate variables in the sensitivity list.

Worse yet, some synthesis tools will synthesize the correct hardware 
even when a faulty sensitivity list causes incorrect simulation. This leads 
to a mismatch between the simulation results and what the hardware 
actually does.

Sequential Logic*
The synchronizer from HDL Example 4.20 is correctly modeled using 
nonblocking assignments. On the rising edge of the clock, d is copied to 
n1 at the same time that n1 is copied to q, so the code properly describes 
two registers. For example, suppose initially that d = 0, n1 = 1, and 
q = 0. On the rising edge of the clock, the following two assignments 
occur concurrently, so that after the clock edge, n1 = 0 and q = 1.

n1  ←   d  = 0 q  ←  n1  = 1

HDL Example 4.29 tries to describe the same module using blocking  
assignments. On the rising edge of clk, d is copied to n1. Then, this new 
value of n1 is copied to q, resulting in d improperly appearing at both n1 
and q. The assignments occur one after the other so that after the clock 
edge, q = n1  = 0.

 1. n1  ←  d = 0
 2. q  ←  n1 = 0

SystemVerilog

If the sensitivity list of the always statement in HDL Example 
4.28 were written as always @(a, b, cin) rather than  
always_comb, then the statement would not reevaluate when p  
or g changes. In that case, s would be incorrectly left at 0, not 1.

VHDL

If the sensitivity list of the process statement in HDL Example 
4.28 were written as process(a, b, cin) rather than 
process(all), then the statement would not reevaluate when p 
or g changes. In that case, s would be incorrectly left at 0, not 1. 
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Because n1 is invisible to the outside world and does not influence 
the behavior of q, the synthesizer optimizes it away entirely, as shown in 
Figure 4.24.

The moral of this illustration is to exclusively use nonblocking 
assignment in always/process statements when modeling sequen-
tial logic. With sufficient cleverness, such as reversing the orders of the 
assignments, you could make blocking assignments work correctly, but 
blocking assignments offer no advantages and only introduce the risk 
of unintended behavior. Certain sequential circuits will not work with 
blocking assignments no matter what the order.

4.6  FINITE STATE MACHINES
Recall that a finite state machine (FSM) consists of a state register and 
two blocks of combinational logic to compute the next state and the output 
given the current state and the input, as was shown in Figure 3.22. HDL 
descriptions of state machines are correspondingly divided into three parts 
to model the state register, the next state logic, and the output logic.

SystemVerilog
// Bad implementation of a synchronizer using blocking
//   assignments

module syncbad(input    logic clk,
 input    logic d,
 output logic q);

 logic n1;

 always_ff @(posedge clk)
 begin
    n1 = d; // blocking
    q = n1; // blocking
 end

endmodule

VHDL
–– Bad implementation of a synchronizer using blocking
––   assignment

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
 port(clk:in    STD_LOGIC;

            d:   in    STD_LOGIC;
            q:   out STD_LOGIC);
end;

architecture bad of syncbad is
begin
 process(clk)
 variable n1: STD_LOGIC;

 begin
 if rising_edge(clk) then
 n1 := d; –– blocking
 q <= n1;

 end if;
 end process;

end;

HDL Example 4.29 BAD SYNCHRONIZER WITH BLOCKING ASSIGNMENTS

q

qd
clk

QD

Figure 4.24 syncbad synthesized circuit
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SystemVerilog
module divideby3FSM(input    logic clk,
                                  input    logic reset,
                                  output logic y);
   typedef enum logic [1:0] {S0, S1, S2} statetype;
     statetype state, nextstate;

     // state register
     always_ff @(posedge clk, posedge reset)
        if (reset) state <= S0;
        else           state <= nextstate;

     // next state logic
     always_comb
        case (state)
          S0:          nextstate = S1;
          S1:          nextstate = S2;
          S2:          nextstate = S0;
          default: nextstate = S0;
        endcase

     // output logic
     assign y = (state = = S0);
endmodule

The typedef statement defines statetype to be a two-bit 
logic value with three possibilities: S0, S1, or S2. state and 
nextstate are statetype signals.

The enumerated encodings default to numerical order: 
S0  =  00, S1  =  01, and S2  =  10. The encodings can be explicitly 
set by the user; however, the synthesis tool views them as sug-
gestions, not requirements. For example, the following snippet 
encodes the states as 3-bit one-hot values:

typedef enum logic [2:0] {S0 = 3'b001, S1 = 3'b010, S2 = 3'b100} 
statetype;

Notice how a case statement is used to define the state 
transition table. Because the next state logic should be com-
binational, a default is necessary, even though the state 
2'b11 should never arise.

The output, y, is 1 when the state is S0. The equality  
comparison a = = b evaluates to 1 if a equals b and 0 otherwise. 
The inequality comparison a != b does the inverse, evaluating 
to 1 if a does not equal b.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
     port(clk, reset: in    STD_LOGIC;
               y:                 out STD_LOGIC);
end;

architecture synth of divideby3FSM is
     type statetype is (S0, S1, S2);
     signal state, nextstate: statetype;
begin

    –– state register
    process(clk, reset) begin
       if reset then state <= S0;
       elsif rising_edge(clk) then
           state <= nextstate;
       end if;
    end process;

    –– next state logic
    nextstate <= S1 when state = S0 else
                         S2 when state = S1 else
                         S0;

    –– output logic
    y <= '1' when state = S0 else '0';
end;

This example defines a new enumeration data type, statetype, 
with three possibilities: S0, S1, and S2. state and nextstate 
are statetype signals. By using an enumeration instead of 
choosing the state encoding, VHDL frees the synthesizer to 
explore various state encodings to choose the best one.

In the HDL above, the output, y, is 1 when the state is S0. 
The inequality comparison uses /=. To produce an output of 1 
when the state is anything but S0, change the comparison to 
state /= S0.

HDL Example 4.30 DIVIDE-BY-3 FINITE STATE MACHINE

HDL Example 4.30 describes the divide-by-3 FSM from Section 
3.4.2. It provides an asynchronous reset to initialize the FSM. The state 
register uses the ordinary idiom for flip-flops. The next state and output 
logic blocks are combinational.

Synthesis tools produce just a block diagram and state transition dia-
gram for state machines; they do not show the logic gates or the inputs 
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state[2:0]
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reset
clk C

[2:0]
Q[2:0]R

Figure 4.25 divideby3fsm 
synthesized circuit

The next two examples describe the snail pattern recognizer FSM 
from Section 3.4.3. The code shows how to use case and if statements to 
handle next state and output logic that depend on the inputs as well as the 
current state. We show both Moore and Mealy modules. In the Moore 
machine (HDL Example 4.31), the output depends only on the current 
state, whereas in the Mealy machine (HDL Example 4.32), the output 
logic depends on both the current state and inputs.

SystemVerilog
// output logic
assign y = (state = = S0 | state = = S1);

VHDL
–– output logic
y <= '1' when (state =  S0 or state =  S1) else '0'; 

and outputs on the arcs and states. Therefore, be careful that you have 
specified the FSM correctly in your HDL code. The state transition dia-
gram in Figure 4.25 for the divide-by-3 FSM is analogous to the diagram 
in Figure 3.28(b). The double circle indicates that S0 is the reset state. 
Gate-level implementations of the divide-by-3 FSM were shown in 
Section 3.4.2.

Notice that the states are named with an enumeration data type 
rather than by referring to them as binary values. This makes the code 
more readable and easier to change.

If, for some reason, we had wanted the output to be HIGH in states 
S0 and S1, the output logic would be modified as follows.

Notice that the synthesis tool 
uses a 3-bit encoding (Q[2:0]) 
instead of the 2-bit encoding 
suggested in the SystemVerilog 
code. 
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Figure 4.26 patternMoore synthesized circuit
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SystemVerilog
module patternMoore(input    logic clk,
                                  input    logic reset,
                                  input    logic a,
                                  output logic y);

    typedef enum logic [1:0] {S0, S1, S2} statetype;
    statetype state, nextstate;

    // state register
    always_ff @(posedge clk, posedge reset)
        if (reset) state <= S0;
        else           state <= nextstate;

    // next state logic
    always_comb
       case (state)
           S0: if (a) nextstate = S0;
               else     nextstate = S1;
           S1: if (a) nextstate = S2;
               else     nextstate = S1;
           S2: if (a) nextstate = S0;
               else     nextstate = S1;
           default:   nextstate = S0;
       endcase

    // output logic
    assign y  = (state  = =  S2);
endmodule

Note how nonblocking assignments (<=) are used in the state 
register to describe sequential logic, whereas blocking assign-
ments (=) are used in the next state logic to describe combi-
national logic.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity patternMoore is
    port(clk, reset: in   STD_LOGIC;
              a:                 in     STD_LOGIC;
              y:                out STD_LOGIC);
end;

architecture synth of patternMoore is
    type statetype is (S0, S1, S2);
    signal state, nextstate: statetype;
begin
    –– state register
    process(clk, reset) begin
          if reset then                             state <= S0;
          elsif rising_edge(clk) then state <= nextstate;
          end if;
    end process;

    –– next state logic
    process(all) begin
          case state is
           when S0 =>
             if a then nextstate <= S0;
             else          nextstate <= S1;
             end if;
           when S1 =>
           if a then nextstate <= S2;
           else          nextstate <= S1;
           end if;
          when S2 =>
            if a then nextstate <= S0;
            else          nextstate <= S1;
            end if;
          when others =>
                           nextstate <= S0;
       end case;
    end process;

    ––output logic
    y <= '1' when state = S2 else '0';
end;

HDL Example 4.31 PATTERN RECOGNIZER MOORE FSM
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Figure 4.27 patternMealy synthesized circuit
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SystemVerilog
module patternMealy(input    logic clk,
                                  input      logic reset,
                                  input    logic a,
                                  output logic y);

    typedef enum logic {S0, S1} statetype;
    statetype state, nextstate;

    // state register
    always_ff @(posedge clk, posedge reset)
         if (reset) state <= S0;
       else           state <= nextstate;

    // next state logic
    always_comb
         case (state)
         S0: if (a)  nextstate = S0;
                  else    nextstate = S1;
         S1: if (a) nextstate = S0;
                   else    nextstate = S1;
         default:   nextstate = S0;
        endcase

    // output logic
    assign y  =  (a & state  = =  S1);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity patternMealy is
    port(clk, reset: in     STD_LOGIC;
              a:                in    STD_LOGIC;
              y:                out STD_LOGIC);
end;

architecture synth of patternMealy is
    type statetype is (S0, S1);
    signal state, nextstate: statetype;
begin
    –– state register
    process(clk, reset) begin
        if reset then                        state <= S0;
        elsif rising_edge(clk) then state <= nextstate;
        end if;
    end process;

    –– next state logic
    process(all) begin
         case state is
            when S0 =>
             if a then nextstate <= S0;
             else        nextstate <= S1;
             end if;
            when S1 =>
            if a then nextstate <= S0;
            else        nextstate <= S1;
            end if;
            when others =>
                            nextstate <= S0;
         end case;
    end process;

    –– output logic
    y <= '1' when (a = '1' and state = S1) else '0';
end;

HDL Example 4.32 PATTERN RECOGNIZER MEALY FSM

4.7  DATA TYPES*
This section explains some subtleties about SystemVerilog and VHDL 
types in more depth.
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4 . 7 . 1   SystemVerilog

Prior to SystemVerilog, Verilog primarily used two types: reg and wire. 
Despite its name, a reg signal might or might not be associated with a  
regis ter. This was a great source of confusion for those learning the language. 
SystemVerilog introduced the logic type to eliminate the confusion; hence, 
this book emphasizes the logic type. This section explains the reg and 
wire types in more detail for those who need to read old Verilog code.

In Verilog, if a signal appears on the left-hand side of <= or = in an 
always block, it must be declared as reg. Otherwise, it should be 
declared as wire. Hence, a reg signal might be the output of a flip-flop, 
a latch, or combinational logic, depending on the sensitivity list and  
statement of an always block.

Input and output ports default to the wire type unless their type is  
explicitly defined as reg. The following example shows how a flip-flop  
is described in conventional Verilog. Note that clk and d default to 
wire, while q is explicitly defined as reg because it appears on the left-
hand side of <= in the always block.

module flop(input            clk,
            input      [3:0] d,
            output reg [3:0] q);

  always @(posedge clk)
    q <= d;
endmodule

SystemVerilog introduces the logic type. logic is a synonym for 
reg and avoids misleading users about whether it is actually a flip-
flop. Moreover, SystemVerilog relaxes the rules on assign statements 
and hierarchical port instantiations so that logic can be used outside 
always blocks where a wire traditionally would have been required. 
Thus, nearly all SystemVerilog signals can be logic. The excep-
tion is that signals with multiple drivers (e.g., a tristate bus) must be 
declared as a net, as described in HDL Example 4.10. This rule allows 
SystemVerilog to generate an error message rather than an x value when 
a logic signal is accidentally connected to multiple drivers.

The most common type of net is called a wire or tri. These two types 
are synonymous, but wire is conventionally used when a single driver is pres-
ent and tri is used when multiple drivers are present. Thus, wire is obsolete 
in SystemVerilog because logic is preferred for signals with a single driver.

When a tri net is driven to a single value by one or more drivers, it 
takes on that value. When it is undriven, it floats (z). When it is driven 
to a different value (0, 1, or x) by multiple drivers, it is in contention (x).

There are other net types that resolve differently when undriven or 
driven by multiple sources. These other types are rarely used but may be 
substituted anywhere a tri net would normally appear (e.g., for signals 
with multiple drivers). Each is described in Table 4.7.
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4 . 7 . 2   VHDL

Unlike SystemVerilog, VHDL enforces a strict data typing system that 
can protect the user from some errors but that is also clumsy at times.

Despite its fundamental importance, the STD_LOGIC type is not built 
into VHDL. Instead, it is part of the IEEE.STD_LOGIC_1164 library. 
Thus, every file must contain the library statements shown in the previ-
ous examples.

Moreover, IEEE.STD_LOGIC_1164 lacks basic operations such as 
addition, comparison, shifts, and conversion to integers for the STD_ 
LOGIC_VECTOR data. These were finally added to the VHDL 2008 stan-
dard in the IEEE.NUMERIC_STD_UNSIGNED library.

VHDL also has a BOOLEAN type with two values: true and false. 
BOOLEAN values are returned by comparisons (such as the equality com-
parison, s ='0') and are used in conditional statements, such as when 
and if. Despite the temptation to believe a BOOLEAN true value should 
be equivalent to a STD_LOGIC '1' and BOOLEAN false should mean 
STD_LOGIC '0', these types were not interchangeable prior to VHDL 
2008. For example, in old VHDL code, one must write

y <= d1 when (s = '1') else d0;

while in VHDL 2008, the when statement automatically converts s from 
STD_LOGIC to BOOLEAN so one can simply write

y <= d1 when s else d0;

Even in VHDL 2008, it is still necessary to write

q <= '1' when (state = S2) else '0';

instead of

q <= (state = S2);

Table 4.7 Net Resolution

Net Type No Driver Conflicting Drivers

tri z x

trireg previous value x

triand z 0 if there are any 0

trior z 1 if there are any 1

tri0 0 x

tri1 1 x
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because (state = S2) returns a BOOLEAN result, which cannot be directly 
assigned to the STD_LOGIC signal y.

Although we do not declare any signals to be BOOLEAN, they are 
automatically implied by comparisons and used by conditional state-
ments. Similarly, VHDL has an INTEGER type that represents both positive 
and negative integers. Signals of type INTEGER span at least the values 
–(231 – 1) to 231 – 1. Integer values are used as indices of busses. For 
example, in the statement

y <= a(3) and a(2) and a(1) and a(0);

0, 1, 2, and 3 are integers serving as an index to choose bits of the a signal.  
We cannot directly index a bus with a STD_LOGIC or STD_LOGIC_VECTOR 
signal. Instead, we must convert the signal to an INTEGER. This is demon-
strated in the example below for an 8:1 multiplexer that selects one bit 
from a vector using a 3-bit index. The TO_INTEGER function is defined in 
the IEEE.NUMERIC_STD_UNSIGNED library and performs the conversion 
from STD_LOGIC_VECTOR to INTEGER for positive (unsigned) values.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mux8 is
   port(d: in  STD_LOGIC_VECTOR(7 downto 0);
        s: in  STD_LOGIC_VECTOR(2 downto 0);
        y: out STD_LOGIC);
end;

architecture synth of mux8 is
begin
   y <=   d(TO_INTEGER(s));
end;

VHDL is also strict about out ports being exclusively for output. 
For example, the following code for two- and three-input AND gates is 
illegal VHDL because v is an output and is also used to compute w.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity  and23 is
 port(a, b, c: in STD_LOGIC;

 v, w: out   STD_LOGIC);
end;

architecture synth of and23 is
begin
 v <=   a and b;
 w <=   v and c;

end;

VHDL defines a special port type, buffer, to solve this problem. A 
signal connected to a buffer port behaves as an output but may also be 
used within the module. The corrected entity definition follows. Verilog 
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Most operations such as addition, subtraction, and Boolean logic are 
identical whether a number is signed or unsigned. However, magnitude 
comparison, multiplication, and arithmetic right shifts are performed differ-
ently for signed two’s complement numbers than for unsigned binary num-
bers. These operations will be examined in Chapter 5. HDL Example 4.33 
describes how to indicate that a signal represents a signed number.

4.8  PARAMETERIZED MODULES*
So far, all of our modules have had fixed-width inputs and outputs. For 
example, we had to define separate modules for 4- and 8-bit-wide 2:1 mul-
tiplexers. HDLs permit variable bit widths using parameterized modules.

HDL Example 4.34 declares a parameterized 2:1 multiplexer with a 
default width of 8, then uses it to create 8- and 12-bit 4:1 multiplexers.

SystemVerilog
// 4.33(a): unsigned multiplier
module multiplier(input    logic [3:0] a, b,
                              output logic [7:0] y);
    assign y = a * b;
endmodule

// 4.33(b): signed multiplier
module multiplier(input    logic signed [3:0] a, b,
                              output logic signed [7:0] y);

     assign y = a * b;
endmodule

In SystemVerilog, signals are considered unsigned by default. 
Adding the signed modifier (e.g., logic signed [3:0] a) 
causes the signal a to be treated as a signed—that is, two’s 
complement—number.

VHDL
–– 4.33(a): unsigned multiplier
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity multiplier is
     port(a, b: in     STD_LOGIC_VECTOR(3 downto 0);
            y:       out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of multiplier is
begin
     y <= a * b;
end;

VHDL uses the NUMERIC_STD_UNSIGNED library to perform  
arithmetic and comparison operations on STD_LOGIC_VECTORs. 
The vectors are treated as unsigned.

use IEEE.NUMERIC_STD_UNSIGNED.all;

VHDL also defines UNSIGNED and SIGNED data types in  
the IEEE.NUMERIC_STD library, but these involve type conver-
sions beyond the scope of this chapter.

HDL Example 4.33 (a) UNSIGNED MULTIPLIER (b) SIGNED MULTIPLIER

and SystemVerilog do not have this limitation and do 
not require buffer ports. VHDL 2008 eliminates this 
restriction by allowing out ports to be readable.

entity and23 is
 port(a,    b, c: in STD_LOGIC;

     v:   buffer   STD_LOGIC;
     w:    out      STD_LOGIC);

end;
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SystemVerilog
module mux2
    #(parameter width = 8)
     (input     logic [width–1:0] d0, d1,
        input     logic                     s,
        output  logic [width–1:0] y);

 assign y = s ? d1 : d0;
endmodule

SystemVerilog allows a #(parameter . . .) statement before 
the inputs and outputs to define parameters. The parameter 
statement includes a default value (8) of the parameter, in 
this case called width. The number of bits in the inputs and 
outputs can depend on this parameter.

module mux4_8(input   logic [7:0] d0, d1, d2, d3,
                        input   logic [1:0] s,
                         output logic [7:0] y);

    logic [7:0] low, hi;

     mux2 lowmux(d0, d1, s[0], low);
    mux2 himux(d2, d3, s[0], hi);
    mux2 outmux(low, hi, s[1], y);
endmodule

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers 
using their default widths.

In contrast, a 12-bit 4:1 multiplexer, mux4_12, would need 
to override the default width using #( ) before the instance 
name, as shown below.

module mux4_12(input    logic [11:0] d0, d1, d2, d3,
                         input    logic [1:0]    s,
                         output logic [11:0] y);

    logic [11:0] low, hi;

    mux2 #(12) lowmux(d0, d1, s[0], low);
    mux2 #(12) himux(d2, d3, s[0], hi);
    mux2 #(12) outmux(low, hi, s[1], y);
endmodule

Do not confuse the use of the # sign indicating delays with 
the use of #(...) in defining and overriding parameters.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
    generic(width: integer := 8);
    port(d0,
       d1: in    STD_LOGIC_VECTOR(width–1 downto 0);
       s:   in    STD_LOGIC;
       y:   out STD_LOGIC_VECTOR(width–1 downto 0));
end;

architecture synth of mux2 is
begin
    y <= d1 when s else d0;
end;

The generic statement includes a default value (8) of width. 
The value is an integer.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4_8 is
    port(d0, d1, d2,
             d3: in     STD_LOGIC_VECTOR(7 downto 0);
                  s:    in    STD_LOGIC_VECTOR(1 downto 0);
                   y:    out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture struct of mux4_8 is
    component mux2
       generic(width: integer := 8);
       port(d0,
              d1: in    STD_LOGIC_VECTOR(width-1 downto 0);
              s:    in    STD_LOGIC;
              y:    out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    signal low, hi: STD_LOGIC_VECTOR(7 downto 0);
begin
    lowmux: mux2   port   map(d0, d1, s(0), low);
    himux:      mux2   port   map(d2, d3, s(0), hi);
    outmux: mux2   port   map(low, hi, s(1), y);
end;

The 8-bit 4:1 multiplexer, mux4_8, instantiates three 2:1 mul-
tiplexers, using their default widths.

In contrast, a 12-bit 4:1 multiplexer, mux4_12, would need 
to override the default width using generic map, as shown 
below.

lowmux: mux2 generic map(12)
                     port map(d0, d1, s(0), low);
himux:      mux2 generic map(12)
                     port map(d2, d3, s(0), hi);
outmux: mux2 generic map(12)
                     port map(low, hi, s(1), y);

HDL Example 4.34 PARAMETERIZED N-BIT 2:1 MULTIPLEXERS
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HDL Example 4.35 shows a decoder, which is an even better appli-
cation of parameterized modules. A large N:2N decoder is cumbersome 
to specify with case statements, but easy using parameterized code that 
simply sets the appropriate output bit to 1. Specifically, the decoder uses 
blocking assignments to set all the bits to 0, then changes the appropri-
ate bit to 1.

HDLs also provide generate statements to produce a variable 
amount of hardware, depending on the value of a parameter. generate 
supports for loops and if statements to determine how many of what 
types of hardware to produce. HDL Example 4.36 demonstrates how to 
use generate statements to produce an N-input AND function from a 

Figure 4.29 mux4_12 synthesized circuit
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SystemVerilog
module decoder
    #(parameter N = 3)
     (input     logic [N–1:0]        a,
       output logic [2**N–1:0] y);

    always_comb
        begin
          y = 0;
          y[a] = 1;
        end
endmodule

2**N indicates 2N.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE. NUMERIC_STD_UNSIGNED.all;

entity decoder is
    generic(N: integer := 3);
    port(a: in     STD_LOGIC_VECTOR(N–1 downto 0);
             y: out STD_LOGIC_VECTOR(2**N–1 downto 0));
end;

architecture synth of decoder is
begin
   process(all)
   begin
       y <= (OTHERS => '0');
        y(TO_INTEGER(a)) <= '1';
   end process;
end;

2**N indicates 2N.

HDL Example 4.35 PARAMETERIZED N:2N DECODER
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SystemVerilog
module andN
    #(parameter width = 8)
     (input     logic [width–1:0] a,
        output logic                         y);

     genvar i;
     logic [width–1:0] x;

     generate
        assign x[0] = a[0];
        for(i=1; i<width; i=i+1) begin: forloop
           assign x[i] = a[i] & x[i–1];
        end

     endgenerate

     assign y = x[width–1];
endmodule

The for statement loops through i = 1, 2, … , width–1 to pro-
duce many consecutive AND gates. The begin in a generate  
for loop must be followed by a : and an arbitrary label  
(forloop, in this case).

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity andN is
   generic(width: integer := 8);
   port(a: in    STD_LOGIC_VECTOR(width–1 downto 0);
            y: out STD_LOGIC);
end;

architecture synth of andN is
   signal x: STD_LOGIC_VECTOR(width–1 downto 0);
begin
    x(0) <= a(0);
    gen: for i in 1 to width-1 generate
       x(i) <= a(i) and x(i-1);
    end generate;
    y <= x(width–1);
end;

The generate loop variable i does not need to be declared.

HDL Example 4.36 PARAMETERIZED N-INPUT AND GATE

4.9  TESTBENCHES
A testbench is an HDL module that is used to test another module, called 
the device under test (DUT). The testbench contains statements to apply 
inputs to the DUT and, ideally, to check that the correct outputs are pro-
duced. The input and desired output patterns are called test vectors.

Consider testing the sillyfunction module from Section 4.1.1 
that computes y ab c abc abc= + + . This is a simple module, so we can 
perform exhaustive testing by applying all eight possible test vectors.

Some tools also call the 
module to be tested the unit 
under test (UUT). 

Figure 4.30 andN synthesized circuit
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cascade of two-input AND gates. Of course, a reduction operator would 
be cleaner and simpler for this application, but the example illustrates 
the general principle of hardware generators.

Use generate statements with caution; it is easy to produce a large 
amount of hardware unintentionally!
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HDL Example 4.37 demonstrates a simple testbench. It instantiates 
the DUT, then applies the inputs. Blocking assignments and delays are 
used to apply the inputs in the appropriate order. The user must view 
the results of the simulation and verify by inspection that the correct 
outputs are produced. Testbenches are simulated the same as other HDL 
modules. However, they are not synthesizeable.

Checking for correct outputs is tedious and error-prone. Moreover, 
determining the correct outputs is much easier when the design is fresh 
in your mind. If you make minor changes and need to retest weeks 
later, determining the correct outputs becomes a hassle. A much bet-
ter approach is to write a self-checking testbench, shown in HDL  
Example 4.38.

Writing code for each test vector also becomes tedious, especially 
for modules that require a large number of vectors. An even better 

SystemVerilog
module testbench1();
   logic a, b, c, y;

   // instantiate device under test
   sillyfunction dut(a, b, c, y);

   // apply inputs one at a time
   initial begin
       a = 0; b = 0; c = 0; #10;
       c = 1;                     #10;
       b = 1; c = 0;            #10;
       c = 1;                     #10;
       a = 1; b = 0; c = 0; #10;
       c = 1;                     #10;
       b = 1; c = 0;            #10;
       c = 1;                     #10;
    end
endmodule

The initial statement executes the statements in its body at 
the start of simulation. In this case, it first applies the input 
pattern 000 and waits for 10 time units. It then applies 001 
and waits 10 more units, and so forth until all eight possible 
inputs have been applied. initial statements should be used 
only in testbenches for simulation, not in modules intended 
to be synthesized into actual hardware. Hardware has no 
way of magically executing a sequence of special steps when 
it is first turned on.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench1 is –– no inputs or outputs
end;

architecture sim of testbench1 is
   component sillyfunction
       port(a, b, c: in   STD_LOGIC;
                y:          out STD_LOGIC);
   end component;
   signal a, b, c, y: STD_LOGIC;
begin
   –– instantiate device under test
   dut: sillyfunction port map(a, b, c, y);

   –– apply inputs one at a time
   process begin
         a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
         c <= '1';                                wait for 10 ns;
         b <= '1'; c <= '0';                 wait for 10 ns;
         c <= '1';                                  wait for 10 ns;
         a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
         c <= '1';                               wait for 10 ns;
         b <= '1'; c <= '0';                 wait for 10 ns;
         c <= '1';                              wait for 10 ns;
         wait; –– wait forever
   end process;

end;

The process statement first applies the input pattern 000 and 
waits for 10 ns. It then applies 001 and waits 10 more ns, and 
so forth until all eight possible inputs have been applied.

At the end, the process waits indefinitely. Otherwise, the pro-
cess would begin again, repeatedly applying the pattern of 
test vectors.

HDL Example 4.37 TESTBENCH
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approach is to place the test vectors in a separate file. The testbench simply 
reads the test vectors from the file, applies the input test vector to the 
DUT, waits, checks that the output values from the DUT match the out-
put vector, and repeats until reaching the end of the test vectors file.

HDL Example 4.39 demonstrates such a testbench. The testbench 
generates a clock using an always/process statement with no sensitivity 
list, so that it is continuously reevaluated. At the beginning of the sim-
ulation, it reads the test vectors from a text file and pulses reset for 
two cycles. Although the clock and reset aren’t necessary to test combi-
national logic, they are included because they would be important when 

SystemVerilog
module testbench2();
    logic a, b, c, y;

    // instantiate device under test
    sillyfunction dut(a, b, c, y);

    // apply inputs one at a time
    // checking results
    initial begin
      a = 0; b = 0; c = 0; #10;
      assert (y = = = 1) else $error("000 failed.");
      c = 1;     #10;
      assert (y = = = 0) else $error("001 failed.");
      b = 1; c = 0;   #10;
      assert (y = = = 0) else $error("010 failed.");
      c = 1;      #10;
      assert (y = = = 0) else $error("011 failed.");
      a = 1; b = 0; c = 0; #10;
      assert (y = = = 1) else $error("100 failed.");
      c = 1;      #10;
      assert (y = = = 1) else $error("101 failed.");
      b = 1; c = 0;      #10;
      assert (y = = = 0) else $error("110 failed.");
      c = 1;     #10;
      assert (y = = = 0) else $error("111 failed.");
    end
endmodule

The SystemVerilog assert statement checks whether a spec-
ified condition is true. If not, it executes the else statement. 
The $error system task in the else statement prints an error 
message describing the assertion failure. assert is ignored 
during synthesis.

In SystemVerilog, comparison using = = or !=  is effective 
between signals that do not take on the values of x and z. 
Testbenches use the = = =  and != =  operators for comparisons 
of equality and inequality, respectively, because these opera-
tors work correctly with operands that could be x or z.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench2 is –– no inputs or outputs
end;

architecture sim of testbench2 is
    component sillyfunction
       port(a, b, c: in     STD_LOGIC;
              y:            out STD_LOGIC);
    end component;
    signal a, b, c, y: STD_LOGIC;
begin
    –– instantiate device under test
    dut: sillyfunction port map(a, b, c, y);

    –– apply inputs one at a time
    –– checking results
    process begin
      a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
          assert y = '1' report "000  failed.";
      c <= '1';                               wait for 10 ns;
          assert y = '0' report "001  failed.";
      b <= '1'; c <= '0';                 wait for 10 ns;
          assert y = '0' report "010  failed.";
      c <= '1';                               wait for 10 ns;
          assert y = '0' report "011  failed.";
      a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
          assert y = '1' report "100 failed.";
      c <= '1';                               wait for 10 ns;
          assert y = '1' report "101 failed.";
      b <= '1'; c <= '0';                 wait for 10 ns;
          assert y = '0' report "110  failed.";
      c <= '1';                               wait for 10 ns;
          assert y = '0' report "111  failed.";
      wait; ––   wait forever
  end process;
end;

The assert statement checks a condition and prints the mes-
sage given in the report clause if the condition is not satisfied. 
assert is meaningful only in simulation, not in synthesis.

HDL Example 4.38 SELF-CHECKING TESTBENCH
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testing a sequential DUT. example.txt is a text file containing the test 
vectors, the inputs and expected output written in binary:

000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

SystemVerilog
module testbench3();
   logic              clk,  reset;
   logic              a, b, c, y, yexpected;
   logic [31:0]    vectornum, errors;
   logic [3:0]       testvectors[10000:0];

   // instantiate device under test
   sillyfunction dut(a, b, c, y);

   // generate clock
   always
      begin
           clk = 1; #5; clk = 0; #5;
      end

   // at start of test, load vectors
   // and pulse reset
   initial
      begin
          $readmemb("example.txt", testvectors);
           vectornum = 0; errors = 0;
           reset = 1; #22; reset = 0;
      end

   // apply test vectors on rising edge of clk
   always @(posedge clk)
      begin
           #1; {a, b, c, yexpected} = testvectors[vectornum];
      end

   // check results on falling edge of clk
   always @(negedge clk)
        if (~reset) begin // skip during reset
           if (y ! = = yexpected) begin // check result
              $display("Error: inputs = %b", {a, b, c});
              $display(" outputs = %b (%b expected)", y, yexpected);
              errors = errors + 1;
          end
          vectornum = vectornum + 1;
          if (testvectors[vectornum] = = = 4'bx) begin
               $display("%d tests completed with %d errors",
                            vectornum, errors);
               $stop;
          end
      end
endmodule

HDL Example 4.39 TESTBENCH WITH TEST VECTOR FILE

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_TEXTIO.ALL; use STD.TEXTIO.all;

entity testbench3 is –– no inputs or outputs
end;

architecture sim of testbench3 is
   component sillyfunction
      port(a, b, c: in   STD_LOGIC;
               y:          out STD_LOGIC);
   end component;
   signal a, b, c, y:     STD_LOGIC;
   signal y_expected: STD_LOGIC;
   signal clk, reset:   STD_LOGIC;
begin
  –– instantiate device under test
  dut: sillyfunction port map(a, b, c, y);

  –– generate clock
  process begin
      clk <= '1'; wait for 5 ns;
      clk <= '0'; wait for 5 ns;
  end process;

  –– at start of test, pulse reset
  process begin
      reset <= '1'; wait for 27 ns; reset <= '0';
      wait;
  end process;

  –– run tests
  process is
      file tv: text;
      variable L: line;
      variable vector_in: std_logic_vector(2 downto 0);
      variable dummy: character;
      variable vector_out: std_logic;
      variable vectornum: integer := 0;
      variable errors: integer := 0;
  begin
     FILE_OPEN(tv, "example.txt", READ_MODE);
     while not endfile(tv) loop

       –– change vectors on rising edge
       wait until rising_edge(clk);

       –– read the next line of testvectors and split into pieces
       readline(tv, L);
       read(L, vector_in);
       read(L, dummy); –– skip over underscore
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$readmemb reads a file of binary numbers into the testvectors 
array. $readmemh is similar but reads a file of hexadecimal 
numbers.

The next block of code waits one time unit after the ris-
ing edge of the clock (to avoid any confusion if clock and 
data change simultaneously), then sets the three inputs and 
the expected output based on the four bits in the current test 
vector.

The testbench compares the generated output, y, with the 
expected output, yexpected, and prints an error if they don’t 
match. %b and %d indicate to print the values in binary and 
decimal, respectively. $display is a system task to print in  
the simulator window. For example, $display ("%b %b", 
y, yexpected); prints the two values, y and yexpected, in 
binary. %h prints a value in hexadecimal.

This process repeats until there are no more valid test 
vectors in the testvectors array. $stop stops the simulation.

Note that even though the SystemVerilog module sup-
ports up to 10,001 test vectors, it will terminate the simula-
tion after executing the eight vectors in the file.

       read(L, vector_out);
       (a, b, c) <= vector_in(2 downto 0) after 1 ns;
       y_expected <= vector_out after 1 ns;

       -- check results on falling edge
       wait until falling_edge(clk);

       if y /= y_expected then
           report "Error: y = " & std_logic'image(y);
           errors := errors + 1;
       end if;

       vectornum := vectornum + 1;
    end loop;

    -- summarize results at end of simulation
    if (errors = 0) then
        report "NO ERRORS -- " &
                  integer'image(vectornum) &
                  " tests completed successfully."
                  severity failure;
    else
       report integer'image(vectornum) &
                  " tests completed, errors = " &
                  integer'image(errors)
                  severity failure;
     end if;
  end process;
end;

The VHDL code uses file reading commands beyond 
the scope of this chapter, but it gives the sense of what a 
self-checking testbench looks like.

New inputs are applied on the rising edge of the clock, and the output 
is checked on the falling edge of the clock. Errors are reported as they 
occur. At the end of the simulation, the testbench prints the total number 
of test vectors applied and the number of errors detected.

The testbench in HDL Example 4.39 is overkill for such a simple 
circuit. However, it can easily be modified to test more complex circuits 
by changing the example.txt file, instantiating the new DUT, and 
changing a few lines of code to set the inputs and check the outputs.

4.10  SUMMARY
Hardware description languages (HDLs) are extremely important tools 
for modern digital designers. Once you have learned SystemVerilog or 
VHDL, you will be able to specify digital systems much faster than if 
you had to draw the complete schematics. The debug cycle is also often 
much faster because modifications require code changes instead of 
tedious schematic rewiring. However, the debug cycle can be much longer 
using HDLs if you don’t have a good idea of the hardware your code 
implies.
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HDLs are used for both simulation and synthesis. Logic simulation 
is a powerful way to test a system on a computer before it is turned into 
hardware. Simulators let you check the values of signals inside your system 
that might be impossible to measure on a physical piece of hardware. 
Logic synthesis converts the HDL code into digital logic circuits.

The most important thing to remember when you are writing HDL 
code is that you are describing real hardware, not writing a computer 
program. The most common beginner’s mistake is to write HDL code 
without thinking about the hardware you intend to produce. If you 
don’t know what hardware you are implying, you are almost certain not 
going to get what you want. Instead, begin by sketching a block diagram 
of your system, identifying which portions are combinational logic, 
which portions are sequential circuits or finite state machines, and so 
forth. Then, write HDL code for each portion, using the correct idioms 
to imply the kind of hardware you need.
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Exercises

The following exercises may be done using your favorite HDL. If you have a 
simulator available, test your design. Print the waveforms and explain how they 
prove that it works. If you have a synthesizer available, synthesize your code. 
Print the generated circuit diagram and explain why it matches your expectations.

Exercise 4.1 Sketch a schematic of the circuit described by the following HDL 
code. Simplify the schematic so that it shows a minimum number of gates.

Exercise 4.2 Sketch a schematic of the circuit described by the following HDL 
code. Simplify the schematic so that it shows a minimum number of gates.

Exercise 4.3 Write an HDL module that computes a four-input XOR function. 
The input is a3:0 and the output is y.

Exercise 4.4 Write a self-checking testbench for Exercise 4.3. Create a test vector 
file containing all 16 test cases. Simulate the circuit and show that it works. 

SystemVerilog
module exercise2(input    logic [3:0] a,

 output logic [1:0] y);
 always_comb
 if          (a[0]) y = 2'b11;
 else if (a[1]) y = 2'b10;
 else if (a[2]) y = 2'b01;
 else if (a[3]) y = 2'b00;
 else                  y = a[1:0];

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise2 is
 port(a: in    STD_LOGIC_VECTOR(3 downto 0);

 y: out STD_LOGIC_VECTOR(1 downto 0));
end;

architecture synth of exercise2 is
begin
 process(all) begin
 if        a(0) then y <= "11";
 elsif   a(1) then y <= "10";
 elsif   a(2) then y <= "01";
 elsif   a(3) then y <= "00";
 else                    y <=  a(1 downto 0);
 end if;

 end process;
end; 

SystemVerilog
module exercise1(input    logic a, b, c,

 output logic y, z);

 assign y = a & b & c | a & b & ~c | a & ~b & c;
 assign z = a & b | ~a & ~b;

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise1 is
 port(a, b, c: in    STD_LOGIC;

 y, z:      out   STD_LOGIC);
end;

architecture synth of exercise1 is
begin
 y <= (a and b and c) or (a and b and not c) or

 (a and not b and c);
 z <= (a and b) or (not a and not b);

end; 
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Introduce an error in the test vector file and show that the testbench reports a 
mismatch.

Exercise 4.5 Write an HDL module called minority. It receives three inputs, a, b, 
and c. It produces one output, y, that is TRUE if at least two of the inputs are FALSE.

Exercise 4.6 Write an HDL module for a hexadecimal seven-segment display 
decoder. The decoder should handle the digits A, B, C, D, E, and F, as well as 0–9.

Exercise 4.7 Write a self-checking testbench for Exercise 4.6. Create a test vector file 
containing all 16 test cases. Simulate the circuit and show that it works. Introduce 
an error in the test vector file and show that the testbench reports a mismatch.

Exercise 4.8 Write an 8:1 multiplexer module called mux8 with inputs s2:0, d0, 
d1, d2, d3, d4, d5, d6, d7, and output y.

Exercise 4.9 Write a structural module to compute the logic function 
y ab bc abc= + +  using multiplexer logic. Use the 8:1 multiplexer from Exercise 4.8.

Exercise 4.10 Repeat Exercise 4.9 using a 4:1 multiplexer and as many NOT 
gates as you need.

Exercise 4.11 Section 4.5.4 pointed out that a synchronizer could be correctly 
described with blocking assignments if the assignments were given in the proper 
order. Think of a simple sequential circuit that cannot be correctly described 
with blocking assignments, regardless of order.

Exercise 4.12 Write an HDL module for an eight-input priority circuit.

Exercise 4.13 Write an HDL module for a 2:4 decoder.

Exercise 4.14 Write an HDL module for a 6:64 decoder using three instances of 
the 2:4 decoders from Exercise 4.13 and a bunch of three-input AND gates.

Exercise 4.15 Write HDL modules that implement the Boolean equations from 
Exercise 2.13.

Exercise 4.16 Write an HDL module that implements the circuit from Exercise 2.26.

Exercise 4.17 Write an HDL module that implements the circuit from Exercise 2.27.

Exercise 4.18 Write an HDL module that implements the logic function from 
Exercise 2.28. Pay careful attention to how you handle don’t cares.

Exercise 4.19 Write an HDL module that implements the functions from 
Exercise 2.35.
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Exercise 4.20 Write an HDL module that implements the priority encoder from 
Exercise 2.36.

Exercise 4.21 Write an HDL module that implements the modified priority 
encoder from Exercise 2.37.

Exercise 4.22 Write an HDL module that implements the binary-to-thermometer 
code converter from Exercise 2.38.

Exercise 4.23 Write an HDL module implementing the days-in-month function 
from Question 2.2.

Exercise 4.24 Sketch the state transition diagram for the FSM described by the 
following HDL code.

SystemVerilog
module fsm2(input   logic clk, reset,
                    input   logic a, b,
                    output logic y);

   logic [1:0] state, nextstate;

   parameter  S0 =  2'b00;
   parameter  S1 =  2'b01;
   parameter  S2 =  2'b10;
   parameter  S3 =  2'b11;

   always_ff @(posedge clk, posedge reset)
     if (reset) state <= S0;
     else           state <= nextstate;

   always_comb
     case (state)
       S0: if (a ̂  b) nextstate = S1;
             else           nextstate = S0;
       S1: if (a & b) nextstate = S2;
             else           nextstate = S0;
       S2: if (a | b) nextstate = S3;
             else           nextstate = S0;
       S3: if (a | b) nextstate = S3;
             else           nextstate = S0;
     endcase

   assign y = (state = = S1) | (state = = S2);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm2 is
   port(clk, reset: in    STD_LOGIC;
            a, b:             in    STD_LOGIC;
            y:                out STD_LOGIC);
end;

architecture synth of fsm2 is
   type statetype is (S0, S1, S2, S3);
   signal state, nextstate: statetype;
begin
   process(clk, reset) begin
     if reset then state <= S0;
     elsif rising_edge(clk) then
        state <= nextstate;
     end if;
   end process;

   process(all) begin
     case state is
       when S0 => if (a xor b) then
                                nextstate <= S1;
                         else nextstate <= S0;
                         end if;
       when S1 => if (a and b) then
                                nextstate <= S2;
                         else nextstate <= S0;
                         end if;
       when S2 => if (a or b) then
                                nextstate <= S3;
                         else nextstate <= S0;
                         end if;
       when S3 => if (a or b) then
                                nextstate <= S3;
                         else nextstate <= S0;
                         end if;
     end case;
   end process;

   y <= '1' when((state = S1) or (state = S2))
           else '0';
end; 
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Exercise 4.25 Sketch the state transition diagram for the FSM described by the 
following HDL code. An FSM of this nature is used in a branch predictor on 
some microprocessors.

SystemVerilog
module fsm1(input    logic clk, reset,
                    input    logic taken, back,
                    output logic predicttaken);

   logic [4:0] state, nextstate;

   parameter  S0 = 5'b00001;
   parameter  S1 = 5'b00010;
   parameter  S2 = 5'b00100;
   parameter  S3 = 5'b01000;
   parameter  S4 = 5'b10000;

   always_ff @(posedge clk, posedge reset)
      if (reset) state <= S2;
      else           state <= nextstate;

   always_comb
      case (state)
        S0:  if (taken) nextstate = S1;
               else           nextstate = S0;
        S1: if (taken)  nextstate = S2;
                else          nextstate = S0;
        S2: if (taken)  nextstate = S3;
                else          nextstate = S1;
        S3: if (taken)  nextstate = S4;
                else          nextstate = S2;
        S4: if (taken)  nextstate = S4;
                else          nextstate = S3;
        default:            nextstate = S2;
      endcase

   assign predicttaken = (state  = = S4) |
                                       (state  = = S3) |
                                       (state  = = S2 & back);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164. all;

entity fsm1 is
    port(clk, reset:       in     STD_LOGIC;
            taken, back:     in     STD_LOGIC;
            predicttaken: out STD_LOGIC);
end;

architecture synth of fsm1 is
   type statetype is (S0, S1, S2, S3, S4);
   signal state, nextstate: statetype;
begin
   process(clk, reset) begin
      if reset then state <= S2;
      elsif rising_edge(clk) then
         state <= nextstate;
      end if;
   end process;

process(all) begin
      case state is
        when S0 => if taken then
                                nextstate <= S1;
                          else nextstate <= S0;
                          end if;
         when S1 => if taken then
                                 nextstate <= S2;
                          else nextstate <= S0;
                          end if;
         when S2 => if taken then
                                 nextstate <= S3;
                          else nextstate <= S1;
                          end if;
         when S3 => if taken then
                                 nextstate <= S4;
                          else nextstate <= S2;
                          end if;
         when S4 => if taken then
                                 nextstate <= S4;
                          else nextstate <= S3;
                          end if;
         when others =>    nextstate <= S2;
     end case;
   end process;

   –– output logic
   predicttaken <= '1' when
                            ((state = S4) or (state = S3) or
                            (state = S2 and back = '1'))
   else '0';
end; 
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Exercise 4.26 Write an HDL module for an SR latch.

Exercise 4.27 Write an HDL module for a JK flip-flop. The flip-flop has inputs, 
clk, J, and K, and output Q. On the rising edge of the clock, Q keeps its old 
value if J = K = 0. It sets Q to 1 if J = 1, resets Q to 0 if K = 1, and inverts Q if 
J = K = 1.

Exercise 4.28  Write an HDL module for the latch from Figure 3.18. Use one 
assignment statement for each gate. Specify delays of 1 unit or 1 ns to each gate. 
Simulate the latch and show that it operates correctly. Then, increase the inverter 
delay. How long does the delay have to be before a race condition causes the 
latch to malfunction?

Exercise 4.29 Write an HDL module for the traffic light controller from  
Section 3.4.1.

Exercise 4.30 Write three HDL modules for the factored parade mode traffic light 
controller from Example 3.8. The modules should be called controller, mode, 
and lights, and they should have the inputs and outputs shown in Figure 3.33(b).

Exercise 4.31 Write an HDL module describing the circuit in Figure 3.42.

Exercise 4.32 Write an HDL module for the FSM with the state transition 
diagram given in Figure 3.69 from Exercise 3.22.

Exercise 4.33 Write an HDL module for the FSM with the state transition 
diagram given in Figure 3.70 from Exercise 3.23.

Exercise 4.34 Write an HDL module for the improved traffic light controller 
from Exercise 3.24.

Exercise 4.35 Write an HDL module for the daughter snail from Exercise 3.25.

Exercise 4.36 Write an HDL module for the soda machine dispenser from 
Exercise 3.26.

Exercise 4.37 Write an HDL module for the Gray code counter from  
Exercise 3.27.

Exercise 4.38 Write an HDL module for the UP/DOWN Gray code counter from 
Exercise 3.28.

Exercise 4.39 Write an HDL module for the FSM from Exercise 3.29.

Exercise 4.40 Write an HDL module for the FSM from Exercise 3.30.



Exercises 229

Exercise 4.41 Write an HDL module for the serial two’s complementer from 
Question 3.2.

Exercise 4.42 Write an HDL module for the circuit in Exercise 3.31.

Exercise 4.43 Write an HDL module for the circuit in Exercise 3.32.

Exercise 4.44 Write an HDL module for the circuit in Exercise 3.33.

Exercise 4.45 Write an HDL module for the circuit in Exercise 3.34. You may 
use the full adder from Section 4.2.5.

SystemVerilog Exercises
The following exercises are specific to SystemVerilog.

Exercise 4.46 What does it mean for a signal to be declared tri in SystemVerilog?

Exercise 4.47 Rewrite the syncbad module from HDL Example 4.29. Use 
nonblocking assignments, but change the code to produce a correct synchronizer 
with two flip-flops.

Exercise 4.48 Consider the following two SystemVerilog modules. Do they have 
the same function? Sketch the hardware each one implies.

module code1(input  logic clk, a, b, c,
output logic y);

  logic x;

  always_ff @(posedge clk) begin
  x <= a & b;
  y <= x | c;

  end
endmodule

module code2(input  logic a, b, c, clk,
output logic y);

  logic x;

  always_ff @(posedge clk) begin
  y <= x | c;
  x <= a & b;

  end
endmodule

Exercise 4.49 Repeat Exercise 4.48 if the <= is replaced by = in every assignment.
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Exercise 4.50 The following SystemVerilog modules show errors that the 
authors have seen students make in the laboratory. Explain the error in each 
module and show how to fix it.

 (a) module latch(input logic        clk,
 input logic [3:0] d,
 output reg  [3:0] q);

 always @(clk)
 if (clk) q <= d;

endmodule

 (b) module gates(input  logic [3:0] a, b,
 output logic [3:0] y1, y2, y3, y4, y5);

 always @(a)
 begin
 y1 = a & b;
 y2 = a | b;
 y3 = a ^ b;
 y4 = ~(a & b);
 y5 = ~(a | b);

 end
endmodule

 (c) module mux2(input  logic [3:0] d0, d1,
 input  logic        s,

                 output logic [3:0] y);
  always @(posedge s)
  if (s) y <= d1;
  else   y <= d0;

endmodule

 (d) module twoflops(input  logic clk,
 input  logic d0, d1,
 output logic q0, q1);

  always @(posedge clk)
  q1 = d1;
  q0 = d0;

 endmodule

 (e) module FSM(input  logic clk,
 input  logic a,
 output logic out1, out2);

 logic state;

 // next state logic and register (sequential)
 always_ff @(posedge clk)
 if (state  = =  0) begin

 if (a)  state  <= 1;
 end else begin

 if (~a) state <= 0;
 end
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 always_comb // output logic (combinational)
          if (state = = 0) out1 = 1;
          else             out2 = 1;

endmodule

 (f) module priority(input   logic [3:0] a,
 output logic [3:0] y);

 always_comb
 if       (a[3]) y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;

endmodule

 (g) module divideby3FSM(input logic clk,
 input   logic reset,
 output logic  out);

 logic [1:0] state, nextstate;

 parameter S0  = 2'b00;
 parameter S1  = 2'b01;
 parameter S2  =  2'b10;

 // state register
 always_ff @(posedge clk, posedge reset)
 if (reset) state <= S0;
 else           state <= nextstate;

 // next state logic
 always @(state)
 case (state)
 S0: nextstate =  S1;
 S1: nextstate =  S2;
 S2: nextstate =  S0;

 endcase

 // output logic
 assign out = (state = = S2);

endmodule

 (h) module mux2tri(input  logic [3:0] d0, d1,
 input   logic             s,
 output tri      [3:0] y);

 tristate t0(d0, s, y);
 tristate t1(d1, s, y);

endmodule

 (i) module floprsen(input  logic      clk,
 input logic reset,
 input logic  set,
 input logic [3:0] d,
 output logic [3:0] q);
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 always_ff @(posedge clk, posedge reset)
 if (reset) q <= 0;
 else            q <= d;

 always @(set)
 if (set)     q <= 1;

endmodule

 (j) module and3(input    logic   a, b, c,
 output logic y);

 logic tmp;

 always @(a, b, c)
 begin
 tmp <= a & b;
 y    <= tmp & c;

 end
endmodule

VHDL Exercises
The following exercises are specific to VHDL.

Exercise 4.51 In VHDL, why is it necessary to write

q <= '1' when state = S0 else '0';

rather than simply

q <= (state = S0);

Exercise 4.52 Each of the following VHDL modules contain errors. For brevity, 
only the architecture is shown; assume that the library use clause and entity 
declaration are correct. Explain the errors and show how to fix them.

 (a) architecture synth of latch is
    begin
       process(clk) begin
         if clk = '1' then q <= d;
         end if;
       end process;
 end;

 (b) architecture proc of gates is
 begin

           process(a) begin
               Y1 <= a and b;
               y2 <= a or b;
               y3 <= a xor b;
               y4 <= a nand b;
               y5 <= a nor b;
          end process;

 end;
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 (c) architecture synth of flop is
 begin
  process(clk)
  if rising_edge(clk) then
  q <= d;

 end;

 (d) architecture synth of priority is
 begin
 process(all) begin
 if         a(3) then y <= "1000";
elsif a(2) then y <= "0100";
elsif  a(1) then y <= "0010";
elsif  a(0) then y <= "0001";
end if;

 end process;
 end;

 (e) architecture synth of divideby3FSM is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;

 begin
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 process(state) begin
 case state is
 when S0 => nextstate <= S1;
 when S1 => nextstate <= S2;
 when S2 => nextstate <= S0;

 end case;
 end process;

 q <= '1' when state = S0 else '0';
end;

 (f) architecture struct of mux2 is
 component tristate
 port(a:   in    STD_LOGIC_VECTOR(3 downto 0);

 en: in    STD_LOGIC;
 y:    out STD_LOGIC_VECTOR(3 downto 0));

 end component;

   begin
   t0: tristate port map(d0, s, y);
   t1: tristate port map(d1, s, y);

  end;
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 (g) architecture asynchronous of floprs is
 begin

 process(clk, reset) begin
 if reset then
 q <= '0';

 elsif rising_edge(clk) then
 q <= d;

 end if;
 end process;

 process(set) begin
 if set then
 q <= '1';

 end if;
 end process;

 end;
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Interview Questions

The following exercises present questions that have been asked at interviews for 
digital design jobs.

Question 4.1 Write a line of HDL code that gates a 32-bit bus called data with 
another signal called sel to produce a 32-bit result. If sel is TRUE, result = 
data. Otherwise, result should be all 0’s.

Question 4.2 Explain the difference between blocking and nonblocking 
assignments in SystemVerilog. Give examples.

Question 4.3 What does the following SystemVerilog statement do?
assign result = |(data[15:0] & 16'hC820);
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5Digital Building Blocks

5.1  INTRODUCTION
Up to this point, we have examined the design of combinational and 
sequential circuits using Boolean equations, schematics, and HDLs. This 
chapter introduces more elaborate combinational and sequential build-
ing blocks used in digital systems. These blocks include arithmetic cir-
cuits, counters, shift registers, memory arrays, and logic arrays. These 
building blocks are not only useful in their own right but they also 
demonstrate the principles of hierarchy, modularity, and regularity. The 
building blocks are hierarchically assembled from simpler components, 
such as logic gates, multiplexers, and decoders. Each building block 
has a well-defined interface and can be treated as a black box when the 
underlying implementation is unimportant. The regular structure of each 
building block is easily extended to different sizes. In Chapter 7, we use 
many of these building blocks to build a microprocessor.

5.2  ARITHMETIC CIRCUITS
Arithmetic circuits are the central building blocks of computers. 
Computers and digital logic perform many arithmetic functions: addi-
tion, subtraction, comparisons, shifts, multiplication, and division. This 
section describes hardware implementations for all of these operations.

5 . 2 . 1   Addition

Addition is one of the most common operations in digital systems. We 
first consider how to add two 1-bit binary numbers. We then extend to 
N-bit binary numbers. Adders also illustrate trade-offs between speed 
and complexity.

 5.1 Introduction 
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Half Adder
We begin by building a half adder. As shown in Figure 5.1, the half adder 
has two inputs, A and B, and two outputs, S and Cout. S is the sum of A 
and B. If A and B are both 1, S is 2, which cannot be represented with a 
single binary digit. Instead, it is indicated with a carry out Cout in the next 
column. The half adder can be built from an XOR gate and an AND gate.

In a multi-bit adder, Cout is added or carried in to the next most sig-
nificant bit. For example, in Figure 5.2, the carry bit shown in blue is the 
output Cout of the first column of 1-bit addition and the input Cin to the 
second column of addition. However, the half adder lacks a Cin input to 
accept the Cout of the previous column. The full adder, described in the 
next section, solves this problem.

Full Adder
A full adder, introduced in Section 2.1, accepts the carry in Cin as shown 
in Figure 5.3. The figure also shows the output equations for S and Cout.

Carry Propagate Adder
An N-bit adder sums two N-bit inputs, A and B, and a carry in Cin to 
produce an N-bit result S and a carry out Cout. It is commonly called 
a carry propagate adder (CPA) because the carry out of one bit prop-
agates into the next bit. The symbol for a CPA is shown in Figure 5.4; 
it is drawn just like a full adder except that A, B, and S are busses 
rather than single bits. Three common CPA implementations are called  
ripple-carry adders, carry-lookahead adders, and prefix adders.

Ripple-Carry Adder
The simplest way to build an N-bit carry propagate adder is to chain 
together N full adders. The Cout of one stage acts as the Cin of the next 
stage, as shown in Figure 5.5 for 32-bit addition. This is called a  
ripple-carry adder. It is a good application of modularity and regularity: 
the full adder module is reused many times to form a larger system. The 
ripple-carry adder has the disadvantage of being slow when N is large. 
S31 depends on C30, which depends on C29, which depends on C28, and 
so forth all the way back to Cin, as shown in blue in Figure 5.5. We say 
that the carry ripples through the carry chain. The delay of the adder, 
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tripple, grows directly with the number of bits, as given in Equation. 5.1, 
where tFA is the delay of a full adder.

 t NtFAripple =  (5.1)

Carry-Lookahead Adder
The fundamental reason that large ripple-carry adders are slow is that 
the carry signals must propagate through every bit in the adder. A carry- 
lookahead adder (CLA) is another type of carry propagate adder that 
solves this problem by dividing the adder into blocks and providing cir-
cuitry to quickly determine the carry out of a block as soon as the carry 
in is known. Thus, it is said to look ahead across the blocks rather than 
waiting to ripple through all the full adders inside a block. For example, 
a 32-bit adder may be divided into eight 4-bit blocks.

CLAs use generate (G) and propagate (P) signals that describe how a 
column or block determines the carry out. The ith column of an adder is 
said to generate a carry if it produces a carry out independent of the carry 
in. The ith column of an adder is guaranteed to generate a carry Ci if Ai 
and Bi are both 1. Hence, Gi , the generate signal for column i, is calculated 
as Gi = Ai & Bi. The column is said to propagate a carry if it produces a 
carry out whenever there is a carry in. The ith column will propagate a 
carry in, Ci−1, if either Ai or Bi is 1. Thus, Pi = Ai | Bi. Using these defini-
tions, we can rewrite the carry logic for a particular column of the adder. 
The ith column of an adder will generate a carry out Ci if it either gener-
ates a carry, Gi, or propagates a carry in, PiCi−1. In equation form,

 C A B A B C G PCi i i i i i i i i= + + = +− −( ) 1 1  (5.2)

The generate and propagate definitions extend to multiple-bit blocks. 
A block is said to generate a carry if it produces a carry out independent 
of the carry in to the block. The block is said to propagate a carry if it 
produces a carry out whenever there is a carry in to the block. We define 
1-bit block generate and propagate signals, Gi:j and Pi:j, for blocks span-
ning columns i through j.

A block generates a carry if the most significant column generates a 
carry, or if the previous column generated a carry and the most signifi-
cant column propagates it, and so forth. For example, the generate logic 
for a block spanning columns 3 through 0 is

 G G P G P G PG3 0 3 3 2 2 1 1 0: ( ( ))= + + +  (5.3)

A block propagates a carry if all the columns in the block propagate the 
carry. For example, the propagate logic for a block spanning columns 3 
through 0 is

 P P P P P3 0 3 2 1 0: =  (5.4)

Schematics typically show 
signals flowing from left to 
right. Arithmetic circuits 
break this rule because the 
carries flow from right to left 
(from the least significant 
column to the most significant 
column). We keep the least 
significant column on the 
right and the most significant 
column on the left because 
that is how we’re used to 
viewing and adding numbers. 

Throughout the ages, people 
have used many devices to 
perform arithmetic. Toddlers 
count on their fingers (and 
some adults stealthily do too). 
The Chinese and Babylonians 
invented the abacus as early 
as 2400 BC. Slide rules, 
invented in 1630, were in 
use until the 1970’s, when 
scientific hand calculators 
became prevalent. Computers 
and digital calculators are 
ubiquitous today. What will 
be next? 
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Using the block generate and propagate signals, we can quickly compute 
the carry out of the block, Ci, using the carry in to the block, Cj−1.

 C G P Ci i j i j j= + −: : 1  (5.5)

Figure 5.6(a) shows a 32-bit carry-lookahead adder composed of 
eight 4-bit blocks. Each block contains a 4-bit ripple-carry adder and 
some lookahead logic to compute the carry out of the block given the 
carry in, as shown in Figure 5.6(b). The AND and OR gates needed to 
compute the column generate and propagate signals, Gi and Pi, using 
signals Ai and Bi are left out for brevity. Again, the carry-lookahead 
adder demonstrates modularity and regularity.

All of the CLA blocks compute the 1-bit column and block generate 
and propagate signals simultaneously. The critical path starts with com-
puting G0 and G3:0 in the first CLA block. Then, Cin advances directly to 
Cout through the AND/OR gate in each block until the last. Specifically, 
after all of the column and block propagate and generate signals are 
calculated, Cin proceeds through the AND/OR gate to produce C3; C3 
then proceeds through its block’s AND/OR gate to produce C7; C7 pro-
ceeds through its block’s AND/OR gate to produce C11, and so on until 
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C27, the carry in to the last block. For a large adder, this is much faster 
than waiting for the carries to ripple through each consecutive bit of the 
adder. Finally, the critical path through the last block contains a short 
ripple-carry adder. Thus, an N-bit adder divided into k-bit blocks has a 
delay

 t t t
N
k

t ktCLA pg pg FA= + + −






 +_ _block AND OR1  (5.6)

where tpg is the delay of the column propagate and generate gates (a sin-
gle AND or OR gate) to generate Pi and Gi, tpg_block is the delay to find 
the block propagate and generate signals Pi:j and Gi:j for a k-bit block, 
and tAND_OR is the delay from Cin to Cout through the final AND/OR 
logic of the k-bit CLA block. For N > 16, the carry-lookahead adder is 
generally much faster than the ripple-carry adder. However, the adder 
delay still increases linearly with N.

Example 5.1  RIPPLE-CARRY ADDER AND CARRY-LOOKAHEAD 
ADDER DELAY

Compare the delays of a 32-bit ripple-carry adder and a 32-bit carry-lookahead 
adder with 4-bit blocks. Assume that each two-input gate delay is 100 ps and 
that a full adder delay is 300 ps.

Solution According to Equation 5.1, the propagation delay of the 32-bit ripple- 
carry adder is 32 × 300 ps = 9.6 ns.

The CLA has tpg = 100 ps, tpg_block = 6 × 100 ps = 600 ps, and tAND_OR = 2 × 100 ps =  
200 ps. According to Equation 5.6, the propagation delay of the 32-bit car-
ry-lookahead adder with 4-bit blocks is thus 100 ps + 600 ps + (32/4 − 1) × 200 
ps + (4 × 300 ps) = 3.3 ns, almost three times faster than the ripple-carry adder.
 

Prefix Adder*
Prefix adders extend the generate and propagate logic of the carry- 
lookahead adder to perform addition even faster. They first compute 
G and P for pairs of columns, then for blocks of 4, then for blocks of 
8, then 16, and so forth until the generate signal for every column is 
known. The sums are computed from these generate signals.

In other words, the strategy of a prefix adder is to compute the 
carry in Ci−1 for each column i as quickly as possible, then to compute 
the sum, using

 S A B Ci i i i= ⊕ ⊕ −( ) 1  (5.7)

Define column i = −1 to hold Cin, so G−1 = Cin and P−1 = 0. Then, 
Ci−1 = Gi−1:−1 because there will be a carry out of column i − 1 if the block 
spanning columns i − 1 through −1 generates a carry. The generated carry 
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is either generated in column i − 1 or generated in a previous column and 
propagated. Thus, we rewrite Equation 5.7 as

 S A B Gi i i i= ⊕ ⊕ − −( ) :1 1  (5.8)

Hence, the main challenge is to rapidly compute all the block gener-
ate signals G−1:−1, G0:−1, G1:−1, G2:−1,…, GN−2:−1. These signals, along 
with P−1:−1,P0:−1, P1:−1, P2:−1,…, PN−2:−1, are called prefixes.

Figure 5.7 shows an N = 16-bit prefix adder. The adder begins with 
a precomputation to form Pi and Gi for each column from Ai and Bi 
using AND and OR gates. It then uses log2N = 4 levels of black cells to 
form the prefixes of Gi:j and Pi:j. A black cell takes inputs from the upper 
part of a block spanning bits i:k and from the lower part spanning bits 
k − 1:j. It combines these parts to form generate and propagate signals 
for the entire block spanning bits i:j using the equations

 G G P Gi j i k i k k j: : : := + −1  (5.9)

 P P Pi j i k k j: : := − 1  (5.10)

Early computers used 
ripple-carry adders because 
components were expensive 
and ripple-carry adders used 
the least hardware. Virtually 
all modern PCs use prefix 
adders on critical paths 
because transistors are now 
cheap and speed is of great 
importance. 
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In other words, a block spanning bits i:j will generate a carry if the 
upper part (i:k) generates a carry or if the upper part propagates a carry 
that is generated in the lower part (k − 1:j). The block will propagate a 
carry if both the upper and lower parts propagate the carry. Finally, the 
prefix adder computes the sums using Equation 5.8.

In summary, the prefix adder achieves a delay that grows logarith-
mically rather than linearly with the number of columns in the adder. 
This speedup is significant, especially for adders with 32 or more bits, 
but it comes at the expense of more hardware than a simple carry- 
lookahead adder. The network of black cells is called a prefix tree.

The general principle of using prefix trees to perform computations 
in time that grows logarithmically with the number of inputs is a pow-
erful technique. With some cleverness, it can be applied to many other 
types of circuits (see, for example, Exercise 5.7).

The critical path for an N-bit prefix adder involves the precomputa-
tion of Pi and Gi followed by log2N stages of black prefix cells to obtain 
all of the prefixes. Gi-1:−1 then proceeds through the final XOR gate at 
the bottom to compute Si. Mathematically, the delay of an N-bit prefix 
adder is

 t t N t tPA pg pg= + +log prefix XOR2 ( )_  (5.11)

where tpg_prefix is the delay of a black prefix cell.

Example 5.2 PREFIX ADDER DELAY

Compute the delay of a 32-bit prefix adder. Assume that each two-input gate 
delay is 100 ps.

Solution The propagation delay of each black prefix cell tpg_prefix is 200 ps (i.e., 
two gate delays). Thus, using Equation 5.11, the propagation delay of the 32-bit 
prefix adder is 100 ps + log2(32) × 200 ps + 100 ps = 1.2 ns, which is about 
three times faster than the carry-lookahead adder and eight times faster than the 
ripple-carry adder from Example 5.1. In practice, the benefits are not quite this 
great, but prefix adders are still substantially faster than the alternatives.
 

Putting It All Together
This section introduced the half adder, full adder, and three types of 
carry propagate adders: ripple-carry, carry-lookahead, and prefix adders. 
Faster adders require more hardware and therefore are more expensive 
and power-hungry. These trade-offs must be considered when choosing 
an appropriate adder for a design.

Hardware description languages provide the + operation to specify a 
CPA. Modern synthesis tools select among many possible implementations, 

Notice that the delay of the 
final (sum) box in the prefix 
adder is one XOR delay (not 
two) because the computation 
of A Bi i⊕  already occurred 
earlier because Ai and Bi were 
available. 
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choosing the cheapest (smallest) design that meets the speed requirements. 
This greatly simplifies the designer’s job. HDL Example 5.1 describes a 
CPA with carries in and out, and Figure 5.8 shows the resulting hardware.

5 . 2 . 2   Subtraction

Recall from Section 1.4.6 that adders can add positive and negative 
numbers using two’s complement number representation. Subtraction is 
almost as easy: flip (i.e., reverse) the sign of the second number, then 
add. Flipping the sign of a two’s complement number is done by invert-
ing the bits and adding 1.

To compute Y = A − B, first create the two’s complement of B: invert the 
bits of B to obtain B and add 1 to get − = +B B 1. Add this quantity to A 
to get Y = A + B + 1 = A − B. This sum can be performed with a single CPA 
by adding A + B with Cin = 1. Figure 5.9 shows the symbol for a subtractor 
and the underlying hardware for performing Y = A − B. HDL Example 5.2 
describes a subtractor, and Figure 5.10 shows the resulting hardware.

SystemVerilog
module adder #(parameter N = 8)

 (input  logic [N–1:0] a, b,
 input  logic  cin,
 output logic [N–1:0] s,
 output logic  cout);

 assign {cout, s} = a + b + cin;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity adder is
 generic(N: integer := 8);
 port(a, b: in  STD_LOGIC_VECTOR(N–1 downto 0);

 cin:  in  STD_LOGIC;
 s:  out STD_LOGIC_VECTOR(N–1 downto 0);
 cout: out STD_LOGIC);

end;

architecture synth of adder is
 signal result: STD_LOGIC_VECTOR(N downto 0);

begin
 result <= (“0” & a) + (“0” & b) + cin;
 s  <= result(N–1 downto 0);
 cout  <= result(N);

end;

HDL Example 5.1 CARRY PROPAGATE ADDER (CPA)
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Figure 5.8 Synthesized adder
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5 . 2 . 3   Comparators

A comparator determines whether two binary numbers are equal or if 
one is greater or less than the other. A comparator receives two N-bit 
binary numbers A and B and outputs a 1-bit comparison result.

An equality comparator produces a single output, indicating whether 
A is equal to B (A == B). A magnitude comparator produces one or 
more outputs, indicating the relative values of A and B.

The equality comparator is the simpler piece of hardware. Figure 5.11 
shows the symbol and implementation of a 4-bit equality comparator. It 
first checks to determine whether the corresponding bits in each column 
of A and B are equal, using XNOR gates. The numbers are equal if all of 
the columns are equal.

SystemVerilog
module subtractor #(parameter N = 8)

 (input  logic [N–1:0] a, b,
 output logic [N–1:0] y);

 assign y = a – b;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity subtractor is
 generic(N: integer := 8);
 port(a, b: in  STD_LOGIC_VECTOR(N–1 downto 0);

 y:  out STD_LOGIC_VECTOR(N–1 downto 0));
end;

architecture synth of subtractor is
begin
 y <= a – b;

end;

HDL Example 5.2 SUBTRACTOR
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Magnitude comparison of signed numbers is usually done by com-
puting A − B and looking at the sign (most significant bit) of the result 
as shown in Figure 5.12. If the result is negative (i.e., the sign bit is 1), 
then A is less than B. Otherwise, A is greater than or equal to B. This 
comparator, however, functions incorrectly upon overflow. Exercises 5.9 
and 5.10 explore this limitation and how to fix it. HDL Example 5.3 
shows how to use various comparison operations for unsigned numbers, 
and Figure 5.13 shows the resulting hardware.

A < B

–

BA

[N –1]

N

N N

Figure 5.12 N-bit signed 
comparator

SystemVerilog
module comparators #(parameter N = 8)

  (input  logic [N–1:0] a, b,
  output logic eq, neq, lt, lte, gt, gte);

 assign eq = (a == b);
 assign neq = (a != b);
 assign lt = (a < b);
 assign lte = (a <= b);
 assign gt = (a > b);
 assign gte = (a >= b);

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;

entity comparators is
 generic(N: integer := 8);
 port(a, b: in STD_LOGIC_VECTOR(N–1 downto 0);

 eq, neq, lt, lte, gt, gte: out STD_LOGIC);
end;

architecture synth of comparators is
begin
 eq <= ‘1’ when (a = b) else ‘0’;
 neq <= ‘1’ when (a /= b) else ‘0’;
 lt <= ‘1’ when (a < b) else ‘0’;
 lte <= ‘1’ when (a <= b) else ‘0’;
 gt <= ‘1’ when (a > b) else ‘0’;
 gte <= ‘1’ when (a >= b) else ‘0’;

end;

HDL Example 5.3 COMPARATORS
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5 . 2 . 4   ALU

An Arithmetic/Logical Unit (ALU) combines a variety of mathematical 
and logical operations into a single unit. For example, a typical ALU 
might perform addition, subtraction, AND, and OR operations. The 
ALU forms the heart of most computer systems.

Figure 5.14 shows the symbol for an N-bit ALU with N-bit inputs 
and outputs. The ALU receives a 2-bit control signal ALUControl that 
specifies which function to perform. Control signals will generally be 
shown in blue to distinguish them from the data. Table 5.1 lists typical 
functions that the ALU can perform.

Figure 5.15 shows an implementation of the ALU. The ALU contains 
an N-bit adder and N 2-input AND and OR gates. It also contains inverters 

ALU

N N

N

2

A B

Result

ALUControl

Figure 5.14 ALU symbol

Table 5.1 ALU operations

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

+
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A B

Cout
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01

ALUControl
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NN

N

N

N NNN

N
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011011

A
LU

C
ontrol0

Figure 5.15 N-bit ALU
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and a multiplexer to invert input B when ALUControl0 is asserted. A 4:1 
multiplexer chooses the desired function based on ALUControl.

More specifically, if ALUControl = 00, the output multiplexer 
chooses A + B. If ALUControl = 01, the ALU computes A − B. (Recall 
from Section 5.2.2 that B + 1 = −B in two’s complement arithmetic. 
Because ALUControl0 is 1, the adder receives inputs A and B and an 
asserted carry in, causing it to perform subtraction: A + B + 1 = A − B.) 
If ALUControl = 10, the ALU computes A AND B. If ALUControl = 11, 
the ALU performs A OR B.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. Figure 5.16 shows the ALU symbol with 
a 4-bit Flags output. As shown in the schematic of this ALU in Figure 
5.17, the Flags output is composed of the N, Z, C, and V flags that indi-
cate, respectively, that the ALU output, Result, is negative or zero or that 
the adder produced a carry out or overflowed. Recall that the most sig-
nificant bit of a two’s complement number is 1 if it is negative and 0 
otherwise. Thus, the N (Negative) flag is connected to the most signifi-
cant bit of the ALU output, Result31. The Z (Zero) flag is asserted when 
all of the bits of Result are 0, as detected by the N-bit NOR gate in 
Figure 5.17. The C (Carry out) flag is asserted when the adder produces 
a carry out and the ALU is performing addition or subtraction (indi-
cated by ALUControl1 = 0).

Overflow detection, as shown on the left side of Figure 5.17, is trick-
ier. Recall from Section 1.4.6 that overflow occurs when the addition of 

ALU
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Figure 5.16 ALU symbol with 
output flags
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two same signed numbers produces a result with the opposite sign. So, V 
(oVerflow) is asserted when all three of the following conditions are true: 
(1) the ALU is performing addition or subtraction (ALUControl1 = 0), 
(2) A and Sum have opposite signs, as detected by the XOR gate, and 
(3) overflow is possible. That is, as detected by the XNOR gate, either 
A and B have the same sign and the adder is performing addition 
(ALUControl0 = 0) or A and B have opposite signs and the adder is per-
forming subtraction (ALUControl0 = 1). The 3-input AND gate detects 
when all three conditions are true and asserts V.

The ALU flags can also be used for comparisons, as shown in 
Table  5.2. To compare inputs A and B, the ALU computes A − B and 
looks at the flags. If Z is asserted, the result is 0, so A = B. Otherwise, A 
is not equal to B.

Magnitude comparison is messier and depends on whether the num-
bers are signed or unsigned. For example, to determine A < B, we com-
pute A − B and check whether the result is negative. If the numbers are 
unsigned, the result is negative if there is no carry out.1 If the numbers 
are signed, we can’t rely on the carry because small negative numbers 
are represented in the same way as large positive unsigned numbers.  
Instead, we simply compute A − B and see whether the answer is neg-
ative, indicated by the N flag. However, if overflow occurs, the N flag 
will be incorrect. Hence, A is less than B if N ⊕ V (in other words, if 
the answer is negative and there is no overflow or if the answer is pos-
itive but overflow occurred). In summary, let us define L (the Less than 
signal) to be true if A < B. For unsigned numbers, L = C. For signed 

1  You can check this by trying some numbers. Alternatively, note that reversing the sign 
(i.e., taking the two’s complement) of N-bit numbers for subtraction produces −B = B + 
1 = 2N – B. Now, A + (−B) = 2N + A – B. This will have a carry out (a 1 in column N) if 
A ≥ B and, hence, no carry out if A < B.

Table 5.2 Signed and unsigned comparisons

Comparison Signed Unsigned

= Z Z

≠ Z Z

< N⊕V C

≤ Z + (N⊕V) Z + C

> Z • (N⊕V) Z • C

≥ (N⊕V) C
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numbers, L = N ⊕ V. The remainder of the checks are easier. Less than 
or equal to (≤) is L OR Z because L indicates less than and Z indicates 
equal to. Greater than or equal to (≥) is the opposite of less than: L. 
Greater than (>) is indicated by greater than or equal to, but not equal: 
L AND Z .

Example 5.3 COMPARISONS

Consider 4-bit numbers A = 1111 and B = 0010. Determine whether A < B, first 
interpreting the numbers as unsigned (15 and 2) and then as signed (−1 and 2).

Solution Compute A – B = A + B + 1 = 1111 + 1101 + 1 = 11101. The carry out 
C is 1, as shown in blue. The N flag is 1, as shown in italics. The V flag is 0 
because the result has the same sign bit as A. The Z flag is 0 because the answer 
is not 0000.

For unsigned comparison, L = ~C = 0 because 15 is not less than 2. For signed 
comparison, L = N ⊕ V = 1 because −1 is less than 2.

Certain ALUs also implement an instruction called set if less than (SLT). 
When A < B, Result = 1. Otherwise, Result = 0. This is convenient for 
computers that do not have access to ALU flags because it essentially 
stores flag information in the result. SLT typically treats inputs as signed. 
Another flavor (SLTU) treats inputs as unsigned. Many variations on 
this basic ALU exist that support other functions, such as NOT, XOR, 
or XNOR. The HDL for an N-bit ALU, including versions that support 
SLT and output flags, is left to Exercises 5.11 to 5.14. 

Example 5.4 EXPANDING THE ALU TO HANDLE SLT

Expand the ALU to handle the set if less than (SLT) operation.

Solution To add another function to the ALU, we must expand the multiplexer 
to have five inputs. We determine if A is less than B by performing A − B; if the 
result is negative, A is less than B. Table 5.3 shows the updated ALUControl sig-
nal for handling SLT, and Figure 5.18(a) shows the expanded circuit, with changes 
highlighted in blue (for control signals) and black. We use ALUControl = 101 for 
the SLT operation and take advantage of the fact that making ALUControl0 = 1 
causes the adder to perform A − B. When SumN–1 = 1, the result of A − B is neg-
ative, and A is less than B. So, we zero-extend SumN–1 and feed it into the 101 
multiplexer input to complete the SLT operation. Note, however, that this imple-
mentation does not account for overflow. When overflow occurs, Sum will have 
the incorrect sign. So, we XOR the sign bit of Sum with V, the overflow signal, to 
correctly indicate a negative Sum, as shown in Figure 5.18(b). 

Table 5.3 ALU expanded operation 
for SLT

ALUControl2:0 Function

000 Add

001 Subtract

010 AND

011 OR

101 SLT
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5 . 2 . 5   Shifters and Rotators

Shifters and rotators move bits and multiply or divide by powers of 2. 
As the name implies, a shifter shifts a binary number left or right by a 
specified number of positions. Several kinds of commonly used shifters 
exist:

 ▸  Logical shifter—shifts the number to the left or right and fills empty 
spots with 0’s. 

Example: 11001 >> 2 = 00110; 11001 << 2 = 00100

 ▸  Arithmetic shifter—is the same as a logical shifter, but on right shifts 
fills the most significant bits with a copy of the old most significant 
bit (msb). This is useful for multiplying and dividing signed num-
bers (see Sections 5.2.6 and 5.2.7). Arithmetic shift left is the same 
as logical shift left.

Example: 11001 >>> 2 = 11110; 11001 << 2 = 00100. The opera-
tors <<, >>, and >>> typically indicate shift left, logical shift right, 
and arithmetic shift right, respectively.

Figure 5.18 ALU expanded to support SLT (a) not accounting for overflow, (b) accounting for overflow
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 ▸ Rotator—rotates a number in a circle such that empty spots are 
filled with bits shifted off the other end. 

Example: 11001 ROR 2 = 01110; 11001 ROL 2 = 00111. ROR = rotate 
right; ROL = rotate left.

An N-bit shifter can be built from N N:1 multiplexers. The input 
is shifted by 0 to N −1 bits, depending on the value of the log2N-bit 
select lines. Figure 5.19 shows the symbol and hardware of 4-bit shift-
ers. Depending on the value of the 2-bit shift amount shamt1:0, the out-
put Y receives the input A shifted by 0 to 3 bits. For all shifters, when 
shamt1:0 = 00, Y = A. Exercise 5.22 covers rotator designs.

A left shift is a special case of multiplication. A left shift by N bits 
multiplies the number by 2N. For example, 0000112 << 4 = 1100002 is 
equivalent to 310 × 24 = 4810.

An arithmetic right shift is a special case of division. An arithme-
tic right shift by N bits divides the number by 2N. For example, 111002 
>>> 2 = 111112 is equivalent to −410/2

2 = −110.
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Figure 5.19 4-bit shifters: (a) shift left, (b) logical shift right, (c) arithmetic shift right
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5 . 2 . 6   Multiplication*

Multiplication of unsigned binary numbers is similar to decimal multi-
plication but involves only 1’s and 0’s. Figure 5.20 compares multiplica-
tion in decimal and binary. In both cases, partial products are formed by 
multiplying a single digit of the multiplier with the entire multiplicand. 
The shifted partial products are summed to form the result.

In general, an N × N multiplier multiplies two N-bit numbers and 
produces a 2N-bit result. The partial products in binary multiplication 
are either the multiplicand or all 0’s. Multiplication of 1-bit binary num-
bers is equivalent to the AND operation, so AND gates are used to form 
the partial products.

Signed and unsigned multiplication differ. For example, consider 
0xFE × 0xFD. If these 8-bit numbers are interpreted as signed inte-
gers, they represent −2 and −3, so the 16-bit product is 0x0006. If 
these numbers are interpreted as unsigned integers, the 16-bit prod-
uct is 0xFB06. Notice that, in either case, the least significant byte is  
0x06.

Figure 5.21 shows the symbol, function, and implementation of 
an unsigned 4 × 4 multiplier. The unsigned multiplier receives the mul-
tiplicand and multiplier, A and B, and produces the product P. Figure 
5.21(b) shows how partial products are formed. Each partial product 
is a single multiplier bit (B3, B2, B1, or B0) AND the multiplicand bits 
(A3, A2, A1, A0). With N-bit operands, there are N partial products and 
N − 1 stages of 1-bit adders. For example, for a 4 × 4 multiplier, the 
partial product of the first row is B0 AND (A3, A2, A1, A0). This partial 
product is added to the shifted second partial product, B1 AND (A3, A2, 
A1, A0). Subsequent rows of AND gates and adders form and add the 
remaining partial products.

The HDL for signed and unsigned multipliers is in HDL Example 
4.33. As with adders, many different multiplier designs with different 
speed/cost trade-offs exist. Synthesis tools may pick the most appropri-
ate design given the timing constraints.
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0100011 

(b) 

Figure 5.20 Multiplication: 
(a) decimal, (b) binary
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A multiply accumulate operation multiplies two numbers and adds them 
to a third number—typically, the accumulated value. These operations, also 
called MACs, are often used in digital signal processing (DSP) algorithms 
such as the Fourier transform, which requires a summation of products.

5 . 2 . 7   Division*

Binary division can be performed using the following algorithm for  
N-bit unsigned numbers in the range [0, 2N − 1]:

R′ = 0
for i = N−1 to 0

 R = {R′ << 1, Ai}
 D = R − B
 if D < 0 then Qi = 0, R′ = R   // R < B
 else        Qi = 1, R′ = D  // R ≥ B

R = R′

The partial remainder R is initialized to 0 (R′ = 0), and the most 
significant bit of the dividend A becomes the least significant bit of R 
(R = {R′ << 1, Ai}). The divisor B is subtracted from this partial remain-
der to determine whether it fits (D = R − B). If the difference D is neg-
ative (i.e., the sign bit of D is 1), then the quotient bit Qi is 0 and the 
difference is discarded. Otherwise, Qi is 1, and the partial remainder is 
updated to be the difference. In any event, the partial remainder is then 
doubled (left-shifted by one column), the next most significant bit of A 
becomes the least significant bit of R, and the process repeats. The result 

satisfies A
B

Q
R
B

= + .

Figure 5.22 shows a schematic of a 4-bit array divider. The divider 
computes A/B and produces a quotient Q and a remainder R. The 
legend shows the symbol and schematic for each block in the array 
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(a) symbol, (b) function, (c) 
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divider. Each row performs one iteration of the division algorithm. 
Specifically, each row calculates the difference D = R − B. (Recall that 
R + B + 1 = R − B). The multiplexer select signal, N (for Negative), 
receives 1 when a row’s difference D is negative. So N is driven by the 
most significant bit of D, which is 1 when the difference is negative. 
Each quotient bit (Qi) is 0 when D is negative and 1 otherwise. The 
multiplexer passes R to the next row if the difference is negative and 
D otherwise. The following row shifts the new partial remainder left by 
one bit, appends the next most significant bit of A, and then repeats the 
process.

The delay of an N-bit array divider increases proportionally to N2 
because the carry must ripple through all N stages in a row before the 
sign is determined and the multiplexer selects R or D. This repeats for 
all N rows. Division is a slow and expensive operation in hardware; 
therefore, it should be used as infrequently as possible.

5 . 2 . 8   Further Reading

Computer arithmetic could be the subject of an entire text. Digital 
Arithmetic, by Ercegovac and Lang, is an excellent overview of the 
entire field. CMOS VLSI Design, by Weste and Harris, covers high- 
performance circuit designs for arithmetic operations.
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5.3  NUMBER SYSTEMS
Computers operate on both integers and fractions. So far, we have only 
considered representing signed or unsigned integers, as introduced in 
Section 1.4. This section introduces fixed- and floating-point number 
systems that can represent rational numbers. Fixed-point numbers are 
analogous to decimals; some of the bits represent the integer part, and 
the rest represent the fraction. Floating-point numbers are analogous to 
scientific notation, with a mantissa and an exponent.

5 . 3 . 1   Fixed-Point Number Systems

Fixed-point notation has an implied binary point between the integer and 
fraction bits, analogous to the decimal point between the integer and frac-
tion digits of an ordinary decimal number. For example, Figure 5.23(a) 
shows a fixed-point number with four integer bits and four fraction bits. 
Figure 5.23(b) shows the implied binary point in blue, and Figure 5.23(c) 
shows the equivalent decimal value.

Signed fixed-point numbers can use either two’s complement or 
sign/magnitude notation. Figure 5.24 shows the fixed-point representa-
tion of −2.375 using both notations with four integer and four fraction 
bits. The implicit binary point is shown in blue for clarity. In sign/magni-
tude form, the most significant bit is used to indicate the sign. The two’s 
complement representation is formed by inverting the bits of the abso-
lute value and adding a 1 to the least significant (rightmost) bit. In this 
case, the least significant bit position is in the 2−4 column.

Like all binary number representations, fixed-point numbers are 
just a collection of bits. There is no way of knowing the existence of the 
binary point except through agreement of those people interpreting the 
number.

In general, we use Ua.b to denote an unsigned fixed-point number 
with a integer bits and b fraction bits. Qa.b denotes a signed (two’s com-
plement) fixed point number with a integer bits (including the sign bit) 
and b fractional bits.

Example 5.5 ARITHMETIC WITH FIXED-POINT NUMBERS

Compute 0.75 + (−0.625) using Q4.4 fixed-point numbers.

Solution First, convert 0.625, the magnitude of the second number, to fixed-
point binary notation. 0.625 ≥ 2−1, so there is a 1 in the 2−1 column, leaving 
0.625 − 0.5 = 0.125. Because 0.125 < 2−2, there is a 0 in the 2−2 column. Because 

(a) 01101100

(b) 0110.1100

(c) 22 + 21 + 2–1 + 2–2 = 6.75

Figure 5.23 Fixed-point notation 
of 6.75 with four integer bits and 
four fraction bits

(a) 0010.0110

(b) 1010.0110

(c) 1101.1010

Figure 5.24 Fixed-point 
representation of −2.375: (a) 
absolute value, (b) sign and 
magnitude, (c) two’s complement
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0.125 ≥ 2−3, there is a 1 in the 2−3 column, leaving 0.125 − 0.125 = 0. Thus, there 
must be a 0 in the 2−4 column. Putting this all together, 0.62510 = 0000.10102.

Use two’s complement representation for signed numbers so that addition works 
correctly. Figure 5.25 shows the conversion of −0.625 to fixed-point two’s com-
plement notation.

Figure 5.26 shows the fixed-point binary addition and the decimal equivalent 
for comparison. Note that the leading 1 in the binary fixed-point addition of 
Figure 5.26(a) is discarded from the 8-bit result.
 

5 . 3 . 2   Floating-Point Number Systems*

Floating-point numbers are analogous to scientific notation. They cir-
cumvent the limitation of having a constant number of integer and 
fraction bits, allowing the representation of very large and very small 
numbers. Like scientific notation, floating-point numbers have a sign, 
mantissa (M), base (B), and exponent (E), as shown in Figure 5.27. For 
example, the number 4.1 × 103 is the decimal scientific notation for 
4100. It has a mantissa of 4.1, a base of 10, and an exponent of 3. The 
decimal point floats to the position right after the most significant digit. 
Floating-point numbers are base 2 with a binary mantissa. 32 bits are 
used to represent 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Example 5.6 32-BIT FLOATING-POINT NUMBERS

Show the floating-point representation of the decimal number 228.

Solution First, convert the decimal number into binary: 22810 = 111001002 =  
1.110012 × 27. Figure 5.28 shows the 32-bit encoding, which will be modified 
later for efficiency. The sign bit is positive (0), the 8 exponent bits give the value 7,  
and the remaining 23 bits are the mantissa. 

Fixed-point number systems 
are commonly used in digital 
signal processing (DSP), 
graphics, and machine 
learning applications because 
the computations are faster 
and consume less power than 
they would in floating-point 
systems. Q1.15 (also known 
as Q15) is the most common 
format, storing signed 
numbers in the range (−1, 1)  
with 15 bits of precision. 
Q1.31 (also called just Q31) 
is sometimes used for higher-
precision intermediate results, 
such as in a Fast Fourier 
Transform. U8.8 is sometimes 
used for sensor readings 
sampled by analog/digital 
converters (ADCs). Note 
that all of these formats pack 
into 16- or 32-bit words for 
efficient storage in computer 
memories, which are typically 
a power of 2 in width. 

0000.1010
1111.0101

+ 1 Add 1
1111.0110 Two's Complement

One's Complement
Binary Magnitude

Figure 5.25 Fixed-point two’s 
complement conversion

0000.1100 

10000.0010 
+  1111.0110 

0.75

     0.125 

+   (–0.625) 

(a) (b) 

Figure 5.26 Addition: (a) binary 
fixed-point, (b) decimal equivalent

± M × BE

Figure 5.27 Floating-point 
numbers
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In binary floating-point, the first bit of the mantissa (to the left of the binary 
point) is always 1 and therefore need not be stored. It is called the implicit lead-
ing one. Figure 5.29 shows the modified floating-point representation of 22810 
= 111001002 × 20 = 1.110012 × 27. The implicit leading one is not included in 
the 23-bit mantissa for efficiency. Only the fraction bits are stored. This frees up 
an extra bit for useful data.

We make one final modification to the exponent field. The exponent 
needs to represent both positive and negative exponents. To do so, floating- 
point uses a biased exponent, which is the original exponent plus a con-
stant bias. 32-bit floating-point uses a bias of 127. For example, for the 
exponent 7, the biased exponent is 7 + 127 = 134 = 100001102. For 
the exponent −4, the biased exponent is: −4 + 127 = 123 = 011110112. 
Figure 5.30 shows 1.110012 × 27 represented in floating-point notation 
with an implicit leading one and a biased exponent of 134 (7 + 127). 
This notation conforms to the IEEE 754 floating-point standard.

Special Cases: 0, ±∞, and NaN
The IEEE floating-point standard has special cases to represent numbers 
such as zero, infinity, and illegal results. For example, representing the num-
ber zero is problematic in floating-point notation because of the implicit 
leading one. Special codes with exponents of all 0’s or all l’s are reserved for 
these special cases. Table 5.4 shows the floating-point representations of 0, 
±∞, and NaN. As with sign/magnitude numbers, floating-point has both 
positive and negative 0. NaN is used for numbers that don’t exist, such 
as –1 or log2(−5).

 Single-, Double-, and Quad-Precision Formats
So far, we have examined 32-bit floating-point numbers. This format is 
also called single-precision, single, or float. The IEEE 754 standard also 

As may be apparent, there 
are many reasonable ways 
to represent floating-point 
numbers. For many years, 
computer manufacturers used 
incompatible floating-point 
formats. Results from one 
computer could not directly 
be interpreted by another 
computer.

The Institute of Electrical 
and Electronics Engineers 
(IEEE) solved this problem 
by creating the IEEE 754 
Floating-Point Standard in 
1985, that defines floating-
point numbers. This floating-
point format is now almost 
universally used and is the 
one discussed in this section. 

0 00000111 111 0010 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits
Figure 5.28 32-bit floating-point 
version 1

0    00000111 110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits
Figure 5.29 32-bit floating-point 
version 2

0 10000110
Sign Biased 

Exponent
Fraction

1 bit 8 bits 23 bits

110 0100 0000 0000 0000 0000Figure 5.30 IEEE 754 floating-
point notation
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defines 64-bit double-precision numbers (also called doubles) and 128-
bit quadruple-precision numbers (also called quads) that provide greater 
precision and greater range. Table 5.5 shows the number of bits used for 
the fields in each format.

Excluding the special cases mentioned earlier, normal single- 
precision numbers span a range of ±1.175494 × 10−38 to ±3.402824 × 1038. 
They have a precision of about seven significant decimal digits (because 
2−24 ≈ 10−7). Similarly, normal double-precision numbers span a range 
of ±2.22507385850720 × 10−308 to ±1.79769313486232 × 10308 and 
have a precision of about 15 significant decimal digits. Quads have 34 
decimal digits of precision but are not yet widely supported in hardware 
or software.

Rounding
Arithmetic results that fall outside of the available precision must round 
to a neighboring number. The rounding modes are round down, round 
up, round toward zero, and round to nearest. The default rounding 
mode is round to nearest. In the round-to-nearest mode, if two numbers 
are equally near, the one with a 0 in the least significant position of the 
fraction is chosen.

Recall that a number overflows when its magnitude is too large to 
be represented. Likewise, a number underflows when it is too tiny to be 
represented. In round-to-nearest mode, overflows are rounded up to ±∞ 
and underflows are rounded down to 0.

Floating-point cannot 
represent some numbers 
exactly, such as 1.7. However, 
when you type 1.7 into your 
calculator, you see exactly 
1.7, not 1.69999.… To handle 
this, some applications, such 
as calculators and financial 
software, use binary coded 
decimal (BCD) numbers 
or formats with a base 10 
exponent. BCD numbers 
encode each decimal digit 
using four bits with a range 
of 0 to 9. For example, the 
BCD fixed-point notation 
of 1.7 with four integer 
bits and four fraction bits 
would be 0001.0111. Of 
course, nothing is free. The 
cost is increased complexity 
in arithmetic hardware and 
wasted encodings (A–F 
encodings are not used) and, 
thus, decreased performance. 
So for compute-intensive 
applications, floating-point is 
much faster. 

Table 5.4 IEEE 754 floating-point notations for 0, ±∞, and NaN

Number Sign  Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

−∞ 1 11111111 00000000000000000000000

NaN X 11111111 Non-zero

Table 5.5 Floating-point formats

Format Total Bits Sign Bits Exponent Bits Fraction Bits Bias

Single 32 1 8 23 127

Double 64 1 11 52 1023

Quad 128 1 15 112 16363
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Floating-Point Addition
Addition with floating-point numbers is not as simple as addition with 
two’s complement numbers. The steps for adding floating-point numbers 
with the same sign are as follows:

 1. Extract exponent and fraction bits.

 2. Prepend leading 1 to form the mantissa.

 3. Compare exponents.

 4. Shift smaller mantissa if necessary.

 5. Add mantissas.

 6. Normalize mantissa and adjust exponent if necessary.

 7. Round result.

 8. Assemble exponent and fraction back into floating-point number.

111 1100 0000 0000 0000 0000 
Step 1 

10000001 
Exponent 

100 0000 0000 0000 0000 0000 01111100 

1.111 1100 0000 0000 0000 0000 
Step 2 

10000001 

1.100 0000 0000 0000 0000 0000 01111100 

1.111 1100 0000 0000 0000 0000 
Step 3 

10000001 

1.100 0000 0000 0000 0000 0000 01111100 – 
101 (shift amount) 

1.111 1100 0000 0000 0000 0000 
Step 4 

10000001 

0.000 0110 0000 0000 0000 0000  10000001 

1.111 1100 0000 0000 0000 0000 
Step 5 

10000001 

0.000 0110 0000 0000 0000 0000 10000001 + 

10.000 0010 0000 0000 0000 0000 

Step 6 

Step 7 

Floating-point numbers 

1.000 0001 0000 0000 0000 0000 

10000001 

1 

10.000 0010 0000 0000 0000 0000  >> 1 

10000010 

0 

0 

Step 8 0

(No rounding necessary) 

Fraction 

111 1100 0000 0000 0000 0000 

100 0000 0000 0000 0000 0000 

10000001 

01111100 

000 0001 0000 0000 0000 0000 10000010 

00000

+

Figure 5.31 Floating-point 
addition
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Figure 5.31 shows the floating-point addition of 7.875 (1.11111 × 22) 
and 0.1875 (1.1 × 2−3). The result is 8.0625 (1.0000001 × 23). After the 
fraction and exponent bits are extracted and the implicit leading 1 is 
prepended in steps 1 and 2, the exponents are compared by subtracting 
the smaller exponent from the larger exponent. The result is the number 
of bits by which the smaller number is shifted to the right to align the 
implied binary point (i.e., to make the exponents equal) in step 4. The 
aligned numbers are added. Because the sum has a mantissa that is 
greater than or equal to 2.0, the result is normalized by shifting it to the 
right one bit and incrementing the exponent. In this example, the result 
is exact, so no rounding is necessary. The result is stored in floating- 
point notation by removing the implicit leading one of the mantissa and 
prepending the sign bit.

5.4  SEQUENTIAL BUILDING BLOCKS
This section examines sequential building blocks, including counters and 
shift registers.

5 . 4 . 1   Counters

An N-bit binary counter, shown in Figure 5.32, is a sequential arith-
metic circuit with clock and reset inputs and an N-bit output Q. Reset 
initializes the output to 0. The counter then advances through all 2N 
possible outputs in binary order, incrementing on the rising edge of the 
clock.

Figure 5.33 shows an N-bit counter composed of an adder and a 
resettable register. On each cycle, the counter adds 1 to the value stored 
in the register. HDL Example 5.4 shows a binary counter with asynchro-
nous reset, and Figure 5.34 shows the resulting hardware.

The most significant bit of an N-bit counter toggles every 2N cycles. 
Thus, it reduces the frequency of the clock by a factor of 2N. This 
is called a divide-by-2N counter and is useful for slowing down fast  
signals. For example, if a digital system has a 50 MHz internal clock, 
you can use a 24-bit counter to produce a (50 × 106 Hz/224) = 2.98 Hz 
signal that blinks a light-emitting diode (LED) at a rate the human eye 
can observe.

A further counter generalization to produce arbitrary frequencies is 
called a digitally controlled oscillator (DCO, Example 5.7). Consider an 
N-bit counter that adds p on each cycle, rather than 1. If the counter 
receives a clock with frequency fclk, the most significant bit now toggles 
at fout = fclk × p/2N. With a judicious choice of p and N, you can produce 
an output of any frequency. Larger N gives more precise control at the 
expense of more hardware.

Floating-point arithmetic is 
usually done in hardware to 
make it fast. This hardware, 
called the floating-point unit 
(FPU), is typically distinct 
from the central processing 
unit (CPU). The infamous 
floating-point division 
(FDIV) bug in the Pentium 
FPU cost Intel $475 million 
to recall and replace defective 
chips. The bug occurred 
simply because a lookup table 
was not loaded correctly. 

Q

CLK

Reset

N

Figure 5.32 Counter symbol

+ N

1

CLK

Reset

N

N
QN−1:0

N

r

Figure 5.33 N-bit counter
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Example 5.7 DIGITALLY CONTROLLED OSCILLATOR

Suppose you have a 50  MHz clock and want to produce a 500  Hz output. 
Consider using an N = 24- or 32-bit counter. What value of p should you choose 
and how close can you come to 500 Hz?

Solution We want p/2N = 500 Hz/50 MHz = 0.001. If N = 24, choose p = 168 to 
get fout = 500.68 Hz. If N = 32, choose p = 42950 to get fout = 500.038 Hz.
 

Other types of counters, such as Up/Down counters, are explored in 
Exercises 5.51 through 5.54.

5 . 4 . 2   Shift Registers

A shift register has a clock, a serial input Sin, a serial output Sout, and N 
parallel outputs QN−1:0, as shown in Figure 5.35. On each rising edge of 
the clock, a new bit is shifted in from Sin and all the subsequent contents 
are shifted forward. The last bit in the shift register is available at Sout. 

NQ

S in Sout

Figure 5.35 Shift register symbol

SystemVerilog
module counter #(parameter N = 8)

 (input  logic  clk,
 input  logic  reset,
 output  logic [N–1:0] q);

 always_ff @(posedge clk, posedge reset)
 if (reset) q <= 0;
 else  q <= q + 1;

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity counter is
 generic(N: integer := 8);
 port(clk, reset: in  STD_LOGIC;

 q:  out STD_LOGIC_VECTOR(N-1 downto 0));
end;

architecture synth of counter is
begin
 process(clk, reset) begin
 if reset then  q <= (OTHERS => ‘0’);
 elsif rising_edge(clk) then q <= q + ‘1’;
 end if;

 end process;
end;

HDL Example 5.4 COUNTER

+
R

q[7:0]
[7:0]

reset

clk

[7:0]

1
Q[7:0]

[7:0]
D[7:0]

Figure 5.34 Synthesized counter
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Shift registers can be viewed as serial-to-parallel converters. The input 
is provided serially (one bit at a time) at Sin. After N cycles, the past N 
inputs are available in parallel at Q.

A shift register can be constructed from N flip-flops connected in 
series, as shown in Figure 5.36. Some shift registers also have a reset sig-
nal to initialize all of the flip-flops.

A related circuit is a parallel-to-serial converter that loads N bits in 
parallel, then shifts them out one at a time. A shift register can be mod-
ified to perform both serial-to-parallel and parallel-to-serial operations 
by adding a parallel input DN−1:0 and a control signal Load, as shown 
in Figure 5.37. When Load is asserted, the flip-flops are loaded in paral-
lel from the D inputs. Otherwise, the shift register shifts normally. HDL 
Example 5.5 describes such a shift register, and Figure 5.38 shows the 
resulting hardware.

Scan Chains*
Shift registers are often used to test sequential circuits, using a technique 
called scan chains. Testing combinational circuits is relatively straight-
forward. Known inputs called test vectors are applied, and the outputs 
are checked against the expected result. Testing sequential circuits is 
more difficult because the circuits have state. Starting from a known ini-
tial condition, a large number of cycles of test vectors may be needed to 
put the circuit into a desired state. For example, testing that the most 
significant bit of a 32-bit counter advances from 0 to 1 requires resetting 
the counter, then applying 231 (about two billion) clock pulses!

To solve this problem, designers like to be able to directly observe 
and control all of the machine’s state. This is done by adding a test mode 
in which the contents of all flip-flops can be read out or loaded with 
desired values. Most systems have too many flip-flops to dedicate indi-
vidual pins to read and write each flip-flop. Instead, all flip-flops in the 
system are connected together into a shift register called a scan chain. In 

Don’t confuse shift registers 
with the shifters from 
Section 5.2.5. Shift registers 
are sequential logic blocks 
that shift in a new bit on 
each clock edge. Shifters are 
unclocked combinational 
logic blocks that shift an 
input by a specified amount. 

CLK

S in S out

Q 0 Q1 QN –1Q2

Figure 5.36 Shift register 
schematic

CLK
0

1

0

1

0

1

0

1

D0 D1 DN –1D2

Q0 Q1 QN – 1Q2

S in Sout

Load
Figure 5.37 Shift register with 
parallel load
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0

1

Test

D

S in

Q

Sout

(a)

D Q

S in Sout

Test

(b)

D Q

S in Sout

Test

D Q

S in Sout

Test

D Q

S in Sout

Test

D Q

Sin Sout

Test

(c)

Test

CLK

CLK

CLK

D0

Q0

D1

Q1

D2

Q2

DN – 1

QN –1

S in Sout

Figure 5.39 Scannable flip-flop: (a) schematic, (b) symbol, and (c) N-bit scannable register

SystemVerilog
module shiftreg #(parameter N = 8)

 (input  logic  clk,
 input  logic  reset, load,
 input  logic  sin,
 input  logic [N–1:0] d,
 output logic [N–1:0] q,
 output logic  sout);

 always_ff @(posedge clk, posedge reset)
 if (reset)  q <= 0;
 else if (load)  q <= d;
 else  q <= {q[N–2:0], sin};

 assign sout = q[N–1];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;

entity shiftreg is
 generic(N: integer := 8);
 port(clk, reset: in  STD_LOGIC;

 load, sin:  in  STD_LOGIC;
 d:  in  STD_LOGIC_VECTOR(N–1 downto 0);
 q:  out STD_LOGIC_VECTOR(N–1 downto 0);
 sout:  out STD_LOGIC);

end;

architecture synth of shiftreg is
begin
 process(clk, reset) begin
 if reset = ‘1’ then q <= (OTHERS => ‘0’);
 elsif rising_edge(clk) then
 if load then  q <= d;
 else  q <= q(N–2 downto 0) & sin;
 end if;

 end if;
 end process;

 sout <= q(N–1);
end;

HDL Example 5.5 SHIFT REGISTER WITH PARALLEL LOAD

0

1 R

sout
[7]

q[7:0]

d[7:0]

sin

load

reset
clk

[6:0]

[7:0][7:0] [7:0]
Q[7:0]D[7:0]

Figure 5.38 Synthesized shiftreg
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normal operation, the flip-flops load data from their D input and ignore 
the scan chain. In test mode, the flip-flops serially shift their contents out 
and shift in new contents using Sin and Sout. The load multiplexer is usu-
ally integrated into the flip-flop to produce a scannable flip-flop. Figure 
5.39 shows the schematic and symbol for a scannable flip-flop and illus-
trates how the flops are cascaded to build an N-bit scannable register.

For example, the 32-bit counter could be tested by shifting in the 
pattern 011111…111 in test mode, counting for one cycle in normal 
mode, then shifting out the result, which should be 100000…000. This 
requires only 32 + 1 + 32 = 65 cycles.

5.5  MEMORY ARRAYS
The previous sections introduced arithmetic and sequential circuits for 
manipulating data. Digital systems also require memories to store the 
data used and generated by such circuits. Registers built from flip-flops 
are a kind of memory that stores small amounts of data. This section 
describes memory arrays that can efficiently store large amounts of data.

We begin with an overview describing characteristics shared by all 
memory arrays and then introduce three types of memory arrays: dynamic 
random access memory (DRAM), static random access memory (SRAM), 
and read only memory (ROM). Each memory differs in the way it stores 
data. We briefly discuss area and delay trade-offs and show how memory 
arrays are used, not only to store data but also to perform logic functions. 
We then finish this section by showing the HDL for a memory array.

5 . 5 . 1   Overview

Figure 5.40 shows a generic symbol for a memory array. The memory 
is organized as a two-dimensional array of memory cells. The memory 
reads or writes the contents of one of the rows of the array. This row is 
specified by an address. The value read or written is called data. An array 
with N-bit addresses and M-bit data has 2N rows and M columns. Each 
row of data is called a word. Thus, the array contains 2N M-bit words.

Figure 5.41 shows a memory array with two address bits and three 
data bits. The two address bits specify one of the four rows (data words) 
in the array. Each data word is three bits wide. Figure 5.41(b) shows 
some possible contents of the memory array.

The depth of an array is the number of rows, and the width is the 
number of columns, also called the word size. The size of an array is 
given as depth × width. Figure 5.41 is a 4-word × 3-bit array, or sim-
ply 4 × 3 array. The symbol for a 1024-word × 32-bit array is shown in 
Figure 5.42. The total size of this array is 32 kilobits (Kb), also referred 
to as 32 kibibits (Kib).

Address

Data

ArrayN

M

Figure 5.40 Generic memory 
array symbol

(a)

Address

Data

Array2

3

(b)

Address

11

10

01

00

depth

0

1

1

0

1

0

1

1

0

0

0

1

width

Data

Figure 5.41 4 × 3 memory array: 
(a) symbol, (b) function

Address

Data

1024-word ×
32-bit
Array

10

32

Figure 5.42 32-Kb array: depth = 
210 = 1024 words, width = 32 bits
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Bit Cells

Memory arrays are built as an array of bit cells, each of which stores 1 bit 
of data. Figure 5.43 shows that each bit cell is connected to a wordline 
and a bitline. For each combination of address bits, the memory asserts 
a single wordline that activates the bit cells in that row. When the word-
line is HIGH, the stored bit transfers to or from the bitline. Otherwise, 
the bitline is disconnected from the bit cell. The circuitry to store the bit 
varies with memory type.

To read a bit cell, the bitline is initially left floating (Z). Then, the 
wordline is turned ON, allowing the stored value to drive the bitline to 
0 or 1. To write a bit cell, the bitline is strongly driven to the desired 
value. Then, the wordline is turned ON, connecting the bitline to the 
stored bit. The strongly driven bitline overpowers the contents of the bit 
cell, writing the desired value into the stored bit.

Organization
Figure 5.44 shows the internal organization of a 4 × 3 memory array. Of 
course, practical memories are much larger, but the behavior of larger 
arrays can be extrapolated from the smaller array. In this example, the 
array stores the data from Figure 5.41(b).

During a memory read, a wordline is asserted, and the correspond-
ing row of bit cells drives the bitlines HIGH or LOW. During a memory 
write, the bitlines are driven HIGH or LOW first and then a wordline 
is asserted, allowing the bitline values to be stored in that row of bit 
cells. For example, to read Address 10, the bitlines are left floating, 
the decoder asserts wordline2, and the data stored in that row of bit 
cells (100) reads out onto the Data bitlines. To write the value 001 to 

stored
bit

wordline

bitline

Figure 5.43 Bit cell

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

wordline2

wordline1

wordline0

bitline2 bitline1 bitline0

Data 2 Data 1 Data 0

2

Figure 5.44 4 × 3 memory array
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Address 11, the bitlines are driven to the value 001, then wordline3 is 
asserted and the new value (001) is stored in the bit cells.

Memory Ports
All memories have one or more ports. Each port gives read and/or write 
access to one memory address. The previous examples were all single- 
ported memories.

Multiported memories can access several addresses simultaneously. 
Figure 5.45 shows a three-ported memory with two read ports and one 
write port. Port 1 reads the data from address A1 onto the read data 
output RD1. Port 2 reads the data from address A2 onto RD2. Port 3 
writes the data from the write data input WD3 into address A3 on the 
rising edge of the clock if the write enable WE3 is asserted.

Memory Types
Memory arrays are specified by their size (depth × width) and the num-
ber and type of ports. All memory arrays store data as an array of bit 
cells, but they differ in how they store bits.

Memories are classified based on how they store bits in the bit cell. 
The broadest classification is random access memory (RAM) versus  
read only memory (ROM). RAM is volatile, meaning that it loses its 
data when the power is turned off. ROM is nonvolatile, meaning that it 
retains its data indefinitely, even without a power source.

RAM and ROM received their names for historical reasons that are 
no longer very meaningful. RAM is called random access memory 
because any data word is accessed with the same delay as any other. In 
contrast, a sequential access memory, such as a tape recorder, accesses 
nearby data more quickly than faraway data (e.g., at the other end of the 
tape). ROM is called read only memory because, historically, it could 
only be read but not written. These names are confusing, because ROMs 
are also randomly accessed. Worse yet, most modern ROMs can be writ-
ten as well as read! The important distinction to remember is that RAMs 
are volatile and ROMs are nonvolatile.

The two major types of RAMs are dynamic RAM (DRAM) and 
static RAM (SRAM). Dynamic RAM stores data as a charge on a capac-
itor, whereas static RAM stores data using a pair of cross-coupled 
inverters. There are many flavors of ROMs that vary by how they are 
written and erased. These various types of memories are discussed in the 
subsequent sections.

5 . 5 . 2   Dynamic Random Access Memory (DRAM)

DRAM, pronounced “dee-ram,” stores a bit as the presence or absence 
of charge on a capacitor. Figure 5.46 shows a DRAM bit cell. The bit 
value is stored on a capacitor. The nMOS transistor behaves as a switch 

Robert Dennard, 1932–
Invented DRAM in 1966 at 
IBM. Although many were 
skeptical that the idea would 
work, by the mid-1970’s 
DRAM was in virtually all 
computers. He claims to 
have done little creative 
work until, arriving at IBM, 
they handed him a patent 
notebook and said, “put all 
your ideas in there.” Since 
1965, he has received 35 
patents in semiconductors 
and microelectronics. (Photo 
courtesy of IBM.) 
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Figure 5.45 Three-ported memory
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Figure 5.46 DRAM bit cell
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that either connects or disconnects the capacitor from the bitline. When 
the wordline is asserted, the nMOS transistor turns ON, and the stored 
bit value transfers to or from the bitline.

As shown in Figure 5.47(a), when the capacitor is charged to VDD, 
the stored bit is 1; when it is discharged to GND (Figure 5.47(b)), the 
stored bit is 0. The capacitor node is dynamic because it is not actively 
driven HIGH or LOW by a transistor tied to VDD or GND.

Upon a read, data values are transferred from the capacitor to the 
bitline. Upon a write, data values are transferred from the bitline to 
the capacitor. Reading destroys the bit value stored on the capacitor, so 
the data word must be restored (rewritten) after each read. Even when 
DRAM is not read, the contents must be refreshed (read and rewritten) 
every few milliseconds, because the charge on the capacitor gradually 
leaks away.

5 . 5 . 3   Static Random Access Memory (SRAM)

SRAM, pronounced “es-ram,” is static because stored bits do not need 
to be refreshed. Figure 5.48 shows an SRAM bit cell. The data bit is 
stored on cross-coupled inverters like those described in Section 3.2. 
Each cell has two outputs, bitline and bitline. When the wordline is 
asserted, both nMOS transistors turn on, and data values are transferred 
to or from the bitlines. Unlike DRAM, if noise degrades the value of the 
stored bit, the cross-coupled inverters restore the value.

5 . 5 . 4   Area and Delay

Flip-flops, SRAMs, and DRAMs are all volatile memories, but each has 
different area and delay characteristics. Table 5.6 shows a comparison 
of these three types of volatile memory. The data bit stored in a flip-
flop is available immediately at its output. But flip-flops take at least 
20 transistors to build. Generally, the more transistors a device has, the 
more area, power, and cost it requires. DRAM latency is longer than 
that of SRAM because its bitline is not actively driven by a transistor. 
DRAM must wait for charge to move (relatively) slowly from the capac-
itor to the bitline. DRAM also fundamentally has lower throughput 
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than SRAM, because it must refresh data periodically and after a read. 
DRAM technologies such as synchronous DRAM (SDRAM) and double 
data rate (DDR) SDRAM have been developed to overcome this prob-
lem. SDRAM uses a clock to pipeline memory accesses. DDR SDRAM, 
sometimes called simply DDR, uses both the rising and falling edges of 
the clock to access data, thus doubling the throughput for a given clock 
speed. DDR was first standardized in 2000 and ran at 100 to 200 MHz. 
Later standards, DDR2, DDR3, and DDR4, increased the clock speeds, 
with speeds in 2021 being over 3 GHz.

Memory latency and throughput also depend on memory size; 
larger memories tend to be slower than smaller ones if all else is the 
same. The best memory type for a particular design depends on the 
speed, cost, and power constraints.

5 . 5 . 5   Register Files

Digital systems often use a number of registers to store temporary vari-
ables. This group of registers, called a register file, is usually built as a 
small, multiported SRAM array because it is more compact than an array 
of flip-flops. In some register files, a particular entry, such as register 0, 
is hardwired to always read the value 0 because 0 is a commonly used 
constant.

Figure 5.49 shows a 32-register × 32-bit three-ported register file 
built from the three-ported memory of Figure 5.45. The register file has 
two read ports (A1/RD1 and A2/RD2) and one write port (A3/WD3). 
The 5-bit addresses—A1, A2, and A3—can each access all 25 = 32 regis-
ters. So, two registers can be read and one register written simultaneously.

5 . 5 . 6   Read Only Memory (ROM)

ROM stores a bit as the presence or absence of a transistor. Figure 5.50 
shows a simple ROM bit cell. To read the cell, the bitline is weakly 
pulled HIGH. Then, the wordline is turned ON. If the transistor is pres-
ent, it pulls the bitline LOW. If it is absent, the bitline remains HIGH. 

Table 5.6 Memory comparison

Memory  
Type

Transistors per  
Bit Cell

Latency

Flip-flop ~20 Fast

SRAM 6 Medium

DRAM 1 Slow

5

5

5

32

32

32

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

Figure 5.49 32 × 32 register file 
with two read ports and one write 
port

wordline

bitline

wordline

bitline

bit cell
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bit cell
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Figure 5.50 ROM bit cells 
containing 0 and 1
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Note that the ROM bit cell is a combinational circuit and has no state 
to “forget” if power is turned off.

The contents of a ROM can be indicated using dot notation. Figure 
5.51 shows the dot notation for a 4-word × 3-bit ROM containing the 
data from Figure 5.41. A dot at the intersection of a row (wordline) and 
a column (bitline) indicates that the data bit is 1. For example, the top 
wordline has a single dot on Data1, so the data word stored at Address 
11 is 010.

Conceptually, ROMs can be built using two-level logic with a group 
of AND gates followed by a group of OR gates. The AND gates produce 
all possible minterms and, hence, form a decoder. Figure 5.52 shows 
the ROM of Figure 5.51 built using a decoder and OR gates. Each dot-
ted row in Figure 5.51 is an input to an OR gate in Figure 5.52. For 

11

10

2:4
Decoder

Address

Data 0Data1Data 2

01

00

2

Figure 5.51 4 × 3 ROM: dot notation

11
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2:4
Decoder

01

00

Data2 Data1 Data 0
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Figure 5.52 4 × 3 ROM implementation using gates
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data bits with a single dot—in this case, Data0—no OR gate is needed. 
This representation of a ROM is interesting because it shows how the 
ROM can perform any two-level logic function. In practice, ROMs are 
built from transistors instead of logic gates to reduce their size and cost. 
Section 5.6.3 explores the transistor-level implementation further.

The contents of the ROM bit cell in Figure 5.50 are specified during 
manufacturing by the presence or absence of a transistor in each bit cell. 
A programmable ROM (PROM, pronounced like the dance) places a 
transistor in every bit cell but provides a way to connect or disconnect 
the transistor to ground.

Figure 5.53 shows the bit cell for a fuse-programmable ROM. The 
user programs the ROM by applying a high voltage to selectively blow 
fuses. If the fuse is present, the transistor is connected to GND and the 
cell holds a 0. If the fuse is destroyed, the transistor is disconnected from 
ground and the cell holds a 1. This is also called a one-time programma-
ble ROM, because the fuse cannot be repaired once it is blown.

Reprogrammable ROMs provide a reversible mechanism for con-
necting or disconnecting the transistor to GND. Erasable PROMs 
(EPROMs, pronounced “e-proms”) replace the nMOS transistor and 
fuse with a floating-gate transistor. The floating gate is not physically 
attached to any other wires. When suitable high voltages are applied, 
electrons tunnel through an insulator onto the floating gate, turning on 
the transistor and connecting the bitline to the wordline (decoder out-
put). When the EPROM is exposed to intense ultraviolet (UV) light for 
about half an hour, the electrons are knocked off the floating gate, turn-
ing the transistor off. These actions are called programming and erasing, 
respectively. Electrically erasable PROMs (EEPROMs, pronounced “e-e-
proms” or “double-e proms”) and Flash memory use similar principles 
but include circuitry on the chip for erasing as well as programming, so 
no UV light is necessary. EEPROM bit cells are individually erasable; 
Flash memory erases larger blocks of bits and is cheaper because fewer 
erasing circuits are needed. In 2021, Flash memory cost about $0.10 per 
GB, and the price continues to drop by 30% to 40% per year. Flash has 
become an extremely popular way to store large amounts of data in por-
table battery-powered systems such as cameras and music players.

In summary, modern ROMs are not really read only; they can be 
programmed (written) as well. The difference between RAM and ROM 
is that ROMs take a longer time to write but are nonvolatile.

5 . 5 . 7   Logic Using Memory Arrays

Although they are used primarily for data storage, memory arrays can also 
perform combinational logic functions. For example, the Data2 output of 
the ROM in Figure 5.51 is the XOR of the two Address inputs. Likewise, 

Fujio Masuoka, 1944–
Received a Ph.D. in electrical 
engineering from Tohoku 
University, Japan. Developed 
memories and high-speed 
circuits at Toshiba from 
1971 to 1994. Invented Flash 
memory as an unauthorized 
project pursued during nights 
and weekends in the late 
1970’s. Flash received its 
name because the process 
of erasing the memory 
reminds one of the flash of 
a camera. Toshiba was slow 
to commercialize the idea; 
Intel was first to market in 
1988. Flash has grown into a 
$170 billion per year market. 
Dr. Masuoka later joined the 
faculty at Tohoku University 
and is working to develop a 
3-dimensional transistor. 
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Data0 is the NOR of the two inputs. A 2N-word × M-bit memory can per-
form any combinational function of N inputs and M outputs. For example, 
the ROM in Figure 5.51 performs three functions of two inputs.

Memory arrays used to perform logic are called lookup tables 
(LUTs). Figure 5.54 shows a 4-word × 1-bit memory array used as a 
lookup table to perform the function Y = AB. Using memory to perform 
logic, the user can look up the output value for a given input combina-
tion (address). Each address corresponds to a row in the truth table, and 
each data bit corresponds to an output value.

5 . 5 . 8   Memory HDL

HDL Example 5.6 describes a 2N-word × M-bit RAM, and Figure 5.55  
shows the resulting hardware. The RAM has a synchronous enabled 
write. In other words, writes occur on the rising edge of the clock if the 
write enable we is asserted. Reads occur immediately. When power is 
first applied, the contents of the RAM are unpredictable.

HDL Example 5.7 describes a 4-word × 3-bit ROM. The contents 
of the ROM are specified in the HDL case statement. A ROM as small 
as this one may be synthesized into logic gates rather than an array. 
Note that the seven-segment decoder from HDL Example 4.24 synthe-
sizes into a ROM in Figure 4.20. HDL Example 5.8 shows a 3-ported 
32 × 32 register file with entry 0 hardwired to 0.

5.6  LOGIC ARRAYS
Like memory, gates can be organized into regular arrays. If the connec-
tions are made programmable, these logic arrays can be configured to 

Programmable ROMs can 
be configured with a device 
programmer like the one 
shown below. The device 
programmer is attached to a 
computer, which specifies the 
type of ROM and the data 
values to program. The device 
programmer blows fuses or 
injects charge onto a floating 
gate on the ROM. Thus, 
the programming process is 
sometimes called burning a 
ROM. 

Flash memory drives with 
Universal Serial Bus (USB) 
connectors have replaced 
floppy disks and CDs for 
sharing files because Flash 
costs have dropped so 
dramatically. 
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SystemVerilog
module ram #(parameter N = 6, M = 32)

 (input  logic  clk,
 input  logic  we,
 input  logic [N–1:0] adr,
 input  logic [M–1:0] din,
 output logic [M–1:0] dout);

 logic [M–1:0] mem [2**N–1:0];

 always_ff @(posedge clk)
 if (we) mem [adr] <= din;

 assign dout = mem[adr];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity ram_array is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

 we:  in  STD_LOGIC;
 adr:  in  STD_LOGIC_VECTOR(N–1 downto 0);
 din:  in  STD_LOGIC_VECTOR(M–1 downto 0);
 dout: out STD_LOGIC_VECTOR(M–1 downto 0));

end;

architecture synth of ram_array is
 type mem_array is array ((2**N–1) downto 0)

 of STD_LOGIC_VECTOR (M–1 downto 0);
 signal mem: mem_array;

begin
 process(clk) begin
 if rising_edge(clk) then
 if we then mem(TO_INTEGER(adr)) <= din;
 end if;

 end if;
 end process;

 dout <= mem(TO_INTEGER(adr));
end;

HDL Example 5.6 RAM

ram1 

mem[31:0] 

dout[31:0] 
[31:0] 

din[31:0] 

adr[5:0] 
we 
clk 

[5:0] 
RADDR[5:0] 

[31:0] 
DATA[31:0] 

DOUT[31:0] [5:0] 
WADDR[5:0] 
WE[0] 
CLK 

Figure 5.55 Synthesized ram

perform any function without the user having to connect wires in spe-
cific ways. The regular structure simplifies design. Logic arrays are  mass- 
produced in large quantities, so they are inexpensive. Software tools 
allow users to map logic designs onto these arrays. Most logic arrays 
are also reconfigurable, allowing designs to be modified without replac-
ing the hardware. Reconfigurability is valuable during development and 
is also useful in the field because a system can be upgraded by simply 
downloading the new configuration.

This section introduces two types of logic arrays: programma-
ble logic arrays (PLAs), and field programmable gate arrays (FPGAs). 
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SystemVerilog
module regfile(input  logic   clk,

 input  logic   we3,
 input  logic  [5:0]  a1, a2, a3,
 input  logic  [31:0] wd3,
 output logic  [31:0] rd1, rd2);

logic [31:0] rf[31:0];
// three ported register file
// read two ports combinationally (A1/RD1, A2/RD2)
// write third port on rising edge of clock (A3/WD3/WE3)
// register 0 hardwired to 0

always_ff @(posedge clk)
 if (we3) rf[a3] <= wd3;

assign rd1 = (a1 != 0) ? rf[a1] : 0;
assign rd2 = (a2 != 0) ? rf[a2] : 0;

endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is
port(clk:  in  STD_LOGIC;

 we3:  in  STD_LOGIC;
 a1, a2, a3:  in  STD_LOGIC_VECTOR(5  downto 0);
 wd3:  in  STD_LOGIC_VECTOR(31 downto 0);
 rd1, rd2:  out  STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of  STD_LOGIC_VECTOR 

(31 downto 0);
signal mem: ramtype;

begin
–– three ported register file
–– read two ports combinationally (A1/RD1, A2/RD2)
–– write third port on rising edge of clock (A3/WD3/WE3)
–– register 0 hardwired to 0
process(clk) begin
 if rising_edge(clk) then
 if we3 = ‘1’ then mem(to_integer(a3)) <= wd3;
 end if;

 end if;
end process;
process(a1, a2) begin
 if (to_integer(a1) = 0) then rd1 <= X"00000000";
 else rd1 <= mem(to_integer(a1));
 end if;
 if (to_integer(a2) = 0) then rd2 <= X"00000000";
 else rd2 <= mem(to_integer(a2));
 end if;

end process;
end;

HDL Example 5.8 REGISTER FILE

SystemVerilog
module rom(input  logic [1:0] adr,

 output logic [2:0] dout);

 always_comb
 case(adr)
 2’b00: dout = 3’b011;
 2’b01: dout = 3’b110;
 2’b10: dout = 3’b100;
 2’b11: dout = 3’b010;

 endcase
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity rom is
port(adr:  in  STD_LOGIC_VECTOR(1 downto 0);

 dout: out STD_LOGIC_VECTOR(2 downto 0));
end;

architecture synth of rom is
begin
 process(all) begin
 case adr is
 when “00”   => dout <= “011”;
 when “01”   => dout <= “110”;
 when “10”   => dout <= “100”;
 when “11”   => dout <= “010”;
 when others => dout <= “---”;

 end case;
end process;

end;

HDL Example 5.7 ROM
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Figure 5.56 M × N × P-bit PLA
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Figure 5.57 3 × 3 × 2-bit PLA: 
dot notation

PLAs, the older technology, perform only combinational logic functions. 
FPGAs can perform both combinational and sequential logic.

5 . 6 . 1   Programmable Logic Array (PLA)

PLAs implement two-level combinational logic in sum-of-products 
(SOP) form. PLAs are built from an AND array followed by an OR 
array, as shown in Figure 5.56. The inputs (in true and complementary 
form) drive an AND array, which produces implicants. The implicants, 
in turn, are ORed together to form the outputs. An M × N × P-bit PLA 
has M inputs, N implicants, and P outputs.

Figure 5.57 shows the dot notation for a 3 × 3 × 2-bit PLA perform-
ing the functions X = ABC ABC+  and Y = AB. Each row in the AND 
array forms an implicant. Dots in each row of the AND array indicate 
which literals comprise the implicant. The AND array in Figure 5.57 
forms three implicants: ABC, ABC, and AB. Dots in the OR array indi-
cate which implicants are part of the output function.
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Figure 5.58 shows how PLAs can be built using two-level logic. An 
alternative implementation is given in Section 5.6.3.

ROMs can be viewed as a special case of PLAs. A 2M-word × N-bit 
ROM is simply an M × 2M × N-bit PLA. The decoder behaves as an AND 
plane that produces all 2M minterms. The ROM array behaves as an OR 
plane that produces the outputs. If the function does not depend on all 
2M minterms, a PLA is likely to be smaller than a ROM. For example, 
an 8-word × 2-bit ROM is required to perform the same functions per-
formed by the 3 × 3 × 2-bit PLA shown in Figures 5.57 and 5.58.

Simple programmable logic devices (SPLDs) are souped-up PLAs 
that add registers and various other features to the basic AND/OR  
planes. However, SPLDs and PLAs have largely been displaced by 
FPGAs, which are more flexible and efficient for building large systems.

5 . 6 . 2   Field Programmable Gate Array (FPGA)

An FPGA is an array of reconfigurable gates. Using software program-
ming tools, a user can implement designs on the FPGA employing either 
an HDL or a schematic. FPGAs are more powerful and more flexible 
than PLAs for several reasons. They can implement both combinational 
and sequential logic. They can also implement multilevel logic functions, 
whereas PLAs can implement only two-level logic. Modern FPGAs inte-
grate other useful features, such as built-in multipliers, high-speed I/Os,  
data converters including analog-to-digital converters, large RAM 
arrays, and processors.

FPGAs are built as an array of configurable logic elements (LEs), 
also referred to as configurable logic blocks (CLBs). Each LE can be con-
figured to perform combinational or sequential functions. Figure 5.59 
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ABC

AB

ABC
Figure 5.58 3 × 3 × 2-bit PLA 
using two-level logic
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shows a general block diagram of an FPGA. The LEs are surrounded by 
input/output elements (IOEs) for interfacing with the outside world. The 
IOEs connect LE inputs and outputs to pins on the chip package. LEs can 
connect to other LEs and IOEs through programmable routing channels.

Two of the leading FPGA manufacturers are Intel (formerly, Altera 
Corp.) and Xilinx, Inc. Figure 5.60 shows a single LE from Intel’s Cyclone 
IV FPGA, introduced in 2009. The key elements of the LE are a 4-input  
lookup table (LUT) and a 1-bit register. The LE also contains configurable 
multiplexers to route signals through the LE. The FPGA is configured 
by specifying the contents of the LUTs and the select signals for the 
multiplexers.

Each Cyclone IV LE has one 4-input LUT and one flip-flop. By load-
ing the appropriate values into the LUT, it can be configured to perform 
any function of up to four variables. Configuring the FPGA also involves 
choosing the select signals that determine how the multiplexers route 
data through the LE and to neighboring LEs and IOEs. For example, 
depending on the multiplexer configuration, the LUT may receive one 
of its inputs from either data 3 or the output of the LE’s own register. 
The other three inputs always come from data 1, data 2, and data 4. The 
data 1–4 inputs come from IOEs or the outputs of other LEs, depend-
ing on routing external to the LE. The LUT output either goes directly to 

Altera Corporation was 
founded in 1983 as one of the 
original FPGA manufacturers, 
along with Xilinx Inc., which 
was founded in 1984. Altera 
was acquired by Intel in 2015 
for $16.7 billion. 
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Figure 5.59 General FPGA layout

FPGAs are the brains of many 
consumer products, including 
automobiles, medical 
equipment, and media 
devices, such as MP3 players. 
The Mercedes Benz S-Class 
series, for example, has over 
a dozen Xilinx FPGAs or 
PLDs for uses ranging from 
entertainment to navigation 
to cruise control systems. 
FPGAs allow for quick 
time to market and make 
debugging or adding features 
late in the design process 
easier. 
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the LE output for combinational functions, or it can be fed through the 
flip-flop for registered functions. The flip-flop input comes from its own 
LUT output, the data 3 input, or the register output of the previous LE. 
Additional hardware includes support for addition using the carry chain 
hardware, other multiplexers for routing, and flip-flop enable and reset. 
Altera groups 16 LEs together to create a logic array block (LAB) and 
provides local connections between LEs within the LAB.

In summary, each Cyclone IV LE can perform one combinational  
and/or registered function, which can involve up to four variables. Other 
brands of FPGAs are organized somewhat differently, but the same gen-
eral principles apply. For example, Xilinx’s 7-series FPGAs use 6-input 
LUTs instead of 4-input LUTs.

The designer configures an FPGA by first creating a schematic or 
HDL description of the design. The design is then synthesized onto 
the FPGA. The synthesis tool determines how the LUTs, multiplexers, 
and routing channels should be configured to perform the specified 
functions. This configuration information is then downloaded to the 
FPGA. Because Cyclone IV FPGAs store their configuration informa-
tion in SRAM, they are easily reprogrammed. The FPGA may down-
load its SRAM contents from a computer in the laboratory or from 
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an EEPROM chip when the system is turned on. Some manufacturers 
include an EEPROM directly on the FPGA or use one-time programma-
ble fuses to configure the FPGA.

Example 5.8 FUNCTIONS BUILT USING LEs

Explain how to configure one or more Cyclone IV LEs to perform the follow-
ing functions: (a) X ABC ABC= +  and Y AB=  (b) Y = JKLMPQR; (c) a 
divide-by-3 counter with binary state encoding (see Figure 3.29(a)). You may 
show interconnection between LEs as needed.

Solution  (a) Configure two LEs. One LUT computes X and the other LUT com-
putes Y, as shown in Figure 5.61. For the first LE, inputs data 1, data 2, and 
data 3 are A, B, and C, respectively (these connections are set by the routing 
channels). data 4 is a don’t care but must be tied to something, so it is tied to 0. 
For the second LE, inputs data 1 and data 2 are A and B, respectively; the other 
LUT inputs are don’t cares and are tied to 0. Configure the final multiplexers 
to select the combinational outputs from the LUTs to produce X and Y. In gen-
eral, a single LE can compute any function of up to four input variables in this 
fashion.

 (b) Configure the LUT of the first LE to compute X = JKLM and the LUT on 
the second LE to compute Y = XPQR. Configure the final multiplexers to select 
the combinational outputs X and Y from each LE. This configuration is shown 
in Figure 5.62. Routing channels between LEs, indicated by the dashed blue 
lines, connect the output of LE 1 to the input of LE 2. In general, a group of LEs 
can compute functions of N input variables in this manner.
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(c) The FSM has two bits of state (S1:0) and one output (Y). The next state depends 
on the two bits of current state. Use two LEs to compute the next state from the 
current state, as shown in Figure 5.63. Use the two flip-flops, one from each LE, 
to hold this state. The flip-flops have a reset input that can be connected to an 
external Reset signal. The registered outputs are fed back to the LUT inputs using 
the multiplexer on data 3 and routing channels between LEs, as indicated by the 
dashed blue lines. In general, another LE might be necessary to compute the output 
Y. However, in this case, Y = S′0, so Y can come from LE 1. Hence, the entire FSM 
fits in two LEs. In general, an FSM requires at least one LE for each bit of state, and 
it may require more LEs for the output or next state logic if they are too complex 
to fit in a single LUT.
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Example 5.9 MORE LOGIC ELEMENT EXAMPLES

How many Cyclone IV LEs are required to build each of the following circuits?

 (a) 4-input AND

 (b) 7-input XOR

 (c) Y = A(B + C + D + E) + A(BCDE)

 (d) 12-bit shift register

 (e) 32-bit 2:1 multiplexer

 (f) 16-bit counter

 (g) Arbitrary finite state machine with 2 bits of state, 2 inputs, and 3 outputs

Solution 

 (a) 1: The LUT can perform any function of up to 4 inputs.

 (b) 2: The first LUT can compute a 4-input XOR. The second LUT can XOR 
that output with three more inputs.

 (c) 3: One LUT computes B + C + D + E, a function of 4 inputs. A second LUT 
computes BCDE, a different function of 4 inputs. A third LUT uses 3 inputs 
(these two outputs and A) to compute Y.

 (d) 12: A shift register contains one flip-flop per bit.

 (e) 32: A 2:1 multiplexer is a function of three inputs: S, D0, and D1, so it 
requires one LUT per bit.

 (f) 16: Each bit of a counter requires a flip-flop and a full adder. The LE con-
tains the flip-flop and adder logic. Although a full adder has two outputs 
and might seem to need two LUTs, the LE contains special carry chain logic 
shown in Figure 5.60 optimized to perform addition with a single LE.

 (g) 5: The FSM has two flip-flops, two next state signals, and three output sig-
nals. Each next state signal is a function of four variables (the two bits of 
state and two inputs), so it can be computed with one LUT. Thus, two LEs 
are sufficient for the next state logic and state register. Each output is a func-
tion of at most four signals, so one more LUT is needed for each output.

 

Example 5.10 LE DELAY

Alyssa P. Hacker is building a finite state machine that must run at 200 MHz. 
She uses a Cyclone IV FPGA with the following specifications: tLE = 381 ps 
per LE, tsetup = 76 ps, and tpcq = 199 ps for all flip-flops. The wiring delay 
between LEs is 246 ps. Assume that the hold time for the flip-flops is 0. What 
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is the maximum number of levels of LEs that her design can use between two 
registers?

Solution Alyssa uses Equation 3.13 to solve for the maximum propagation delay 
of the logic: tpd ≤ Tc − (tpcq + tsetup).

Thus, tpd = 5 ns − (0.199 ns + 0.076 ns), so tpd ≤ 4.725 ns. The delay of each LE 
plus wiring delay between LEs, tLE+wire, is 381 ps + 246 ps = 627 ps. The maxi-
mum number of LEs, N, is NtLE+wire ≤ 4.725 ns. Thus, N = 7.
 

5 . 6 . 3   Array Implementations*

To minimize their size and cost, ROMs and PLAs commonly use pseudo- 
nMOS (see Section 1.7.8) or dynamic circuits instead of conventional 
logic gates.

Figure 5.64(a) shows the dot notation for a 4 × 3-bit ROM that per-
forms the following functions: X A B Y A B= = +⊕ , , and Z AB= . 
These are the same functions as those of Figure 5.51, with the address 
inputs renamed A and B and the data outputs renamed X, Y, and Z. 
The pseudo-nMOS implementation is given in Figure 5.64(b). Each 
decoder output is connected to the gates of the nMOS transistors in its 
row. Remember that in pseudo-nMOS circuits, the weak pMOS transis-
tor pulls the output HIGH only if there is no path to GND through the 
pull-down (nMOS) network.

Pull-down transistors are placed at every junction without a dot. The 
dots from the dot notation diagram of Figure 5.64(a) are left visible in 
Figure 5.64(b) for easy comparison. The weak pull-up transistors pull the 
output HIGH for each wordline without a pull-down transistor. For exam-
ple, when AB = 11, the 11 wordline is HIGH and transistors on X and Z 

Many ROMs and PLAs use 
dynamic circuits in place 
of pseudo-nMOS circuits. 
Dynamic gates turn the 
pMOS transistor ON for only 
part of the time, saving power 
when the pMOS is OFF and 
the result is not needed. 
Aside from this, dynamic and 
pseudo-nMOS memory arrays 
are similar in design and 
behavior. 
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2:4 
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A0

X
(a)

A

B

Y Z

11

10

2:4 
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01

00

A1

A0

A

B

weak

(b)
X Y Z

Figure 5.64 ROM implementation: (a) dot notation, (b) pseudo-nMOS circuit
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turn on and pull those outputs LOW. The Y output has no transistor con-
necting to the 11 wordline, so Y is pulled HIGH by the weak pull-up.

PLAs can also be built using pseudo-nMOS circuits, as shown in 
Figure 5.65 for the PLA from Figure 5.57. Pull-down (nMOS) transis-
tors are placed on the complement of dotted literals in the AND array 
and on dotted rows in the OR array. The columns in the OR array are 
sent through an inverter before they are fed to the output bits. Again, the 
blue dots from the dot notation diagram of Figure 5.57 are left visible in 
Figure 5.65 for easy comparison.

5.7  SUMMARY
This chapter introduced digital building blocks used in many digital sys-
tems. These blocks include arithmetic circuits, such as adders, subtrac-
tors, comparators, shifters, multipliers, and dividers; sequential circuits, 
such as counters and shift registers; and arrays for memory and logic. 
The chapter also explored fixed-point and floating-point representations 
of fractional numbers. In Chapter 7, we use these building blocks to 
build a microprocessor.

Adders form the basis of most arithmetic circuits. A half adder adds 
two 1-bit inputs, A and B, and produces a sum and a carry out. A full 
adder extends the half adder to also accept a carry in. N full adders can 
be cascaded to form a carry propagate adder (CPA) that adds two N-
bit numbers. This type of CPA is called a ripple-carry adder because the 
carry ripples through each of the full adders. Faster CPAs can be con-
structed using lookahead or prefix techniques.

A subtractor negates the second input and adds it to the first. 
A magnitude comparator subtracts one number from another and deter-
mines the relative value based on the sign or carry out of the result. 

X Y

ABC

AB

ABC

A B C

AND Array

OR Array 

weak

weak

Figure 5.65 3 × 3 × 2-bit PLA 
using pseudo-nMOS circuits
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A multiplier forms partial products using AND gates, then sums these 
bits using full adders. A divider repeatedly subtracts the divisor from the 
partial remainder and checks the sign of the difference to determine the 
quotient bits. A counter uses an adder and a register to increment a run-
ning count.

Fractional numbers are represented using fixed-point or floating- 
point forms. Fixed-point numbers are analogous to decimals, and  
floating-point numbers are analogous to scientific notation. Fixed-point 
numbers use ordinary arithmetic circuits, whereas floating-point numbers 
require more elaborate hardware to extract and process the sign, exponent, 
and mantissa.

Large memories are organized into arrays of words. The memories 
have one or more ports to read and/or write the words. Volatile mem-
ories, such as SRAM and DRAM, lose their state when the power is 
turned off. SRAM is faster than DRAM but requires more transistors.  
A register file is a small multiported SRAM array. Nonvolatile memories, 
called ROMs, retain their state indefinitely. Despite their names, most 
modern ROMs can be written.

Arrays are also a regular way to build logic. Memory arrays can be 
used as LUTs to perform combinational functions. PLAs are composed 
of dedicated connections between configurable AND and OR arrays; 
they implement only combinational logic. FPGAs are composed of many 
small LUTs and registers; they implement combinational and sequential 
logic. The LUT contents and their interconnections can be configured to 
perform any logic function. Modern FPGAs are easy to reprogram and 
are large and cheap enough to build highly sophisticated digital systems, 
so they are widely used in low- and medium-volume commercial products, 
as well as in education.
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Exercises

Exercise 5.1 What is the delay for the following types of 64-bit adders? Assume 
that each two-input gate delay is 150 ps and that a full adder delay is 450 ps.

 (a) a ripple-carry adder

 (b) a carry-lookahead adder with 4-bit blocks

 (c) a prefix adder

Exercise 5.2 Design two adders: a 64-bit ripple-carry adder and a 64-bit carry-
lookahead adder with 4-bit blocks. Use only two-input gates. Each two-input 
gate is 15 μm2, has a 50 ps delay, and has 20 fF of total gate capacitance. You 
may assume that the static power is negligible.

 (a) Compare the area, delay, and power of the adders (operating at 100 MHz 
and 1.2 V).

 (b) Discuss the trade-offs between power, area, and delay.

Exercise 5.3 Explain why a designer might choose to use a ripple-carry adder 
instead of a carry-lookahead adder.

Exercise 5.4 Design the 16-bit prefix adder of Figure 5.7 in an HDL. Simulate 
and test your module to prove that it functions correctly.

Exercise 5.5 The prefix network shown in Figure 5.7 uses black cells to 
compute all of the prefixes. Some of the block propagate signals are not actually 
necessary. Design a “gray cell” that receives G and P signals for bits i:k and 
k − 1:j but produces only Gi:j, not Pi:j. Redraw the prefix network, replacing 
black cells with gray cells wherever possible.

Exercise 5.6 The prefix network shown in Figure 5.7 is not the only way to 
calculate all of the prefixes in logarithmic time. The Kogge-Stone network is 
another common prefix network that performs the same function using a different 
connection of black cells. Research Kogge-Stone adders and draw a schematic 
similar to Figure 5.7 showing the connection of black cells in a Kogge-Stone adder.

Exercise 5.7 Recall that an N-input priority encoder has log2N outputs that 
encode which of the N inputs gets priority (see Exercise 2.36).

 (a) Design an N-input priority encoder that has delay that increases 
logarithmically with N. Sketch your design and give the delay of the circuit 
in terms of the delay of its circuit elements.

 (b) Code your design in an HDL. Simulate and test your module to prove that 
it functions correctly.
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Exercise 5.8 Design the following comparators for 32-bit unsigned numbers. 
Sketch the schematics.

 (a) not equal

 (b) greater than or equal to

 (c) less than

Exercise 5.9 Consider the signed comparator of Figure 5.12.

 (a) Give an example of two 4-bit signed numbers A and B for which a 4-bit 
signed comparator correctly computes A < B.

 (b) Give an example of two 4-bit signed numbers A and B for which a 4-bit 
signed comparator incorrectly computes A < B.

 (c) In general, when does the N-bit signed comparator operate incorrectly?

Exercise 5.10 Modify the N-bit signed comparator of Figure 5.12 to correctly 
compute A < B for all N-bit signed inputs A and B.

Exercise 5.11 Design the 32-bit ALU shown in Figure 5.15 using your favorite 
HDL. You can make the top-level module either behavioral or structural.

Exercise 5.12 Design the 32-bit ALU shown in Figure 5.17 using your favorite 
HDL. You can make the top-level module either behavioral or structural.

Exercise 5.13 Design the 32-bit ALU shown in Figure 5.18(a) using your favorite 
HDL. You can make the top-level module either behavioral or structural.

Exercise 5.14 Design the 32-bit ALU shown in Figure 5.18(b) using your favorite 
HDL. You can make the top-level module either behavioral or structural.

Exercise 5.15 Write a testbench to test the 32-bit ALU from Exercise 5.11. Then, 
use it to test the ALU. Include any test vector files necessary. Be sure to test 
enough corner cases to convince a reasonable skeptic that the ALU functions 
correctly.

Exercise 5.16 Repeat Exercise 5.15 for the ALU from Exercise 5.12.

Exercise 5.17 Repeat Exercise 5.15 for the ALU from Exercise 5.13.

Exercise 5.18 Repeat Exercise 5.15 for the ALU from Exercise 5.14.

Exercise 5.19 Build an unsigned comparison unit that compares two unsigned 
numbers A and B. The unit’s input is the Flags signal (N, Z, C, V) from the ALU 



Exercises 287

of Figure 5.16, with the ALU performing subtraction: A − B. The unit’s outputs 
are HS, LS, HI, and LO, which indicate that A is higher than or the same as 
(HS), lower than or the same as (LS), higher (HI), or lower (LO) than B.

 (a) Write minimal equations for HS, LS, HI, and LO in terms of N, Z, C, and V.

 (b) Sketch circuits for HS, LS, HI, and LO.

Exercise 5.20 Build a signed comparison unit that compares two signed numbers 
A and B. The unit’s input is the Flags signal (N, Z, C, V) from the ALU of Figure 
5.16, with the ALU performing subtraction: A − B. The unit’s outputs are GE, 
LE, GT, and LT, which indicate that A is greater than or equal to (GE), less 
than or equal to (LE), greater than (GT), or less than (LT) B.

(a) Write minimal equations for GE, LE, GT, and LT in terms of N, Z, C, and V.

 (b) Sketch circuits for GE, LE, GT, and LT.

Exercise 5.21 Design a shifter that always shifts a 32-bit input left by 2 bits. 
The input and output are both 32 bits. Explain the design in words and sketch a 
schematic. Implement your design in your favorite HDL.

Exercise 5.22 Design 4-bit left and right rotators. Sketch a schematic of each 
design. Implement your designs in your favorite HDL.

Exercise 5.23 Design an 8-bit left shifter using only 24 2:1 multiplexers. The 
shifter accepts an 8-bit input A and a 3-bit shift amount, shamt2:0. It produces an 
8-bit output Y. Sketch the schematic.

Exercise 5.24 Explain how to build any N-bit shifter or rotator using only 
Nlog2N 2:1 multiplexers.

Exercise 5.25 The funnel shifter in Figure 5.66 can perform any N-bit shift or 
rotate operation. It shifts a 2N-bit input right by k bits. The output Y is the N 
least significant bits of the result. The most significant N bits of the input are 
called B and the least significant N bits are called C. By choosing appropriate 
values of B, C, and k, the funnel shifter can perform any type of shift or rotate. 
Explain what these values should be in terms of A, shamt, and N for

 (a) logical right shift of A by shamt

 (b) arithmetic right shift of A by shamt

 (c) left shift of A by shamt

 (d) right rotate of A by shamt

 (e) left rotate of A by shamt
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Exercise 5.26 Find the critical path for the unsigned 4 × 4 multiplier from Figure 
5.21 in terms of an AND gate delay (tAND) and a full adder delay (tFA). What is 
the delay of an N × N multiplier built in the same way?

Exercise 5.27 Find the critical path for the unsigned 4 × 4 divider from Figure 
5.22 in terms of a 2:1 mux delay (tMUX), an adder delay (tFA), and an inverter 
delay (tINV). What is the delay of an N × N divider built in the same way?

Exercise 5.28 Design a multiplier that handles two’s complement numbers.

Exercise 5.29 A sign extension unit extends a two’s complement number from M 
to N (N > M) bits by copying the most significant bit of the input into the upper 
bits of the output (see Section 1.4.6). It receives an M-bit input A and produces 
an N-bit output Y. Sketch a circuit for a sign extension unit with a 4-bit input 
and an 8-bit output. Write the HDL for your design.

Exercise 5.30 A zero extension unit extends an unsigned number from M to N 
bits (N > M) by putting zeros in the upper bits of the output. Sketch a circuit for 
a zero extension unit with a 4-bit input and an 8-bit output. Write the HDL for 
your design.

Exercise 5.31 Compute 111001.0002/001100.0002 in binary using the standard 
division algorithm from elementary school. Show your work.

Exercise 5.32 What is the range of numbers that can be represented by the 
following number systems?

 (a) U12.12 format (24-bit unsigned fixed-point numbers with 12 integer bits 
and 12 fraction bits)

 (b) 24-bit sign/magnitude fixed-point numbers with 12 integer bits and 12 
fraction bits

 (c) Q12.12 format (24-bit two’s complement fixed-point numbers with 12 
integer bits and 12 fraction bits)

B C

kk + N – 1

0N – 12N – 1

Y

0N – 1

Figure 5.66 Funnel shifter
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Exercise 5.33 Express the following base 10 numbers in 16-bit fixed-point  
sign/magnitude format with eight integer bits and eight fraction bits. Express 
your answer in hexadecimal.

 (a) −13.5625

 (b) 42.3125

 (c) −17.15625

Exercise 5.34 Express the following base 10 numbers in 12-bit fixed-point  
sign/magnitude format with six integer bits and six fraction bits. Express your 
answer in hexadecimal.

 (a) −30.5

 (b) 16.25

 (c) −8.078125

Exercise 5.35 Express the base 10 numbers in Exercise 5.33 in Q8.8 format 
(16-bit fixed-point two’s complement format with eight integer bits and eight 
fraction bits). Express your answer in hexadecimal.

Exercise 5.36 Express the base 10 numbers in Exercise 5.34 in Q6.6 format  
(12-bit fixed-point two’s complement format with six integer bits and six 
fraction bits). Express your answer in hexadecimal.

Exercise 5.37 Express the base 10 numbers in Exercise 5.33 in IEEE 754 single-
precision floating-point format. Express your answer in hexadecimal.

Exercise 5.38 Express the base 10 numbers in Exercise 5.34 in IEEE 754 single-
precision floating-point format. Express your answer in hexadecimal.

Exercise 5.39 Convert the following Q4.4 (two’s complement binary fixed-point 
numbers) to base 10. The implied binary point is explicitly shown to aid in your 
interpretation.

 (a) 0101.1000

 (b) 1111.1111

 (c) 1000.0000

Exercise 5.40 Repeat Exercise 5.39 for the following Q6.5 format (two’s 
complement binary fixed-point) numbers.

 (a) 011101.10101

 (b) 100110.11010

 (c) 101000.00100
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Exercise 5.41 When adding two floating-point numbers, the number with the 
smaller exponent is shifted. Why is this? Explain in words and give an example 
to justify your explanation.

Exercise 5.42 Add the following IEEE 754 single-precision floating-point 
numbers.

 (a) C0123456 + 81C564B7

 (b) D0B10301 + D1B43203

 (c) 5EF10324 + 5E039020

Exercise 5.43 Add the following IEEE 754 single-precision floating-point 
numbers.

 (a) C0D20004 + 72407020

 (b) C0D20004 + 40DC0004

 (c) (5FBE4000 + 3FF80000) + DFDE4000 (Why is the result counterintuitive? 
Explain.)

Exercise 5.44 Expand the steps in Section 5.3.2 for performing floating-point 
addition to work for negative as well as positive floating-point numbers.

Exercise 5.45 Consider IEEE 754 single-precision floating-point numbers.

 (a) How many numbers can be represented by the IEEE 754 single-precision 
floating-point format? You need not count ±∞ or NaN.

 (b) How many additional numbers could be represented if ±∞ and NaN were 
not represented?

 (c) Explain why ±∞ and NaN are given special representations.

Exercise 5.46 Consider the following decimal numbers: 245 and 0.0625.

 (a) Write the two numbers using single-precision floating-point notation. Give 
your answers in hexadecimal.

 (b) Perform a magnitude comparison of the two 32-bit numbers from part 
(a). In other words, interpret the two 32-bit numbers as two’s complement 
numbers and compare them. Does the integer comparison give the correct 
result?

 (c) You decide to come up with a new single-precision floating-point notation. 
Everything is the same as the IEEE 754 single-precision floating-point 
standard, except that you represent the exponent using two’s complement 
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instead of a bias. Write the two numbers using your new standard. Give 
your answers in hexadecimal.

 (d) Does integer comparison work with your new floating-point notation from 
part (c)?

 (e) Why is it convenient for integer comparison to work with floating-point 
numbers?

Exercise 5.47 Design a single-precision floating-point adder using your favorite 
HDL. Before coding the design in an HDL, sketch a schematic of your design. 
Simulate and test your adder to prove to a skeptic that it functions correctly. You 
may consider positive numbers only and use round toward zero (truncate). You 
may also ignore the special cases given in Table 5.4.

Exercise 5.48 In this problem, you will explore the design of a 32-bit floating-
point multiplier. The multiplier has two 32-bit floating-point inputs and 
produces a 32-bit floating-point output. You may consider positive numbers 
only and use round toward zero (truncate). You may also ignore the special cases 
given in Table 5.4.

 (a) Write the steps necessary to perform 32-bit floating-point multiplication.

 (b) Sketch the schematic of a 32-bit floating-point multiplier.

 (c) Design a 32-bit floating-point multiplier in an HDL. Simulate and test your 
multiplier to prove to a skeptic that it functions correctly.

Exercise 5.49 In this problem, you will explore the design of a 32-bit prefix adder.

 (a) Sketch a schematic of your design.

 (b) Design the 32-bit prefix adder in an HDL. Simulate and test your adder to 
prove that it functions correctly.

 (c) What is the delay of your 32-bit prefix adder from part (a)? Assume that 
each two-input gate delay is 100 ps.

 (d) Design a pipelined version of the 32-bit prefix adder. Sketch the schematic 
of your design. How fast can your pipelined prefix adder run? You may 
assume a sequencing overhead (tpcq + tsetup) of 80 ps. Make the design run as 
fast as possible.

 (e) Design the pipelined 32-bit prefix adder in an HDL.

Exercise 5.50 An incrementer adds 1 to an N-bit number. Build an 8-bit 
incrementer using half adders.
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Exercise 5.51 Build a 32-bit synchronous Up/Down counter. The inputs are 
Reset and Up. When Reset is 1, the outputs are all 0. Otherwise, when Up = 1, 
the circuit counts up, and when Up = 0, the circuit counts down.

Exercise 5.52 Design a 32-bit counter that adds 4 at each clock edge. The 
counter has reset and clock inputs. Upon reset, the counter output is all 0.

Exercise 5.53 Modify the counter from Exercise 5.52 such that the counter 
will either increment by 4 or load a new 32-bit value, D, on each clock edge, 
depending on a control signal Load. When Load = 1, the counter loads the new 
value D. Otherwise, it increments by 4.

Exercise 5.54 An N-bit Johnson counter consists of an N-bit shift register with a 
reset signal. The output of the shift register (Sout) is inverted and fed back to the 
input (Sin). When the counter is reset, all of the bits are cleared to 0.

 (a) Show the sequence of outputs, Q3:0, produced by a 4-bit Johnson counter 
starting immediately after the counter is reset.

 (b) How many cycles elapse until an N-bit Johnson counter repeats its 
sequence? Explain.

 (c) Design a decimal counter using a 5-bit Johnson counter, ten AND gates, and 
inverters. The decimal counter has a clock, a reset, and ten one-hot outputs 
Y9:0. When the counter is reset, Y0 is asserted. On each subsequent cycle, the 
next output should be asserted. After ten cycles, the counter should repeat. 
Sketch a schematic of the decimal counter.

 (d) What advantages might a Johnson counter have over a conventional 
counter?

Exercise 5.55 Write the HDL for a 4-bit scannable flip-flop like the one shown 
in Figure 5.39. Simulate and test your HDL module to prove that it functions 
correctly.

Exercise 5.56 The English language has a good deal of redundancy that allows 
us to reconstruct garbled transmissions. Binary data can also be transmitted in 
redundant form to allow error correction. For example, the number 0 could be 
coded as 00000 and the number 1 could be coded as 11111. The value could 
then be sent over a noisy channel that might flip up to two of the bits. The 
receiver could reconstruct the original data because a 0 will have at least three of 
the five received bits as 0’s; similarly, a 1 will have at least three 1’s.

 (a) Propose an encoding to send 00, 01, 10, or 11 encoded using five bits of 
information such that all errors that corrupt one bit of the encoded data 
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can be corrected. Hint: the encodings 00000 and 11111 for 00 and 11, 
respectively, will not work.

(b) Design a circuit that receives your five-bit encoded data and decodes 
it to 00, 01, 10, or 11, even if one bit of the transmitted data has been 
changed.

 (c) Suppose you wanted to change to an alternative 5-bit encoding. How might 
you implement your design to make it easy to change the encoding without 
having to use different hardware?

Exercise 5.57 Flash EEPROM, simply called Flash memory, is a fairly recent 
invention that has revolutionized consumer electronics. Research and explain 
how Flash memory works. Use a diagram illustrating the floating gate. Describe 
how a bit in the memory is programmed. Properly cite your sources.

Exercise 5.58 The extraterrestrial life project team has just discovered aliens 
living on the bottom of Mono Lake. They need to construct a circuit to classify 
the aliens by potential planet of origin based on measured features available 
from the NASA probe: greenness, brownness, sliminess, and ugliness. Careful 
consultation with xenobiologists leads to the following conclusions:

• If the alien is green and slimy or ugly, brown, and slimy, it might be 
from Mars.

• If the critter is ugly, brown, and slimy, or green and neither ugly nor 
slimy, it might be from Venus.

• If the beastie is brown and neither ugly nor slimy or is green and 
slimy, it might be from Jupiter.

Note that this is an inexact science; for example, a life form which is mottled 
green and brown and is slimy but not ugly might be from either Mars or Jupiter.

 (a) Program a 4 × 4 × 3 PLA to identify the alien. You may use dot notation.

 (b) Program a 16 × 3 ROM to identify the alien. You may use dot notation.

 (c) Implement your design in an HDL.

Exercise 5.59 Implement the following functions using a single 16 × 3 ROM. 
Use dot notation to indicate the ROM contents.

 (a) X AB BCD AB= + +

 (b) Y AB BD= +

 (c) Z A B C D= + + +
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Exercise 5.60 Implement the functions from Exercise 5.59 using a 4 × 8 × 3 
PLA. You may use dot notation.

Exercise 5.61 Specify the size of a ROM that you could use to program each 
of the following combinational circuits. Is using a ROM to implement these 
functions a good design choice? Explain why or why not.

 (a) a 16-bit adder/subtractor with Cin and Cout

 (b) an 8 × 8 multiplier

 (c) a 16-bit priority encoder (see Exercise 2.36)

Exercise 5.62 Consider the ROM circuits in Figure 5.67. For each row, can the 
circuit in column I be replaced by an equivalent circuit in column II by proper 
programming of the latter’s ROM?
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Figure 5.67 ROM circuits

Exercise 5.63 How many Cyclone IV FPGA LEs are required to perform each of 
the following functions? Show how to configure one or more LEs to perform the 



Exercises 295

function. You should be able to do this by inspection, without performing logic 
synthesis.

 (a) the combinational function from Exercise 2.13(c)

 (b) the combinational function from Exercise 2.17(c)

 (c) the two-output function from Exercise 2.24

 (d) the function from Exercise 2.35

 (e) a four-input priority encoder (see Exercise 2.36)

Exercise 5.64 Repeat Exercise 5.63 for the following functions:

 (a) an eight-input priority encoder (see Exercise 2.36)

 (b) a 3:8 decoder

 (c) a 4-bit carry propagate adder (with no carry in or out)

 (d) the FSM from Exercise 3.22

 (e) the Gray code counter from Exercise 3.27

Exercise 5.65 Consider the Cyclone IV LE shown in Figure 5.60. According to 
the datasheet, it has the timing specifications given in Table 5.7.

 (a) What is the minimum number of Cyclone IV LEs required to implement the 
FSM of Figure 3.26?

 (b) Without clock skew, what is the fastest clock frequency at which this FSM 
will run reliably?

 (c) With 3 ns of clock skew, what is the fastest frequency at which the FSM will 
run reliably?

Table 5.7 Cyclone IV timing

Name Value (ps)

tpcq, tccq 199

tsetup 76

thold 0

tpd (per LE) 381

twire (between LEs) 246

tskew 0
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Exercise 5.66 Repeat Exercise 5.65 for the FSM of Figure 3.31(b).

Exercise 5.67 You would like to use an FPGA to implement an M&M sorter 
with a color sensor and motors to put red candy in one jar and green candy in 
another. The design is to be implemented as an FSM using a Cyclone IV FPGA. 
According to the data sheet, the FPGA has timing characteristics shown in 
Table 5.7. You would like your FSM to run at 100 MHz. What is the maximum 
number of LEs on the critical path? What is the fastest speed at which the FSM 
will run?
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Interview Questions

The following exercises present questions that have been asked at interviews for 
digital design jobs.

Question 5.1 What is the largest possible result of multiplying two unsigned N-
bit numbers?

Question 5.2 Binary coded decimal (BCD) representation uses four bits to 
encode each decimal digit. For example, 4210 is represented as 01000010BCD. 
Explain in words why processors might use BCD representation.

Question 5.3 Design hardware to add two 8-bit unsigned BCD numbers (see 
Question 5.2). Sketch a schematic for your design, and write an HDL module 
for the BCD adder. The inputs are A, B, and Cin, and the outputs are S and Cout. 
Cin and Cout are 1-bit carries and A, B, and S are 8-bit BCD numbers.
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6Architecture

6.1  INTRODUCTION
The previous chapters introduced digital design principles and building 
blocks. In this chapter, we jump up a few levels of abstraction to define 
the architecture of a computer. The architecture is the programmer’s 
view of a computer. It is defined by the instruction set (language) and 
operand locations (registers and memory). Many different architectures 
exist, such as RISC-V, ARM, x86, MIPS, SPARC, and PowerPC.

The first step in understanding any computer architecture is to learn 
its language. The words in a computer’s language are called instructions. 
The computer’s vocabulary is called the instruction set. All programs 
running on a computer use the same instruction set. Even complex software 
applications, such as word processing and spreadsheet applications, are 
eventually compiled into a series of simple instructions such as add, subtract, 
and branch. Computer instructions indicate both the operation to perform 
and the operands to use. The operands may come from memory, registers, 
or the instruction itself.

Computer hardware understands only 1’s and 0’s, so instructions are 
encoded as binary numbers in a format called machine language. Just as 
we use letters to encode human language, computers use binary numbers 
to encode machine language. The RISC-V architecture represents each 
instruction as a 32-bit word. Microprocessors are digital systems that 
read and execute machine language instructions. However, humans con-
sider reading machine language to be tedious, so we prefer to represent 
the instructions in a symbolic format called assembly language.

The instruction sets of different architectures are more like different 
dialects than different languages. Almost all architectures define basic 
instructions—such as add, subtract, and branch—that operate on memory 
or registers. Once you have learned one instruction set, understanding 
others is fairly straightforward.
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A computer architecture does not define the underlying hardware 
implementation. Often, many different hardware implementations of a 
single architecture exist. For example, Intel and Advanced Micro Devices 
(AMD) both sell various microprocessors belonging to the same x86 
architecture. These microprocessors can all run the same programs, but 
they use different underlying hardware. Therefore, they offer trade-offs 
in performance, price, and power. Some microprocessors are optimized 
for high-performance servers, whereas others are optimized for long 
battery life in gadgets or laptop computers. The specific arrangement of 
registers, memories, arithmetic/logical units (ALUs), and other building 
blocks to form a microprocessor is called the microarchitecture and will 
be the subject of Chapter 7.

In this text, we introduce the RISC-V (pronounced “risk five”) 
architecture, the first open-source instruction set architecture with broad 
commercial support. We describe the RISC-V 32-bit integer instruction 
set (RV32I) version 2.2, which forms the core of RISC-V’s instruction 
set. Sections 6.6 and 6.7 summarize features of other versions of the 
architecture. The RISC-V Instruction Set Manual, available online, is the 
authoritative definition of the architecture.

The RISC-V architecture was initially defined in 2010 at the 
University of California, Berkeley by Krste Asanović, Andrew Waterman, 
David Patterson, and others. Since its inception, many people have con-
tributed to its development. RISC-V is unusual in that its open-source  
nature makes it free to use, and it is comparable in capabilities to commer-
cial architectures such as ARM and x86. So far, only a few companies 
have built commercial chips, including SiFive and Western Digital, but 
adoption is rapidly increasing. We start our journey into understanding 
the RISC-V architecture by introducing assembly language instructions, 
operand locations, and common programming constructs, such as 
branches, loops, array manipulations, and function calls. We then 
describe how the assembly language translates into machine language 
and show how a program is loaded into memory and executed.

Throughout the chapter, we describe how the design of the RISC-V 
architecture was motivated by four principles articulated by David 
Patterson and John Hennessy in their text Computer Organization 
and Design: (1) regularity supports simplicity; (2) make the common  
case fast; (3) smaller is faster; and (4) good design demands good 
compromises.

6.2  ASSEMBLY LANGUAGE
Assembly language is the human-readable representation of the comput-
er’s native language. Each assembly language instruction specifies both 
the operation to perform and the operands on which to operate. We 
introduce simple arithmetic instructions and show how these operations 

Krste Asanović started RISC-V 
as a summer project. He is a 
professor of computer science 
at the University of California, 
Berkeley and the Chairman 
of the Board for RISC-V 
International, formerly known 
as the RISC-V Foundation. He 
is also the cofounder of SiFive, 
a company that develops and 
commercializes RISC-V chips, 
boards, and supporting tools. 
(Photo printed with permission.) 

RISC-V is called “five” because 
it is the fifth RISC architecture 
developed at Berkeley. 

Andrew Waterman designs 
microprocessors at SiFive, a 
company he cofounded with 
Krste Asanović in 2015 to 
provide low-cost RISC-V cores 
and custom chips. He earned his 
PhD in computer science from 
UC Berkeley in 2016, where, 
weary of the vagaries of existing 
instruction-set architectures, he 
co-designed the RISC-V ISA and 
the first RISC-V cores. (Photo 
printed with permission.) 
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adoption is rapidly increasing. We start our journey into understanding 
the RISC-V architecture by introducing assembly language instructions, 
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and show how a program is loaded into memory and executed.

Throughout the chapter, we describe how the design of the RISC-V 
architecture was motivated by four principles articulated by David 
Patterson and John Hennessy in their text Computer Organization 
and Design: (1) regularity supports simplicity; (2) make the common  
case fast; (3) smaller is faster; and (4) good design demands good 
compromises.

6.2  ASSEMBLY LANGUAGE
Assembly language is the human-readable representation of the comput-
er’s native language. Each assembly language instruction specifies both 
the operation to perform and the operands on which to operate. We 
introduce simple arithmetic instructions and show how these operations 
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of the Board for RISC-V 
International, formerly known 
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is also the cofounder of SiFive, 
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commercializes RISC-V chips, 
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RISC-V is called “five” because 
it is the fifth RISC architecture 
developed at Berkeley. 

are written in assembly language. We then define the RISC-V instruction 
operands: registers, memory, and constants.

This chapter assumes that you already have some familiarity with a 
high-level programming language such as C, C++, or Java. (These lan-
guages are practically identical for most of the examples in this chapter, 
but where they differ, we will use C.) Appendix C provides an introduc-
tion to C for those with little or no prior programming experience.

6 . 2 . 1   Instructions

One of the most common operations computers perform is addition. 
Code Example 6.1 shows code for adding variables b and c and writing 
the result to a. The code is shown on the left in a high-level language 
(using the syntax of C, C++, and Java) and then rewritten on the right 
in RISC-V assembly language. Note that statements in a C program end 
with a semicolon.

High-Level Code
a = b + c;

RISC-V Assembly Code
add a, b, c

Code Example 6.1 ADDITION

The first part of the assembly instruction, add, is called the  
mnemonic and indicates what operation to perform. The operation is 
performed on b and c, the source operands, and the result is written to 
a, the destination operand.

Code Example 6.2 shows that subtraction is similar to addition. The 
sub instruction format is the same as the add instruction: destination 
operand, followed by two sources. This consistent instruction format is 
an example of the first design principle:

Design Principle 1: Regularity supports simplicity.

High-Level Code
a = b − c;

RISC-V Assembly Code
sub a, b, c

Code Example 6.2 SUBTRACTION

Instructions with a consistent number of operands—in this case, two 
sources and one destination—are easier to encode and handle in hard-
ware. More complex high-level code translates into multiple RISC-V 
instructions, as shown in Code Example 6.3.

Mnemonic (pronounced nuh- 
maa-nik) comes from the Greek  
word μιμνΕσκεστηαι, to remember. 
The assembly language mnemonic 
is easier to remember than a 
machine language pattern of 0’s 
and 1’s representing the same 
operation. 

David Patterson has been a 
professor of computer science 
at the University of California, 
Berkeley since 1976, and he 
coinvented reduced instruction 
set computing with John 
Hennessy in 1984. It was later 
commercialized as the SPARC 
architecture. He helped develop 
the RISC-V architecture and 
continues to play an integral 
role in its development. (Photo 
printed with permission.) 
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In the high-level language examples, single-line comments begin with 
// and continue until the end of the line. Multiline comments begin with 
/* and end with */. In RISC-V assembly language, only single-line com-
ments are used. They begin with a hash symbol (#) and continue until the 
end of the line. The assembly language program in Code Example 6.3 
stores the intermediate result (b + c) in a temporary variable t. Using mul-
tiple assembly language instructions to perform more complex operations 
is an example of the second design principle of computer architecture:

Design Principle 2: Make the common case fast.

The RISC-V instruction set makes the common case fast by 
including only simple, commonly used instructions. The number of 
instructions is kept small so that the hardware required to decode the 
instruction and its operands can be simple, small, and fast. More elab-
orate operations that are less common are performed using sequences 
of multiple simple instructions. Thus, RISC-V is a reduced instruction 
set computer (RISC) architecture. Architectures with many complex 
instructions, such as Intel’s x86 architecture, are complex instruction set 
computers (CISC). For example, x86 defines a “string move” instruction 
that copies a string (a series of characters) from one part of memory to 
another. Such an operation requires many, possibly even hundreds, of 
simple instructions in a RISC machine. However, the cost of implement-
ing complex instructions in a CISC architecture is added hardware and 
overhead that slows down the simple instructions.

A RISC architecture, such as RISC-V, minimizes the hardware com-
plexity and the necessary instruction encoding by keeping the set of 
distinct instructions small. For example, an instruction set with 64 sim-
ple instructions would need log264 = 6 bits to encode the operation, 
whereas an instruction set with 256 instructions would need log2256 = 
8 bits of encoding per instruction. In a CISC machine, even though the 
complex instructions may be used only rarely, they add overhead to all 
instructions, even the simple ones.

6 . 2 . 2   Operands: Registers, Memory, and Constants

An instruction operates on operands. In Code Example 6.2, the variables 
a, b, and c are all operands. But computers operate on 1’s and 0’s, not 
variable names. The instructions need a physical location from which to 

John Hennessy is a professor 
of electrical engineering 
and computer science at 
Stanford University and 
served as the president of 
Stanford from 2000 to 2016. 
He coinvented reduced 
instruction set computing 
with David Patterson. He 
also developed the MIPS 
computer architecture and 
cofounded MIPS Computer 
Systems in 1984. The MIPS 
processor was used in many 
commercial systems, including 
products from Silicon 
Graphics, Nintendo, and 
Cisco. John Hennessy and 
David Patterson were given 
the Turing Award in 2017 
for pioneering a quantitative 
approach to the design and 
evaluation of computer 
architectures. (Photo printed 
with permission.) 

In the Preface, we describe 
several simulators and tools for 
compiling and simulating C and 
RISC-V assembly code. We also 
provide labs (available on this 
textbook’s companion site, see 
Preface) that show how to use 
these tools. 

High-Level Code
a = b + c − d;   // single-line comment
                       /* multiple-line
                           comment */

RISC-V Assembly Code
add t, b, c  # t = b + c
sub a, t, d  # a = t − d

Code Example 6.3 MORE COMPLEX CODE
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retrieve the binary data. Operands can be stored in registers or memory, 
or they may be constants stored in the instruction itself. Computers use 
various locations to hold operands in order to optimize for speed and 
data capacity. Operands stored as constants or in registers are accessed 
quickly, but they hold only a small amount of data. Additional data 
must be accessed from memory, which is large but slow. RISC-V is called 
a 32-bit architecture because it operates on 32-bit data.

Registers
Instructions need to access operands quickly so that they can run fast, 
but operands stored in memory take a long time to retrieve. Therefore, 
most architectures specify a small number of registers that hold com-
monly used operands. The RISC-V architecture has 32 registers, called 
the register set, stored in a small multiported memory called a register 
file. The fewer the registers, the faster they can be accessed. This leads to 
the third design principle:

Design Principle 3: Smaller is faster.

Looking up information from a small number of relevant books 
on your desk is a lot faster than searching for the information in the 
stacks at a library. Likewise, reading data from a small register file is 
faster than reading it from a large memory. A register file is typically 
built from a small SRAM array (see Section 5.5.3).

Code Example 6.4 shows the add instruction with register oper-
ands. The variables a, b, and c are arbitrarily placed in s0, s1, and s2. 
The name s1 is pronounced “register s1” or simply “s1.” The instruc-
tion adds the 32-bit values contained in s1 (b) and s2 (c) and writes the 
32-bit result to s0 (a). Code Example 6.5 shows RISC-V assembly code 
using a register, t0, to store the intermediate calculation of b + c.

64- and 128-bit versions of 
the RISC-V architecture also 
exist, but we will focus on the 
32-bit version in this book. 
The wider versions (RV64I 
and RV128I) are nearly 
identical to the 32-bit version 
(RV32I) except for the width 
of the registers and memory 
addresses. The main other 
additions are instructions that 
operate on only the lower 
half of a word and memory 
operations that transfer wider 
words. 

Appendix B, which is located 
on the inside covers of the 
textbook, gives a handy 
summary of the entire 
RISC-V instruction set. 

High-Level Code
a = b + c;

RISC-V Assembly Code
#  s0 = a, s1 = b, s2 = c
   add s0, s1, s2        # a = b + c

Code Example 6.4 REGISTER OPERANDS

High-Level Code
a = b + c − d;

RISC-V Assembly Code
#  s0 = a, s1 = b, s2 = c, s3 = d, t0 = t
   add t0, s1, s2   # t = b + c
    sub s0, t0, s3   # a = t − d

Code Example 6.5 TEMPORARY REGISTERS
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Example 6.1  TRANSLATING HIGH-LEVEL CODE TO ASSEMBLY 
LANGUAGE

Translate the following high-level code into RISC-V assembly language. Assume 
variables a−c are held in registers s0−s2, and f−j are in s3−s7.

// high-level code
a = b − c;
f = (g + h) − (i + j);

Solution The program uses four assembly language instructions.

# RISC-V assembly code
# s0 = a, s1 = b, s2 = c, s3 = f, s4 = g, s5 = h, s6 = i, s7 = j
  sub s0, s1, s2 # a = b − c
  add t0, s4, s5 # t0 = g + h
  add t1, s6, s7 # t1 = i + j
  sub s3, t0, t1 # f = (g + h) − (i + j)
 

The Register Set

Table 6.1 lists the name and use for each of the 32 RISC-V registers. 
Registers are numbered 0 to 31 and are given a special name to indicate 
a register’s conventional purpose. Assembly instructions typically use 
the special name—for example, s1—for clarity, but they may also use 
the register number (e.g., x9 for register number 9). The zero register 
always holds the constant 0; values written to it are discarded. Registers 
s0 to s11 (registers 8–9 and 18–27) and t0 to t6 (registers 5–7 and 
28–31) are used for storing variables; ra and a0 to a7 have special uses 
during function calls, as discussed in Section 6.3.7. Registers 2 to 4 are 
also called sp, gp, and tp and will be described later.

Constants/Immediates
In addition to register operations, RISC-V instructions can use constant 
or immediate operands. These constants are called immediates because 
their values are immediately available from the instruction and do not 
require a register or memory access. Code Example 6.6 shows the add 
immediate instruction, addi, that adds an immediate to a register. In 
assembly code, the immediate can be written in decimal, hexadecimal, or 
binary. Hexadecimal constants in RISC-V assembly language start with 
0x and binary constants start with 0b, as they do in C. Immediates are 
12-bit two’s complement numbers, so they are sign-extended to 32 bits. 
The addi instruction is a useful way to initialize register values with 
small constants. Code Example 6.7 initializes the variables i, x, and y to 
0, 2032, –78, respectively.

Immediates can be written 
in decimal, hexadecimal, 
or binary. For example, the 
following instructions all put 
the decimal value 109 into s5:
addi s5,x0,0b1101101 
addi s5,x0,0x6D  
addi s5,x0,109

Alan Turing, 1912–1954   
A British mathematician and 
computer scientist who is 
considered the founder of 
theoretical computer science 
and artificial intelligence. He 
invented the Turing machine, 
a mathematical model of 
computation that represents an 
abstract processor. He also  
developed an electromechanical 
machine to decipher encrypted 
messages during World War 
II, which shortened the war 
and saved millions of lives. In 
1952, Turing was prosecuted 
for homosexual acts and 
was sentenced to a chemical 
castration treatment in lieu 
of prison. Two years later, he 
died of cyanide poisoning. The 
Turing Award, which is the 
highest honor in computing, 
was named in his honor and 
has been awarded annually 
since 1966. It currently includes 
an accompanying cash prize of 
$1 million. 
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Table 6.1 RISC-V register set

Name Register Number Use

zero x0 Constant value 0

ra x1 Return address

sp x2 Stack pointer

gp x3 Global pointer

tp x4 Thread pointer

t0−2 x5−7 Temporary registers

s0/fp x8 Saved register / Frame pointer

s1 x9 Saved register

a0−1 x10−11 Function arguments / Return values

a2−7 x12−17 Function arguments

s2−11 x18−27 Saved registers

t3−6 x28−31 Temporary registers

To create larger constants, use a load upper immediate instruction 
(lui) followed by an add immediate instruction (addi), as shown in 
Code Example 6.8. The lui instruction loads a 20-bit immediate into 
the most significant 20 bits of the instruction and places zeros in the 
least significant bits.

High-Level Code

i = 0;
x = 2032;
y = −78;

RISC-V Assembly Code
# s4 = i, s5 = x, s6 = y
addi s4, zero, 0 # i = 0
addi s5, zero, 2032 # x = 2032
addi s6, zero, −78 # y = −78

Code Example 6.7 INITIALIZING VALUES USING IMMEDIATES

High-Level Code

a = a + 4;
b = a − 12;

RISC-V Assembly Code
#   s0 = a, s1 = b
addi s0, s0, 4  # a = a + 4
addi s1, s0, −12  # b = a − 12

Code Example 6.6 IMMEDIATE OPERANDS
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The int data type in C 
represents a signed number, 
that is, a two’s complement 
integer. The C specification 
requires that int be at least 
16 bits wide but does not 
require a particular size. 
Most modern compilers 
(including those for RV32I) 
use 32 bits, so an int 
represents a number in the 
range [−231, 231− 1]. C also 
defines int32_t as a 32-bit 
two’s complement integer, 
but this is more cumbersome 
to type. 

When creating large immediates, if the 12-bit immediate in addi 
is negative (i.e., bit 11 is 1), the upper immediate in the lui must be  
incremented by one. Remember that addi sign-extends the 12-bit  
immediate, so a negative immediate will have all 1’s in its upper 20 
bits. Because all 1’s is −1 in two’s complement, adding all 1’s to the 
upper immediate results in subtracting 1 from the upper immediate.  
Code Example 6.9 shows such a case where the desired immediate  
is 0xFEEDA987. lui  s2, 0xFEEDB puts 0xFEEDB000 into s2. The desired  
20-bit upper immediate, 0xFEEDA, is incremented by 1. 0x987 is the 12-bit  
representation of −1657, so addi s2, s2,   −1657 adds s2 and the sign- 
extended 12-bit immediate (0xFEEDB000 + 0xFFFFF987 = 0xFEEDA987) 
and places the result in s2, as desired.

Memory
If registers were the only storage space for operands, we would be con-
fined to simple programs with no more than 32 variables. However, data 
can also be stored in memory. Whereas the register file is small and fast, 
memory is larger and slower. For this reason, frequently used variables 
are kept in registers. In the RISC-V architecture, instructions operate 
exclusively on registers, so data stored in memory must be moved to a 
register before it can be processed. By using a combination of memory 
and registers, a program can access a large amount of data fairly quickly. 
Recall from Section 5.5 that memories are organized as an array of data 
words. The RV32I RISC-V architecture uses 32-bit memory addresses 
and 32-bit data words.

RISC-V uses a byte-addressable memory. That is, each byte in  
memory has a unique address, as shown in Figure 6.1(a). A 32-bit word 
consists of four 8-bit bytes, so each word address is a multiple of 4.  

High-Level Code
int a = 0xABCDE123;

RISC-V Assembly Code
lui  s2, 0xABCDE      # s2 = 0xABCDE000
addi s2, s2, 0x123   # s2 = 0xABCDE123

Code Example 6.8 32-BIT CONSTANT EXAMPLE

High-Level Code
int a = 0xFEEDA987;

RISC-V Assembly Code
lui  s2, 0xFEEDB      # s2 = 0xFEEDB000
addi s2, s2, −1657   # s2 = 0xFEEDA987

Code Example 6.9 32-BIT CONSTANT WITH A ONE IN BIT 11
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The most significant byte (MSB) is on the left and the least significant 
byte (LSB) is on the right. The order of bytes within a word is discussed 
further in Section 6.6.1. Both the 32-bit word address and the data 
value in Figure 6.1(b) are given in hexadecimal. For example, data word 
0xF2F1AC07 is stored at memory address 4. By convention, memory is 
drawn with low memory addresses toward the bottom and high memory 
addresses toward the top.

The load word instruction, lw, reads a data word from memory into 
a register. Code Example 6.10 loads memory word 2, located at address 
8, into a (s7). In C, the number inside the brackets is the index or word 
number, which we discuss further in Section 6.3.6. The lw instruction 
specifies the memory address using an offset added to a base register. 
Recall that each data word is 4 bytes, so the word address is four times 
the word number. Word number 0 is at address 0, word 1 is at address 
4, word 2 at address 8, and so on. In this example, the base register, 
zero, is added to the offset, 8, to get address 8, or word 2. After the load 
word instruction (lw) is executed in Code Example 6.10, s7 holds the 
value 0x01EE2842, which is the data value stored at memory address 8 
in Figure 6.1.

Word Address Data

0000000C
00000008
00000004
00000000

width = 4 bytes

4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

Word 3
Word 2
Word 1
Word 0

Byte Address

MSB

F E D C
B A 9 8
7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

(b)(a)

Figure 6.1 RISC-V byte-
addressable memory showing:  
(a) byte address and (b) data

The store word instruction, sw, writes a data word from a register 
into memory. Code Example 6.11 writes the value 42 from register t3 
into memory word 5, located at address 20.

Many RISC-V implementations 
require word-aligned 
addresses—that is, a word 
address that is divisible by 
four—for lw and sw. Some 
architectures, such as x86, 
allow non-word-aligned 
data reads and writes, 
but others require strict 
alignment for simplicity. In 
this textbook, we will assume 
strict alignment. Of course, 
byte addresses for load byte 
and store byte, lb and sb 
(discussed in Section 6.3.6), 
need not be word aligned. 

High-Level Code
a = mem[2];

Code Example 6.10 READING MEMORY

RISC-V Assembly Code
#  s7 = a
   lw s7, 8(zero) # s7 = data at memory address (zero + 8)
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6.3  PROGRAMMING
Software languages such as C or Java are called high-level program-
ming languages because they are written at a more abstract level than 
assembly language. Many high-level languages use common software 
constructs, such as arithmetic and logical operations, if/else statements, 
for and while loops, array indexing, and function calls. See Appendix C 
for more examples of these constructs in C. In this section, we begin by  
discussing program flow and instructions that support these high-level 
constructs. Then, we explore how to translate the high-level constructs 
into RISC-V assembly code.

6 . 3 . 1   Program Flow

Like data, instructions are stored in memory. Each instruction is 32 bits 
(4 bytes) long, as we will discuss in Section 6.4, so consecutive instruc-
tion addresses increase by four. For example, in the code snippet below, 
the addi instruction is located in memory at address 0x538 and the next 
instruction, lw, is at address 0x53C.

Memory address Instruction
0x538 addi s1, s2, s3

0x53C lw   t2, 8(s1)

0x540 sw   s3, 3(t6)

The program counter—also called the PC—keeps track of the cur-
rent instruction. The PC holds the memory address of the current 
instruction and increments by four after each instruction completes so 
that the processor can read or fetch the next instruction from memory. 
For example, when addi is executing, PC is 0x538. After addi com-
pletes, PC increments by four to 0x53C and the processor fetches the lw 
instruction at that address.

6 . 3 . 2   Logical, Shift, and Multiply Instructions

The RISC-V architecture defines a variety of logical and arithmetic 
instructions. We introduce these instructions briefly here because they 
are necessary to implement higher-level constructs.

High-Level Code
mem[5] = 42;

Code Example 6.11 WRITING MEMORY

RISC-V Assembly Code
addi t3, zero, 42    # t3 = 42
sw     t3, 20(zero)   # data value at memory address 20 = 42

Katherine Johnson, 1918–2020
Creola Katherine Johnson 
was a mathematician and 
computer scientist and one 
of the first African American 
women to work at NASA. At 
18 years old, she graduated 
summa cum laude with 
a bachelor’s degrees in 
mathematics and French from 
West Virginia University. 
When she joined NASA, she 
worked as a “computer,” 
a group of people, mostly 
women, who performed 
precise calculations. In 
1961, Johnson calculated the 
trajectory of Alan Shepard, 
the first American in space. 
Early in NASA’s history, 
women were discouraged 
from having their names 
on reports, even when they 
did most of the work. Her 
NASA colleagues trusted 
her calculations, so Johnson 
helped facilitate the adoption 
of electronic computers by 
verifying their calculations. 
President Barack Obama 
awarded her the Presidential 
Medal of Freedom in 2015. 
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Logical Instructions

RISC-V logical operations include and, or, and xor. These each operate  
bitwise on two source registers and write the result to a destination 
register, as shown in Figure 6.2. Immediate versions of these logical 
operations, andi, ori, and xori, use one source register and a 12-bit 
sign-extended immediate.1

The and instruction is useful for clearing or masking bits (i.e., forcing  
bits to 0). For example, the and instruction in Figure 6.2 clears the bits 
in s1 that are low in s2. In this case, the bottom two bytes of s1 are 
cleared. The unmasked top two bytes of s1, 0x46A1, are placed in s3. 
Any subset of register bits can be cleared. For example, to clear bit 3 of 
s0 and place the result in s6, use andi s6, s0, 0xFF7.

The or instruction is useful for combining bitfields from two registers. 
For example, 0x347A0000 OR 0x000072FC = 0x347A72FC. It can also 
be used to set bits in a register (i.e., force a bit to 1). For example, to set 
bit 5 of s0 and place the result in s7, use ori s7, s0, 0x020.

A logical NOT operation can be performed with xori s8, s1, −1. 
Remember that −1 (0xFFF) is sign-extended to 0xFFFFFFFF (all 1’s). XOR 
with all 1’s inverts all the bits, so s8 will get the one’s complement of s1.

Shift Instructions
Shift instructions shift the value in a register left or right, dropping bits 
off the end. RISC-V shift operations are sll (shift left logical), srl (shift 
right logical), and sra (shift right arithmetic). As discussed in Section 
5.2.5, left shifts always fill the least significant bits with zeros. However, 
right shifts can be either logical (zeros shift into the most significant bits) 
or arithmetic (the sign bit shifts into the most significant bits). These 
shifts specify the shift amount in the second source register. Immediate 
versions of each instruction are also available (slli, srli, and srai), 
where the amount to shift is specified by a 5-bit unsigned immediate.

1 Sign-extended logical immediates are somewhat unusual. Many other architectures, such 
as MIPS and ARM, zero-extend the immediate for logical operations.

The RISC-V base instruction 
set does not currently include 
bit manipulations beyond 
shifts. Some instruction set 
architectures also include 
rotate instructions, as well 
as other bit manipulation 
instructions such as bit clear, 
bit set, etc. As of 2021, the 
“B” Standard Extension of 
RISC-V for Bit Manipulations 
is planned but not completed. 

s1

Source registers

ResultAssembly code

and s3, s1, s2

or s4, s1, s2

xor s5, s1, s2

1111 1111 1111 1111 0000 0000 0000 0000

0100 0110 1010 0001 1111 0001 1011 0111

s2

0100 0110 1010 0001 0000 0000 0000 0000

1111 1111 1111 1111 1111 0001 1011 0111

1011 1001 0101 1110 1111 0001 1011 0111

s3

s4

s5

Figure 6.2 Logical operations
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Figure 6.3 shows the assembly code and resulting register values for 
slli, srli, and srai when shifting by an immediate value. s5 is shifted 
by the immediate amount, and the result is placed in the destination 
register.

s5
Source register

ResultAssembly code

slli t0, s5, 7
srli s1, s5, 17
srai t2, s5, 3

1111 1111 0001 1100 0001 0000 1110 0111

1000 1110 0000 1000 0111 0011 1000 0000

0000 0000 0111 1111 1000 1110

1111 1111 1110 0011 1000 0010 0001 1100

t0
s1
t2

0000 0000

Figure 6.3 Shift instructions with 
immediate shift amounts

As discussed in Section 5.2.5, shifting a value left by N is equivalent 
to multiplying it by 2N. For example, slli s0, s0, 3 multiplies s0 by 8 
(i.e., 23). Likewise, shifting a value right by N is equivalent to dividing it 
by 2N. Arithmetic right shifts divide two’s complement numbers, while 
logical right shifts divide unsigned numbers.

Logical shifts are also used with and and or instructions to extract 
or assemble bitfields. For example, the following code extracts bits 15:8 
from s7 and places them in the lower byte of s6. If s7 is 0x1234ABCD, 
then s6 will be 0xAB after this code completes.

srli s6, s7, 8
andi s6, s6, 0xFF

Multiply Instructions*
Multiplication is somewhat different from other arithmetic operations 
because multiplying two N-bit numbers produces a 2N-bit product. The 
RISC-V architecture provides various multiply instructions that result in 
32- or 64-bit products. These instructions are not part of RV32I but are 
included in the RVM (RISC-V multiply/divide) extension.

The multiply instruction (mul) multiplies two 32-bit numbers and 
produces a 32-bit product. mul s1, s2, s3 multiplies the values in s2 
and s3 and places the least significant 32 bits of the product in s1; the 
most significant 32 bits of the product are discarded. This instruction is 
useful for multiplying small numbers whose product fits in 32 bits. The 
bottom 32 bits of the product are the same whether the operands are 
viewed as signed or unsigned.

Three versions of the “multiply high” operation exist: mulh, mulhsu,  
and mulhu. These instructions put the high 32 bits of the multiplica-
tion result in the destination register. mulh (multiply high signed signed) 
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treats both operands as signed. mulhsu (multiply high signed unsigned) 
treats the first operand as signed and the second as unsigned, and mulhu 
(multiply high unsigned unsigned) treats both operands as unsigned.  
For example, mulhsu t1, t2, t3 treats t2 as a 32-bit signed (two’s com-
plement) number and t3 as a 32-bit unsigned number, multiplies these 
two source operands, and puts the upper 32 bits of the result in t1. Using 
a series of two instructions—one of the “multiply high” instructions fol-
lowed by the mul instruction—will place the entire 64-bit result of the 
32-bit multiplication in the two registers designated by the user. For 
example, the following code multiplies 32-bit signed numbers in s3 and 
s5 and places the 64-bit product in t1 and t2. That is, {t1, t2} = s3 × s5.

mulh t1, s3, s5
mul  t2, s3, s5

6 . 3 . 3   Branching

Programs would be boring if they could only run in the same order 
every time, independent of the input. An advantage of a computer over 
a calculator is its ability to make decisions. A computer performs dif-
ferent tasks depending on the input. For example, if/else statements, 
switch/case statements, while loops, and for loops all conditionally exe-
cute code depending on some test. Branch instructions modify the flow 
of the program so that the processor can fetch instructions that are not 
in sequential order in memory. They modify the PC to skip over sections 
of code or to repeat previous code. Conditional branch instructions per-
form a test and branch only if the test is TRUE. Unconditional branch 
instructions, called jumps, always branch.

Conditional Branches
The RISC-V instruction set has six conditional branch instructions, each 
of which take two source registers and a label indicating where to go. 
beq (branch if equal) branches when the values in the two source regis-
ters are equal. bne (branch if not equal) branches when they are 
unequal. blt (branch if less than) branches when the value in the first 
source register is less than the value in the second, and bge (branch if 
greater than or equal to) branches when the first is greater than or equal 
to the second. blt and bge treat the operands as signed numbers, while 
bltu and bgeu treat the operands as unsigned.

Code Example 6.12 illustrates the use of beq. When the program 
reaches the branch if equal instruction (beq), the value in s0 is equal to 
the value in s1, so the branch is taken. Thus, the next instruction executed 
is the add instruction just after the label called target. The addi and sub 
instructions between the branch and the label are not executed.

There is no need for bgt 
or ble because these can 
be obtained by switching 
the order of the source 
registers of blt and bge. 
However, these are available 
as pseudoinstructions (see 
Section 6.3.8). 
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RISC-V Assembly Code
  addi s0, zero, 4 # s0 = 0 + 4 = 4
  addi s1, zero, 1 # s1 = 0 + 1 = 1
  slli s1, s1, 2           # s1 = 1 << 2 = 4
  beq  s0, s1, target  # s0 = = s1, so branch is taken
  addi s1, s1, 1           # not executed
  sub  s1, s1, s0         # not executed
target:                       # label
  add  s1, s1, s0        # s1 = 4 + 4 = 8

Code Example 6.12 CONDITIONAL BRANCHING USING beq

Assembly code uses labels to indicate instruction locations in the 
program. A label refers to the instruction just after the label. When the 
assembly code is translated into machine code, these labels correspond 
to instruction addresses (as will be discussed in Sections 6.4.3 and 
6.4.4). RISC-V assembly labels are followed by a colon (:). Most pro-
grammers indent their instructions but not the labels to help make labels 
stand out.

In Code Example 6.13, the branch is not taken because s0 is equal to 
s1, and the code continues to execute directly after the bne (branch if not 
equal) instruction. All instructions in this code snippet are executed.

RISC-V Assembly Code
  addi   s0, zero, 4          # s0 = 0 + 4 = 4
  addi   s1, zero, 1          # s1 = 0 + 1 = 1
  slli   s1, s1, 2             # s1 = 1 << 2 = 4
  bne      s0, s1, target     # branch not taken
  addi   s1, s1, 1             # s1 = 4 + 1 = 5
  sub      s1, s1, s0           # s1 = 5 − 4 = 1
target:
  add     s1, s1, s0           # s1 = 1 + 4 = 5

Code Example 6.13 CONDITIONAL BRANCHING USING bne

Jumps
A program can jump—that is, unconditionally branch—using one of 
three instructions: jump (j), jump and link (jal), or jump register (jr). j  
jumps directly to the instruction at the specified label. Code Example 6.14 
shows the use of the j (jump) instruction to skip over three instructions 
and continue at the add instruction after the label target. After the j 
instruction executes, this program unconditionally continues executing 
the add instruction at the label target. All of the instructions between 
the jump and the label are skipped. We will discuss jal and jr instruc-
tions in Section 6.3.7, where they are used for function calls.
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RISC-V Assembly Code
  j      target          # jump to target
  srai s1, s1, 2      # not executed
  addi s1, s1, 1      # not executed
  sub  s1, s1, s0   # not executed
target:
  add  s1, s1, s0   # s1 = s1 + s0

Code Example 6.14 UNCONDITIONAL BRANCHING USING j

6 . 3 . 4   Conditional Statements

If, if/else, and switch/case statements are conditional statements com-
monly used in high-level languages. They each conditionally execute a 
block of code consisting of one or more statements. This section shows 
how to translate these high-level constructs into RISC-V assembly 
language.

If Statements
An if statement executes a block of code, the if block, only when a  
condition is met. Code Example 6.15 shows how to translate an if  
statement into RISC-V assembly code. The assembly code for the if state-
ment tests the opposite condition of the one in the high-level code. In  
Code Example 6.15, the high-level code tests for apples   = =   oranges. The 
assembly code tests for apples != oranges using bne to skip the if block 
if the condition is not satisfied. Otherwise (i.e., when apples   = =   oranges), 
the branch is not taken, and the if block is executed.

In C and many other high-
level programming languages, 
the double equals sign, = =, 
is an equality comparison, 
returning TRUE if both sides 
are equal. != is an inequality 
comparison. 

High-Level Code
if (apples = = oranges)
  f = g + h;
apples = oranges − h;

Code Example 6.15 IF STATEMENT

RISC-V Assembly Code
# s0 = apples, s1 = oranges
# s2 = f, s3 = g, s4 = h
      bne s0, s1, L1 # skip if (apples != oranges)
      add s2, s3, s4 # f = g + h
L1: sub s0, s1, s4 # apples = oranges − h

If/else Statements
If/else statements execute one of two blocks of code, depending on a 
condition. When the condition in the if statement is met, the if block 
is executed. Otherwise, the else block is executed. Code Example 6.16 
shows an example if/else statement.

Like if statements, if / else assembly code tests the opposite condition  
of the one in the high-level code. In Code Example 6.16, the high-level 
code tests for (apples    = =    oranges) and the assembly code tests for 
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(apples != oranges). If that opposite condition is TRUE, bne skips the 
if block and executes the else block. Otherwise, the if block executes and 
finishes with a jump (j) past the else block.

Switch/case Statements*
Switch/case statements, also called simply case statements, execute 
one of several blocks of code, depending on the conditions. If no con-
ditions are met, the default block is executed. A case statement is 
equivalent to a series of nested if/else statements. Code Example 6.17  
shows two high-level code snippets with the same functionality: they cal-
culate whether to dispense $20, $50, or $100 from an ATM (automatic 

High-Level Code
 
 
if (apples = = oranges)
   f = g + h;
else
   apples = oranges − h;

Code Example 6.16 IF/ELSE STATEMENT

RISC-V Assembly Code
# s0 = apples, s1 = oranges
# s2 = f, s3 = g, s4 = h
      bne s0, s1, L1 # skip if (apples != oranges)
      add s2, s3, s4 # f = g + h
      j     L2
L1: sub s0, s1, s4 # apples = oranges − h
L2:

High-Level Code
 
switch (button) {
   case 1:   amt = 20;  break;

   case 2:   amt = 50;  break;

   case 3:   amt = 100; break;

   default: amt = 0;
}

// equivalent function using
// if/else statements
if          (button = = 1)  amt = 20;
else if (button = = 2)  amt = 50;
else if (button = = 3)  amt = 100;
else                             amt = 0;

RISC-V Assembly Code
# s0 = button, s1 = amt

case1:
  addi t0, zero, 1       # t0 = 1
  bne  s0, t0, case2   # button = = 1?
  addi s1, zero, 20     # if yes, amt = 20
  j         done                 # break out of case
case2:
 addi t0, zero, 2        # t0 = 2
 bne s0, t0, case3 # button = = 2?
 addi s1, zero, 50      # if yes, amt = 50
 j         done                  # break out of case
case3:
addi t0, zero, 3          # t0 = 3
bne s0, t0, default  # button = = 3?
addi s1, zero, 100      # if yes, amt = 100
j done                    # break out of case

default:
add s1, zero, zero    # amt=0

done:

Code Example 6.17 SWITCH/CASE STATEMENTS
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teller machine) depending on the button pressed. The RISC-V assembly 
implementation is the same for both high-level code snippets.

6 . 3 . 5   Getting Loopy

Loops repeatedly execute a block of code, depending on a condition. 
While loops and for loops are commonly used in high-level languages. 
This section shows how to translate them into RISC-V assembly lan-
guage, taking advantage of conditional branching.

While Loops
While loops repeatedly execute a block of code while a condition is met— 
that is, until a condition is not met. The while loop in Code Example 6.18 
determines the value of x such that 2x = 128. It executes seven times, 
until pow = 128.

High-Level Code
// determines the power
// of x such that 2x = 128
int pow = 1;
int x     = 0;

while (pow != 128) {
  pow = pow * 2;
  x = x + 1;
}

Code Example 6.18 WHILE LOOP

RISC-V Assembly Code
 
# s0 = pow, s1 = x
           addi s0, zero, 1         # pow = 1
           add  s1, zero, zero    # x = 0

           addi t0, zero, 128      # t0 = 128
while: beq  s0, t0, done        # pow = 128?
          slli s0, s0, 1             # pow = pow * 2
           addi s1, s1, 1             # x = x + 1
         j     while                  # repeat loop
done:

Like if/else statements, the assembly code for while loops tests the 
opposite condition of the one in the high-level code. If that opposite 
condition is TRUE (in this case, s0 = = 128), the while loop is finished.  
Otherwise, the branch isn’t taken and the loop body executes.  
Code Example 6.18 initializes pow to 1 and x to 0 before the while loop. 
The while loop compares pow to 128 and exits the loop if it is equal. 
Otherwise, it doubles pow (using a left shift), increments x, and branches 
back to the start of the while loop.

Do/while loops are similar to while loops, but they execute the body 
of the loop once before checking the condition. Code Example 6.19  
illustrates such a loop. Notice that, unlike previous examples, the branch 
checks the same condition as in the high-level code.

For Loops
It is very common to initialize a variable before a while loop, check 
that variable in the loop condition, and change that variable each time 
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through the while loop. For loops are a convenient shorthand that com-
bines the initialization, condition check, and variable change in one 
place. The high-level code format of the for loop is:

for (initialization; condition; loop operation)
  statement

The initialization code executes before the for loop begins. The con-
dition is tested at the beginning of each loop iteration. If the condition is 
not met, the loop exits. If the condition is met, the statement (or state-
ments) in the loop body are executed. The loop operation executes at the 
end of each loop iteration.

Code Example 6.20 adds the numbers from 0 to 9. The loop vari-
able, in this case i, is initialized to 0 and is incremented at the end of 
each loop iteration. The for loop executes as long as i is less than 10. 
Note that this example also illustrates relative comparisons. The loop 
checks the < condition to continue, so the assembly code checks the 
opposite condition, >=, to exit the loop.

For loops are especially useful for accessing large amounts of similar 
data stored in memory arrays, which are discussed next.

High-Level Code
// add the numbers from 0 to 9
int sum = 0;
int i;

for (i = 0; i < 10; i = i + 1) {
    sum = sum + i;
}

RISC-V Assembly Code
# s0 = i, s1 = sum
          addi  s1, zero, 0       # sum = 0
          addi  s0, zero, 0       # i = 0
          addi  t0, zero, 10     # t0 = 10
for:   bge    s0,  t0, done    # i >= 10?
          add    s1,  s1, s0       # sum = sum + i
          addi s0, s0, 1         # i = i + 1
          j     for                    # repeat loop
done:

Code Example 6.20 FOR LOOP

High-Level Code
// determines the power
// of x such that 2x = 128
int pow = 1;
int x     = 0;

do {
  pow = pow * 2;
  x = x + 1;
} while (pow != 128);

Code Example 6.19 DO/WHILE LOOP

RISC-V Assembly Code
 
# s0 = pow, s1 = x
        addi s0, zero, 1         # pow = 1
         add  s1, zero, zero    # x = 0

         addi t0, zero, 128      # t0 = 128
while: slli s0, s0, 1             # pow = pow * 2
           addi s1, s1, 1             # x = x + 1
           bne   s0, t0, while      # pow = 128?
done:
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6 . 3 . 6   Arrays

For ease of storage and access, similar data can be grouped together into 
an array. An array stores its contents at sequential addresses in memory. 
Each array element is identified by a number called its index. The num-
ber of elements in the array is called the length of the array. Figure 6.4 
shows a 200-element array of integer scores stored in memory. Each 
consecutive element address increases by 4, the number of bytes in an 
integer. The address of the 0th element of an array is called the array’s 
base address.

Code Example 6.21 is a grade inflation algorithm that adds 10 
points to each of the scores. The code for initializing the scores array 
is not shown. Assume that s0 is initially 0x174300A0, the base address 
of the array. The index into the array is a variable (i) that increments by 
1 for each array element, so we multiply it by 4 before adding it to the 
base address.

174303BC scores[199]
174303B8

174300A4
174300A0

scores[198]

scores[1]
scores[0]

Main Memory

Address Data

Figure 6.4 Memory holding 
scores[200] starting at base 
address 0x174300A0

High-Level Code
int i;
int scores[200];

for (i = 0; i < 200; i = i + 1)

  scores[i] = scores[i] + 10;

Code Example 6.21 USING A FOR LOOP TO ACCESS AN ARRAY

RISC-V Assembly Code
# s0 = scores base address, s1 = i

  addi s1, zero, 0   # i = 0
  addi t2, zero, 200 # t2 = 200

for:
  bge   s1, t2, done   # if i >= 200 then done
  slli t0, s1, 2         # t0 = i * 4
  add    t0, t0, s0      # address of scores[i]
  lw     t1, 0(t0)       # t1 = scores[i]
  addi t1, t1, 10      # t1 = scores[i] + 10
  sw     t1, 0(t0)       # scores[i] = t1
  addi s1, s1, 1        # i = i + 1
  j      for                 # repeat
done:

Bytes and Characters
Numbers in the range [−128, 127] can be stored in a single byte rather 
than an entire word. Because the English language keyboard has 
fewer than 256 characters, English characters are often represented 
using bytes. The C language uses the type char to represent a byte or 
character.

Early computers lacked a standard mapping between bytes and 
English characters, so exchanging text between computers was difficult. 
In 1963, the American Standards Association published the American 
Standard Code for Information Interchange (ASCII), which assigns 
each text character a unique byte value. Table 6.2 shows these character 

Other programming 
languages, such as Java, use 
different character encodings, 
most notably Unicode. 
Unicode uses 16 bits to 
represent each character, so 
it supports accents, umlauts, 
and Asian languages. For 
more information, see www.
unicode.org. 

http://www.unicode.org
http://www.unicode.org
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encodings for printable characters. The ASCII values are given in hexa-
decimal. Lowercase and uppercase letters differ by 0x20 (32).

The load byte (lb), load byte unsigned (lbu), and store byte (sb) 
instructions access individual bytes in memory. lb sign-extends the byte, 
whereas lbu zero-extends the byte to fill the entire 32-bit register. sb 
stores the least significant byte of the 32-bit register into the specified 
byte address in memory. All three instructions are illustrated in 
Figure 6.5, with the base address, s4, being 0xD0. lbu s1, 2(s4) loads 
the byte at memory address 0xD2 into the least significant byte of s1 
and fills the remaining register bits with 0. lb s2, 3(s4) loads the byte 
at memory address 0xD3 into the least significant byte of s2 and sign- 
extends the byte into the upper 24 bits of the register. sb s3, 1(s4) 
stores the least significant byte of s3 (0x9B) into memory byte address 
0xD1; it replaces 0x42 with 0x9B. No other memory bytes are changed, 
and the more significant bytes of s3 are ignored.

RISC-V also defines lh, lhu, 
and sh half-word loads and 
stores that operate on 16-bit 
data. Memory addresses for 
these instructions must be 
half-word aligned. 

Table 6.2 ASCII encodings

# Char # Char # Char # Char # Char # Char

20 space 30 0 40 @ 50 P 60 ` 70 p

21 ! 31 1 41 A 51 Q 61 a 71 q

22 " 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 ' 37 7 47 G 57 W 67 g 77 w

28 ( 38 8 48 H 58 X 68 h 78 x

29 ) 39 9 49 I 59 Y 69 i 79 y

2A * 3A : 4A J 5A Z 6A j 7A z

2B + 3B ; 4B K 5B [ 6B k 7B {

2C ´ 3C < 4C L 5C \ 6C l 7C |

2D − 3D = 4D M 5D ] 6D m 7D }

2E . 3E > 4E N 5E ^ 6E n 7E ~

2F / 3F ? 4F O 5F _ 6F o
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A series of characters, such as a word or sentence, is called a string. 
Strings have a variable length, so programming languages must pro-
vide a way to determine the length or end of the string. In C, the null 
character (0x00) signifies the end of a string. For example, Figure 6.6 
shows the string “Hello!” (0x48 65 6C 6C 6F 21 00) stored in memory. 
The string is seven bytes long and extends from address 0x1522FFF0 to 
0x1522FFF6. The first character of the string (H = 0x48) is stored at the 
lowest byte address (0x1522FFF0).

Example 6.2 USING lb AND sb TO ACCESS A CHARACTER ARRAY

The following high-level code converts a 10-entry array of characters from 
lower case to uppercase by subtracting 32 from each array entry. Translate it into 
RISC-V assembly language. Remember that array elements are now 1 byte, not 
4 bytes, so consecutive elements are in consecutive addresses. Assume that s0 
already holds the base address of chararray.

// high-level code
// chararray[10] was declared and initialized earlier
int i;

for (i = 0; i < 10; i = i + 1)
  chararray[i] = chararray[i] − 32;

Solution 

# RISC-V assembly code
# s0 = base address of chararray (initialized earlier), s1 = i
      addi s1, zero, 0       # i = 0
      addi t3, zero, 10      # t3 = 10
for:  bge  s1, t3, done      # i >= 10 ?
      add  t4, s0, s1        # t4 = address of chararray[i]
      lb   t5, 0(t4)         # t5 = chararray[i]
      addi t5, t5, −32       # t5 = chararray[i]  −  32
      sb   t5, 0(t4)         # chararray[i] = t5
      addi s1, s1, 1         # i = i + 1
      j    for               # repeat loop
done:
 

Byte Address
03428CF7Data

s1 00 8C lbu s1, 2(s4)0000

Registers

s2 FF F7 lb s2, 3(s4)FFFF

s3 9B sb s3, 1(s4)xx xx xx

Memory
D0D1D2D3

Figure 6.5 Instructions for 
loading and storing bytes

Word Address

1522FFF4
1522FFF0

Data

4865
6F21

6C6C
00

Memory

MSB LSB

Figure 6.6 The string “Hello!” 
stored in memory

ASCII codes developed from 
earlier forms of character 
encoding. Beginning in 
1838, telegraph machines 
used Morse code, a series 
of dots (.) and dashes (–), 
to represent characters. For 
example, the letters A, B, 
C, and D were represented 
as –, – …, – . – . , and – .. , 
respectively. The number of 
dots and dashes varied with 
each letter. For efficiency, 
common letters used shorter 
codes.

In 1874, Jean-Maurice-Emile 
Baudot invented a 5-bit code 
called the Baudot code. For 
example, A, B, C, and D were 
represented as 00011, 11001, 
01110, and 01001. However, 
the 32 possible encodings 
of this 5-bit code were not 
sufficient for all keyboard 
characters, but 8-bit encoding 
was. Thus, as electronic 
communication became 
prevalent, 8-bit ASCII encoding 
emerged as the standard. 
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6 . 3 . 7   Function Calls

High-level languages support functions (also called procedures or sub-
routines) to reuse common code and to make a program more modular 
and readable. Functions may have inputs, called arguments, and an out-
put, called the return value. Functions should calculate the return value 
and cause no other unintended side effects.

When one function calls another, the calling function, the caller, and 
the called function, the callee, must agree on where to put the arguments 
and the return value. In RISC-V programs, the caller conventionally 
places up to eight arguments in registers a0 to a7 before making the 
function call, and the callee places the return value in register a0 before 
finishing. By following this convention, both functions know where to 
find the arguments and return value, even if the caller and callee were 
written by different people.

The callee must not interfere with the behavior of the caller. This 
means that the callee must know where to return to after it completes 
and it must not trample on any registers or memory needed by the caller. 
The caller stores the return address in the return address register ra at 
the same time it jumps to the callee using the jump and link instruction 
(jal). The callee must not overwrite any architectural state or memory 
that the caller is depending on. Specifically, the callee must leave the 
saved registers (s0−s11), the return address (ra), and the stack, a portion 
of memory used for temporary variables, unmodified.

This section shows how to call and return from a function. It also 
shows how functions access arguments and the return value and how 
they use the stack to store temporary variables.

Function Calls and Returns
RISC-V uses the jump and link instruction (jal) to call a func-
tion and the jump register instruction (jr) to return from a function.  
Code Example 6.22 shows the main function calling the simple func-
tion. main is the caller and simple is the callee. The simple function 

RISC-V actually provides two 
registers for the return value, 
a0 and a1. This allows for 
64-bit return values, such as 
int64_t. 

High-Level Code
int main() {
     simple();
      ...
}

// void means the function
// returns no value
void simple() {
      return;
}

Code Example 6.22 simple FUNCTION CALL

RISC-V Assembly Code
0x00000300 main:     jal  simple   # call function
0x00000304 ...
...             ...

0x0000051c simple: jr    ra          # return
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is called with no input arguments and generates no return value; it 
just returns to the caller. In Code Example 6.22, example instruction 
addresses are given to the left of each RISC-V instruction.

jal and jr ra are the two essential instructions needed for a func-
tion call and return. In Code Example 6.22, the main function calls the 
simple function by executing jal simple, which performs two tasks: it 
jumps to the target instruction located at simple (0x0000051C) and it 
stores the return address, the address of the instruction after jal (in this 
case, 0x00000304) in the return address register (ra). The programmer 
can specify which register gets written with the return address, but the 
default is ra. So, jal simple is equivalent to jal ra, simple and is the 
preferred style. The simple function returns immediately by executing  
the instruction jr ra, which jumps to the instruction address held in ra. 
The main function then continues executing at this address (0x00000304).

Input Arguments and Return Values
The simple function in Code Example 6.22 is not very useful because 
it receives no input from the calling function (main) and returns no out-
put. By RISC-V convention, functions use a0 to a7 for input arguments  
and a0 for the return value. In Code Example 6.23, the function  
diffofsums is called with four arguments and returns one result. 
result is a local variable, which we choose to keep in s3. (Saving and 
restoring registers will be discussed soon.)

According to RISC-V convention, the calling function, main, places 
the function arguments from left to right into the input registers, a0 to 
a7, before calling the function. The called function, diffofsums, stores 

The instruction address 
of the currently executing 
instruction is held in PC, 
the program counter. So, the 
following instruction address 
is referred to as PC+4. 

High-Level Code
 
int main(){
    int y;
   . . .

    y = diffofsums(2, 3, 4, 5);
   . . .
}

int diffofsums(int f, int g, int h, int i){
    int result;

    result = (f + g) − (h + i);

    return result;
}

Code Example 6.23 FUNCTION CALL WITH ARGUMENTS AND  
RETURN VALUES

RISC-V Assembly Code
# s7 = y
main:
   . . .
   addi  a0, zero,  2    # argument 0 = 2
   addi  a1, zero,  3    # argument 1 = 3
   addi  a2, zero,  4    # argument 2 = 4
   addi  a3, zero,  5    # argument 3 = 5
   jal   diffofsums    # call function
   add  s7, a0, zero  # y = returned value
   . . .

# s3 = result
diffofsums:
   add   t0, a0, a1    # t0 = f+g
   add   t1, a2, a3    # t1 = h+i
   sub   s3, t0, t1    # result = (f+g)−(h+i)
   add   a0, s3, zero   # put return value in a0
   jr ra                 # return to caller

j and jr are pseudoinstructions. 
They are not part of the 
instruction set but are 
convenient for programmers 
to use. The RISC-V assembler 
replaces them with actual 
RISC-V instructions. The 
assembler replaces j target 
with jal zero, target, 
which jumps and discards the 
return address by writing it 
to the zero register; and the 
assembler replaces jr ra with 
jalr zero, ra, 0. 

The jump and link 
register instruction (jalr)
is like jal, but it takes the 
destination address from a 
register, optionally added to a 
12-bit signed immediate. For 
example, jalr ra, s1, 0x4C 
jumps to address s1 + 0x4C 
and puts PC+4 in ra. 



ArchitectureCHAPTER SIX322

the return value in the return register, a0. When a function with more 
than eight arguments is called, the additional input arguments are placed 
on the stack, which we discuss next.

The Stack
The stack is memory that is used as scratch space—that is, to save  
temporary information within a function. The stack expands (uses more 
memory) as the processor needs more scratch space and contracts (uses 
less memory) when the processor no longer needs the variables stored 
there. Before explaining how functions use the stack to store temporary 
values, we explain how the stack works.

The stack is a last-in-first-out (LIFO) queue. Like a stack of dishes, 
the last item pushed (or placed) onto the stack (the top dish) is the first 
one that can be popped off (removed). Each function may allocate stack 
space to store local variables and to use as scratch space, but the func-
tion must deallocate it before returning. The top of the stack is the most 
recently allocated space. Whereas a stack of dishes grows up in space, 
the RISC-V stack grows down in memory. That is, the stack expands to 
lower memory addresses when a program needs more scratch space.

Figure 6.7 shows a picture of the stack. The stack pointer, sp (regis-
ter 2), is an ordinary RISC-V register that, by convention, points to the 
top of the stack. A pointer is a fancy name for a memory address. sp 
points to (gives the address of) data. For example, in Figure 6.7(a), the 
stack pointer, sp, holds the address value 0xBEFFFAE8 and points to the 
data value 0xAB000001.

The stack pointer (sp) starts at a high memory address and decre-
ments to expand as needed. Figure 6.7(b) shows the stack expanding to  
allow two more data words of temporary storage. To do so, sp decrements  
by eight to become 0xBEFFFAE0. Two additional data words, 
0x12345678 and 0xFFEEDDCC, are temporarily stored on the stack.

One of the important uses of the stack is to save and restore regis-
ters that are used by a function. Recall that a function should calculate 
a return value but have no other unintended side effects. In particular, a 

Data

BEFFFAE8
BEFFFAE4
BEFFFAE0
BEFFFADC

Address

BEFFFAE8
BEFFFAE4
BEFFFAE0
BEFFFADC

Address

(a) (b)

Data

AB000001
12345678
FFEEDDCC

AB000001 sp

sp
Figure 6.7 The stack (a) before 
expansion and (b) after two-word 
expansion

The stack is typically stored 
upside down in memory 
such that the top of the 
stack is actually the lowest 
address and the stack grows 
downward toward lower 
memory addresses. This is 
called a descending stack. 
Some architectures also allow 
for ascending stacks that grow 
up toward higher memory 
addresses. The stack pointer 
(sp) typically points to the 
topmost element on the stack; 
this is called a full stack. Some 
architectures, such as ARM, 
also allow for empty stacks 
in which sp points one word 
beyond the top of the stack. 
The RISC-V architecture 
defines a standard way 
in which functions pass 
variables and use the stack 
so that libraries developed 
by different compilers can 
interoperate. It specifies a full 
descending stack, which we 
will use in this chapter. 
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function should not modify any registers besides a0, the one containing 
the return value. The diffofsums function in Code Example 6.23 vio-
lates this rule because it modifies t0, t1, and s3. If main had been using 
these registers before the call to diffofsums, their contents would have 
been corrupted by the function call.

To solve this problem, a function saves registers on the stack before 
it modifies them and then restores them from the stack before it returns. 
Specifically, it performs the following steps:

 1. Makes space on the stack to store the values of one or more registers

 2. Stores the values of the registers on the stack

 3. Executes the function using the registers

 4. Restores the original values of the registers from the stack

 5. Deallocates space on the stack

Code Example 6.24 shows an improved version of diffofsums that 
saves and restores t0, t1, and s3. Figure 6.8 shows the stack before, during, 

(a)

DataAddress

(b) (c)

? ??

st
ac

k 
fr

am
e

t1
t0
s3

DataAddressData

BEF0F0FC
BEF0F0F8
BEF0F0F4
BEF0F0F0

Address

sp

sp

spBEF0F0FC
BEF0F0F8
BEF0F0F4
BEF0F0F0

BEF0F0FC
BEF0F0F8
BEF0F0F4
BEF0F0F0

Figure 6.8 The stack: (a) before, 
(b) during, and (c) after the 
diffofsums function call

High-Level Code
int diffofsums(int f, int g, int h, int 
i){
  int result;

  result = (f + g) − (h + i);

  return result;
}

Code Example 6.24 FUNCTION THAT SAVES REGISTERS ON THE STACK

RISC-V Assembly Code
# s3 = result
diffofsums:
  addi  sp, sp, −12    # make space on stack to
                               # store three registers
  sw     s3,  8(sp)       # save s3 on stack
  sw     t0,  4(sp)       # save t0 on stack
  sw     t1,  0(sp)       # save t1 on stack
  add    t0,  a0, a1      # t0 = f + g
  add   t1, a2, a3      # t1 = h + i
  sub   s3, t0, t1      # result = (f + g) − (h + i)
  add   a0, s3, zero   # put return value in a0
  lw      s3, 8(sp)        # restore s3 from stack
  lw      t0, 4(sp)        # restore t0 from stack
  lw      t1, 0(sp)        # restore t1 from stack
  addi  sp, sp, 12       # deallocate stack space
  jr      ra                   # return to caller
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and after a call to the diffofsums function from Code Example 6.24.  
The stack starts at 0xBEF0F0FC. diffofsums makes room for three words 
on the stack by decrementing the stack pointer sp by 12. It then stores the 
current values held in t0, t1, and s3 in the newly allocated space. It executes 
the rest of the function, changing the values in these three registers. At the 
end of the function, diffofsums restores the values of these registers from 
the stack, deallocates its stack space, and returns. When the function returns, 
a0 holds the result, but there are no other side effects: t0, t1, s3, and sp 
have the same values as they did before the function call.

The stack space that a function allocates for itself is called its stack 
frame. diffofsums’ stack frame is three words deep. The principle of 
modularity tells us that each function should access only its own stack 
frame, not the frames belonging to other functions.

Preserved Registers
Code Example 6.24 assumes that all of the used registers (t0, t1, and 
s3) must be saved and restored. If the calling function does not use those 
registers, the effort to save and restore them is wasted. To avoid this 
waste, RISC-V divides registers into preserved and nonpreserved catego-
ries. Preserved registers must contain the same values at the beginning 
and end of a called function because the caller expects preserved register 
values to be the same after the call.

The preserved registers are s0 to s11 (hence their name, saved), sp, 
and ra. The nonpreserved registers, also called scratch registers, are t0 
to t6 (hence their name, temporary) and a0 to a7, the argument regis-
ters. A function can change the nonpreserved registers freely but must 
save and restore any of the preserved registers that it uses.

Code Example 6.25 shows a further improved version of diffofsums 
that saves only s3 on the stack. t0 and t1 are nonpreserved registers, so 
they need not be saved.

Saving a register value on 
the stack is called pushing 
a register onto the stack. 
Restoring the register value 
from the stack is called 
popping a register off of the 
stack. 

RISC-V Assembly Code
# s3 = result
diffofsums:
  addi sp, sp, −4      # make space on stack to store one register
  sw    s3, 0(sp)       # save s3 on stack
  add  t0, a0, a1      # t0 = f + g
  add   t1, a2, a3      # t1 = h + i
  sub  s3, t0, t1      # result = (f + g) − (h + i)
  add    a0, s3, zero  # put return value in a0
  lw     s3, 0(sp)       # restore s3 from stack
  addi sp, sp, 4        # deallocate stack space
  jr   ra                  # return to caller

Code Example 6.25 FUNCTION THAT SAVES PRESERVED REGISTERS  
ON THE STACK
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Because a callee function may freely change any nonpreserved reg-
isters, the caller must save any nonpreserved registers containing essen-
tial information before making a function call and then restore these  
registers afterward. For these reasons, preserved registers are also called  
callee-saved and nonpreserved registers are called caller-saved.

Table 6.3 summarizes which registers are preserved. The convention 
of which registers are preserved or not preserved is part of the standard 
calling convention2 for the RISC-V Architecture, instead of being part of 
the architecture itself.

s0 to s11 are generally used to hold local variables within a func-
tion, so they must be saved. ra must also be saved so that the callee 
knows where to return. t0 to t6 are used to hold temporary results. 
These calculations typically complete before a function call is made, 
so they are not preserved across a function call, and it is rare that the 
caller needs to save them. a0 to a7 are often overwritten in the pro-
cess of calling a function. Hence, they must be saved by the caller if 
the caller depends on any of its own arguments after a called function 
returns.

The stack above the stack pointer is automatically preserved, as long 
as the callee does not write to memory addresses above sp. In this way, 
it does not modify the stack frame of any other functions. The stack 
pointer itself is preserved, because the callee deallocates its stack frame 
before returning by adding back the same amount that it subtracted 
from sp at the beginning of the function.

The astute reader or an optimizing compiler may notice that  
diffofsums’ local variable, result, is immediately returned without 
being used for anything else. Hence, we can eliminate the variable and 
simply store the calculation directly in the return register a0, eliminating 
the need to both allocate space on the stack frame and move the result 
from s3 to a0. Code Example 6.26 shows this even further optimized 
diffofsums function.

2 From the RISC-V Instruction Set Manual, Volume I, version 2.2 © 2017.

Table 6.3 Preserved and nonpreserved registers and memory

Preserved (callee-saved) Nonpreserved (caller-saved)

Saved registers: s0–s11 Temporary registers: t0–t6

Return address: ra Argument registers: a0–a7

Stack pointer: sp

Stack above the stack pointer Stack below the stack pointer
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Nonleaf Function Calls

A function that does not call other functions is called a leaf function; 
diffofsums is an example. A function that does call others is called a 
nonleaf function. Nonleaf functions are somewhat more complicated 
because they may need to save nonpreserved registers on the stack 
before they call another function and then restore those registers after-
ward. Specifically, they must follow these rules:

Caller save rule: Before a function call, the caller must save any 
nonpreserved registers (t0–t6 and a0–a7) that it needs after the 
call. After the call, it must restore these registers before using them.

Callee save rule: Before a callee disturbs any of the preserved 
registers (s0–s11 and ra), it must save the registers. Before it 
returns, it must restore these registers.

Code Example 6.27 shows a nonleaf function f1 and a leaf function 
f2, including all of the necessary saving and preserving of registers. f1 
keeps i in s4 and x in s5; f2 keeps r in s4. f1 uses preserved registers s4, 
s5, and ra, so it initially pushes them onto the stack according to the cal-
lee save rule. It uses t3 to hold the intermediate result (a–b) so that it does 
not need to preserve another register for this calculation. Before calling 
f2, f1 saves a0 and a1 onto the stack according to the caller save rule 
because these are nonpreserved registers that f2 might change and that f1 
will still need after the call. ra changes because it is overwritten by the call 
to f2. Although t3 is also a nonpreserved register that f2 could overwrite, 
f1 no longer needs t3 and does not have to save it. f1 then passes the 
argument to f2 in a0, makes the function call, and gets the result in a0. f1 
then restores a0 and a1 because it still needs them. When f1 is done, it 
puts the return value in a0, restores registers s4, s5, ra, and sp, and 
returns. f2 saves and restores s4 (and sp) according to the callee save rule.

On careful inspection, one might note that f2 does not modify a1, so 
f1 did not need to save and restore it. However, a compiler cannot always 
easily ascertain which nonpreserved registers may be disturbed during a 
function call. Hence, a simple compiler will always make the caller save 
and restore any nonpreserved registers that it needs after the call. An 

A nonleaf function overwrites 
ra when it calls another 
function using jal. Thus, a 
nonleaf function must always 
save ra on its stack and 
restore it before returning. 

RISC-V Assembly Code
# a0 = result
diffofsums:
  add  t0, a0, a1   # t0 = f + g
  add  t1, a2, a3   # t1 = h + i
  sub  a0, t0, t1   # result = (f + g) − (h + i)
  jr     ra               # return to caller

Code Example 6.26 OPTIMIZED diffofsums FUNCTION
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High-Level Code
 
int f1(int a, int b) {
  int i, x;

  x = (a + b)*(a − b);

  for (i = 0; i < a; i++)

      x = x + f2(b + i);

  return x;
}

int f2(int p) {
  int r;

  r = p + 5;
  return r + p;
}

Code Example 6.27 NONLEAF FUNCTION CALL

RISC-V Assembly Code
# a0 = a, a1 = b, s4 = i, s5 = x
f1:
 addi sp, sp, −12    # make room on stack for 3 registers
 sw ra, 8(sp)       # save preserved registers used by f1
 sw s4, −4(sp)
 sw s5, 0(sp)
 add s5, a0, a1      # x = (a + b)
 sub t3, a0, a1      # temp = (a − b)
 mul s5, s5, t3      # x = x * temp = (a + b) * (a − b)
 addi s4, zero, 0     # i = 0

for:
 bge    s4, a0, return  # if i >= a, exit loop
 addi sp, sp, −8         # make room on stack for 2 registers
 sw a0, 4(sp)         # save nonpreserved regs. on stack
 sw a1, 0(sp)
 add a0, a1, s4        # argument is b + i
 jal f2                    # call f2(b + i)
 add s5, s5, a0        # x = x + f2(b + i)
 lw a0, 4(sp)         # restore nonpreserved registers
 lw a1, 0(sp)
 addi sp, sp, 8
 addi s4, s4, 1          # i++
 j for                   # continue for loop

return:
 add a0, zero, s5    # return value is x
 lw ra, 8(sp)         # restore preserved registers
  lw s4, 4(sp)
  lw s5, 0(sp)
  addi sp, sp, 12         # restore sp
  jr ra                    # return from f1

# a0  = p,   s4 = r
f2:
  addi sp, sp, −4         # save preserved regs. used by f2
  sw   s4, 0(sp)
  addi s4, a0, 5           # r = p + 5
  add a0, s4, a0        # return value is r + p
  lw    s4, 0(sp)          # restore preserved registers
  addi sp, sp, 4           # restore sp
  jr     ra                     # return from f2

optimizing compiler could observe that f2 is a leaf procedure and could 
allocate r to a nonpreserved register, avoiding the need to save and restore 
s4. Figure 6.9 shows the stack during execution of the functions. For this 
example, the stack pointer originally starts at 0xBEF7FF0C.

Recursive Function Calls
A recursive function is a nonleaf function that calls itself. Recursive 
functions behave as both caller and callee and must save both preserved 
and nonpreserved registers. For example, the factorial function can be 
written as a recursive function. Recall that factorial(n) = n × (n – 1) × 
(n – 2) × ⋯ × 2 × 1. The factorial function can be written recursively as 
factorial(n) = n × factorial(n – 1), as shown in Code Example 6.28. The 
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High-Level Code
int factorial(int n) {
 if (n <= 1)
  return 1;

 else
  return (n * factorial(n − 1));
}

Code Example 6.28 factorial RECURSIVE FUNCTION CALL

RISC-V Assembly Code
0x8500 factorial: addi sp, sp, −8      # make room for a0, ra
0x8504                   sw a0, 4(sp)
0x8508                   sw ra, 0(sp)
0x850C                   addi t0, zero, 1     # temporary = 1
0x8510                   bgt a0, t0, else   # if n > 1, go to else
0x8514                   addi a0, zero, 1     # otherwise, return 1
0x8518                   addi sp, sp, 8        # restore sp
0x851C                   jr ra                  # return
0x8520 else:          addi a0, a0, −1      # n = n − 1
0x8524                   jal factorial      # recursive call
0x8528                   lw t1, 4(sp)       # restore n into t1
0x852C                   lw ra, 0(sp)       # restore ra
0x8530                   addi sp, sp, 8        # restore sp
0x8534                   mul a0, t1, a0     # a0 = n * factorial(n − 1)
0x8538                   jr ra                   # return

factorial of 1 is simply 1. To conveniently refer to program addresses, we 
show the program starting at address 0x8500. According to the callee 
save rule, factorial is a nonleaf function and must save ra. According 
to the caller save rule, factorial will need n after calling itself, so it 
must save a0. Hence, it pushes both registers onto the stack at the start. 
It then checks whether n ≤ 1. If so, it puts the return value of 1 in a0, 
restores the stack pointer, and returns to the caller. It does not have 
to restore ra in this case, because it was never modified. If n > 1, the 
function recursively calls factorial(n−1). It then restores the value 
of n and the return address register (ra) from the stack, performs the 
multiplication, and returns this result. Notice that the function cleverly 
restores n into t1 so as not to overwrite the returned value. The multi-
ply instruction (mul a0, t1, a0) multiplies n (t1) and the returned value 
(a0) and puts the result in a0, the return register.
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Figure 6.9 The stack: (a) before function calls, (b) during f1, and (c) during f2
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For clarity, we save registers at the start of a function call. An optimizing 
compiler might observe that there is no need to save a0 and ra when  
n ≤ 1 and, thus, save registers on the stack only in the else portion of 
the function.

Figure 6.10 shows the stack when executing factorial(3). 
For illustration, we show sp initially pointing to 0xFF0 (the upper 
address bits are 0), as shown in Figure 6.10(a). The function creates a 
two-word stack frame to hold n (a0) and ra. On the first invocation,  
factorial saves a0 (holding n = 3) at 0xFEC and ra at 0xFE8, as shown in  
Figure 6.10(b). The function then changes n to 2 and recursively calls 
factorial(2), making ra hold 0x8528. On the second invocation, 
it saves a0 (holding n = 2) at 0xFE4 and ra at 0xFE0. This time, we 
know that ra contains 0x8528. The function then changes n to 1 and 
recursively calls factorial(1). On the third invocation, it saves a0 
(holding n = 1) at 0xFDC and ra at 0xFD8. This time, ra again con-
tains 0x8528. The third invocation of factorial returns the value 1 
in a0 and deallocates the stack frame before returning to the second 
invocation. The second invocation restores n (into t1) to 2, restores 
ra to 0x8528 (it happened to already have this value), deallocates the 
stack frame, and returns a0 = 2 × 1 = 2 to the first invocation. The 
first invocation restores n (into t1) to 3, restores ra, the return address 
of the caller, deallocates the stack frame, and returns a0 = 3 × 2 = 6.  
Figure 6.10(c) shows the stack as the recursively called functions 
return. When factorial returns to the caller, the stack pointer is in 
its original position (0xFF0), none of the contents of the stack above 
the pointer have changed, and all of the preserved registers hold their  
original values. a0 holds the return value, 6.

Additional Arguments and Local Variables*
Functions may have more than eight input arguments and may have too 
many local variables to keep in preserved registers. The stack is used to 
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store this information. By RISC-V convention, if a function has more 
than eight arguments, the first eight are passed in the argument regis-
ters (a0  −  a7) as usual. Additional arguments are passed on the stack, 
just above sp. The caller must expand its stack to make room for the 
additional arguments. Figure 6.11(a) shows the caller’s stack for calling 
a function with more than eight arguments.

A function can also declare local variables or arrays. Local vari-
ables are declared within a function and can be accessed only within 
that function. Local variables are stored in s0 to s11; if a function has 
too many local variables, they can also be stored in the function’s stack 
frame. Local arrays and structures are also stored on the stack.

Figure 6.11(b) shows the organization of a callee’s stack frame. The 
stack frame holds the temporary, argument, and return address registers 
(if they need to be saved because of a subsequent function call), and any 
of the saved registers that the function will modify. It also holds local 
arrays and any excess local variables. If the callee has more than eight 
arguments, it finds them in the caller’s stack frame. Accessing additional 
input arguments is the one exception in which a function can access 
stack data not in its own stack frame.

6 . 3 . 8   Pseudoinstructions

Before we show how to convert assembly code into machine code, 1’s and 
0’s, let us revisit pseudoinstructions. Remember that RISC-V is a reduced 
instruction set computer (RISC), so the instruction size and hardware 
complexity are minimized by keeping the number of instructions small. 
However, RISC-V defines pseudoinstructions that are not actually part of 
the RISC-V instruction set but that are commonly used by programmers 
and compilers. When converted to machine code, pseudoinstructions are 

Some functions also include 
a frame pointer that points 
to the bottom of the active 
stack frame – the stack frame 
of the executing function. By 
convention, this address is 
held in the fp register (x8), 
which is also a preserved 
register. 
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Figure 6.11 Expanded stack 
frame with additional arguments 
(a) before call, (b) after call
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translated into one or more RISC-V instructions. For example, we have 
already discussed the jump (j) pseudoinstruction that is converted to the 
jump and link (jal) instruction with x0 as the destination address—that 
is, no return address is written. We also noted that logical NOT can be 
performed by XORing the source operand with all 1’s.

Table 6.4 gives examples of pseudoinstructions and the RISC-V 
instructions used to implement them. For example, the move instruc-
tion (mv) copies the contents of one register to another register. The load  
immediate pseudoinstruction (li) loads a 32-bit constant using a combi-
nation of the lui and addi instructions. If the constant can be represented 
in 12 bits, li is translated into an addi instruction. The no operation  
pseudoinstruction (nop, pronounced “no op”) performs no operation. 
The PC is incremented by 4 upon its execution, but no other registers 
or memory values are altered. The call pseudoinstruction makes a  
procedure call. If the call is to a nearby function, call is translated into  
a jalr instruction. However, if the function is far away, call is  
translated into two RISC-V instructions: auipc and jalr. For example,  
auipc s1, 0xABCDE adds 0xABCDE000 to the PC and puts the result 
in s1. So, if PC is 0x02000000, then s1 now holds 0xADCDE000.  
jalr ra, s1, 0x730 then jumps to address s1 + 0x730 (0xADCDE730) 
and puts PC+4 in ra. The ret pseudoinstruction returns from a function.  

Nops are commonly used to 
generate precise delays in a 
program. 

Table 6.4 Pseudoinstructions

Pseudoinstruction RISC-V Instructions Description Operation

j    label jal  zero, label jump PC = label

jr   ra jalr zero, ra, 0 jump register PC = ra

mv   t5, s3 addi t5, s3, 0 move t5 = t3

not  s7, t2 xori s7, t2, −1 one’s complement s7 = ~t2 

nop addi zero, zero, 0 no operation

li   s8, 0x7EF addi s8, zero, 0x7EF load 12-bit immediate s8 = 0x7EF

li   s8, 0x56789DEF lui  s8, 0x5678A
addi s8, s8, 0xDEF

load 32-bit immediate s8 = 0x56789DEF

bgt  s1, t3, L3 blt  t3, s1, L3 branch if > if (s1 > t3), PC = L3

bgez t2, L7 bge  t2, zero, L7 branch if ≥ 0 if (t2 ≥ 0), PC = L7

call L1 jal  L1 call nearby function PC = L1, ra = PC + 4

call L5 auipc ra, imm31:12
jalr  ra, ra, imm11:0

call far away function PC = L5, ra = PC + 4

ret jalr  zero, ra, 0 return from function PC = ra
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It translates into jalr x0, ra, 0. Table B.7 in Appendix B lists the most  
common RV32I pseudoinstructions. Appendix B is printed on the inside 
covers of this textbook.

6.4  MACHINE LANGUAGE
Assembly language is convenient for humans to read. However, digital  
circuits understand only 1’s and 0’s. Therefore, a program written in 
assembly language is translated from mnemonics to a representation 
using only 1’s and 0’s, called machine language. This section describes 
RISC-V machine language and the tedious process of converting 
between assembly and machine language.

RISC-V uses 32-bit instructions. Again, regularity supports  
simplicity, and the most regular choice is to encode all instructions as words  
that can be stored in memory. Even though some instructions may not 
require all 32 bits of encoding, variable-length instructions would add 
complexity. Simplicity would also encourage a single-instruction format, 
but that is too restrictive. However, this issue allows us to introduce the last 
design principle:

Design Principle 4: Good design demands good compromises.

RISC-V makes the compromise of defining four main instruction  
formats: R-type, I-type, S/B-type, and U/J-type. This small number of  
formats allows for some regularity among instructions and, thus, simpler 
decoder hardware, while also accommodating different instruction 
needs. R-type (register) instructions, such as add s0, s1, s2, operate on 
three registers. I-type (immediate) instructions, such as addi s3, s4, 42, 
and S/B-type (store/branch) instructions, such as sw a0, 4(sp) or  
beq a0,a1,L1, operate on two registers and a 12- or 13-bit signed 
immediate. U/J-type (upper immediate/jump) instructions, such as  
jal ra, factorial, operate on one register and a 20- or 21-bit immediate.  
This section discusses these RISC-V machine instruction formats and 
shows how they are encoded into binary. Appendix B provides a quick 
reference for all RV32I instructions.

6 . 4 . 1   R-Type Instructions

R-type (register-type) instructions use three registers as operands: two as 
sources and one as a destination. Figure 6.12 shows the R-type machine 

S/B-type is notably not called 
B/S-type. 

funct7 rs2 rs1 rd op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-Type

funct3
31:25 24:20 19:15 14:12 11:7 6:0Figure 6.12 R-type instruction 

format
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instruction format. The 32-bit instruction has six fields: funct7, rs2, rs1, 
funct3, rd, and op. Each field is three to seven bits, as indicated.

The operation the instruction performs is encoded in the three fields 
highlighted in blue: 7-bit op (also called opcode or operation code) 
and 7- and 3-bit funct7 and funct3 (also called the function fields). The  
specific R-type operation is determined by the opcode and the function 
fields. These bits together are called the control bits because they control 
what operation to perform. For example, the opcode and function fields 
for the add instruction are op = 51 (01100112), funct7 = 0 (00000002) 
and funct3 = 0 (0002). Similarly, the sub instruction has op = 51, funct7 = 
32 (01000002), and funct3 = 0 (0002). Figure 6.13 shows the machine 
code for two R-type instructions, add and sub. The two source registers  
and the destination register are encoded in the three fields: rs1, rs2, 
and rd. The fields contain the register numbers that were given in Table 
6.1. For example, s0 is register 8 (x8). Notice that the registers are in 
the opposite order in the assembly and machine language instructions.  
For example, the assembly instruction add s2, s3, s4 has rd = s2 (18), 
rs1 = s3 (19), and rs2 = s4 (20). These registers are listed left to right in 
the assembly instruction but right to left in the machine instruction.

Table B.1 in Appendix B lists the opcode and the function fields 
(funct3 and funct7) for RV32I instructions. The easiest way to translate 
from assembly to machine code (as shown in Figure 6.13) is to write out 
the values of each field and convert these values to binary. Then, group 
the bits into blocks of four to convert to hexadecimal and make the 
machine language representation more compact. 

Other R-type instructions include shifts (sll, srl, and sra) and log-
ical operations (and, or, and xor). Shift instructions with an immediate 
shift amount (slli, srli, and srai) are I-type instructions, which are 
discussed next in Section 6.4.2.

Figure 6.14 shows the machine code for shift left logical (sll) 
and xor. The opcode is 51 (01100112) for all R-type operations. Shift 
instructions with a register shift amount (sll, srl, and sra), shift rs1 by 
the unsigned 5-bit value in bits 4:0 of register rs2, and place the result in 
rd. For all shift instructions, funct7 and funct3 encode the type of shift 
or logical operation to perform, as given in Table B.1. For sll, funct7 = 
0 and funct3 = 1; xor uses funct7 = 0 and funct3 = 4.

Appendix B is located on the 
inside covers of this book. 

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0 20 19 18 510
funct7 rs2 rs1 rd opfunct3

32 7 6 5 510
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 000 10100 10011 10010 011 0011000

funct7 rs2 rs1 rd opfunct3

0100 000 00111 00110 00101 011 0011000

add s2, s3, s4

sub t0, t1, t2

Field Values Machine Code

(0x01498933)

(0x407302B3)

Assembly

add x18,x19,x20

sub x5, x6, x7

Figure 6.13 Machine code for R-type instructions
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Example 6.3 TRANSLATING R-TYPE ASSEMBLY INSTRUCTIONS INTO 
MACHINE CODE

Translate the following RISC-V assembly instruction into machine language:

add t3, s4, s5

Solution According to Table 6.1, t3, s4, and s5 are registers 28, 20, and 21. 
According to Table B.1, add has an opcode of 51 (01100112) and function 
codes of funct7 = 0 and funct3 = 0. Thus, the fields and machine code are given 
in Figure 6.15. The easiest way to write the machine language in hexadecimal is 
to first write it in binary, then look at consecutive groups of four bits, which cor-
respond to hexadecimal digits (indicated by blue underbars). Hence, the machine 
language instruction is 0x015A0E33.

 

6 . 4 . 2   l-Type Instructions

I-type (immediate) instructions use two register operands and one imme-
diate operand. I-type instructions include addi, andi, ori, and xori, 
loads (lw, lh, lb, lhu, and lbu), and register jumps (jalr). Figure 6.16 
shows the I-type machine instruction format. It is similar to R-type but 
includes a 12-bit immediate field imm instead of the funct7 and rs2 fields. 
rs1 and imm are the source operands, and rd is the destination register.

Figure 6.17 shows several examples of encoding I-type instructions. 
The immediate field represents a 12-bit signed (two’s complement) 

0 9 5 23 511
funct7 rs2 rs1 rd opfunct3

0 26 25 24 514

0000 000 01001 00101 10111 011 0011001

0000 000 11010 11001 11000 011 0011100

sll  s7, t0, s1

xor  s8, s9, s10

Field Values Machine Code

(0x00929BB3)

(0x01ACCC33)

Assembly

sll  x23,x5, x9

xor  x24,x25,x26
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits 7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

funct7 rs2 rs1 rd opfunct3

Figure 6.14 More machine code for R-type instructions

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0 21 20 28 510
funct7 rs2 rs1 rd opfunct3

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 000 10101 10100 11100 011 0011000add t3, s4, s5

Field Values Machine Code

(0x015A0E33)

Assembly

add x28,x20,x21

funct7 rs2 rs1 rd opfunct3

Figure 6.15 Machine code for the R-type instruction of Example 6.3

imm11:0 rs1 rd op
12 bits 5 bits 3 bits 5 bits 7 bits

I-Type
funct3

31:20 19:15 14:12 11:7 6:0Figure 6.16 I-type instruction 
format

R-type instructions have  
17 bits of op and funct codes, 
enough to represent 217 = 
131,072 different instructions. 
This seems grossly excessive, 
considering we have defined 
less than a dozen R-type 
instructions so far. However, 
only 15 other bits are needed 
to encode the source and 
destination registers. This large 
instruction set space makes 
RISC-V highly extensible.  
For example, the RISC-V  
F Extension adds floating-
point instructions, described  
further in Section 6.6.4 and  
Appendix B. 
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number for all I-type instructions except immediate shift instructions 
(slli, srli, and srai). For these shift instructions, imm4:0 is the 5-bit 
unsigned shift amount; the upper seven imm bits are 0 for srli and 
slli, but srai puts a 1 in imm10 (i.e., instruction bit 30), as shown 
in Figure 6.17. As with R-type instructions, the order of the operands 
in the I-type assembly instructions differs from that of the machine 
instruction.

Example 6.4 TRANSLATING I-TYPE ASSEMBLY INSTRUCTIONS INTO 
MACHINE CODE

Translate the following assembly instruction into machine language.

lw t3, −36(s4)

Solution According to Table 6.1, t3, and s4 are registers 28 and 20. rs1 (s4 = 
x20) specifies the base address, and rd (t3 = x28) specifies the destination. The 
immediate, imm, encodes the 12-bit offset (−36). Table B.1 indicates that lw has 
an op of 3 (00000112) and funct3 of 2 (0102). The fields and machine code are 
given in Figure 6.18.
 

I-type instructions have a 12-bit immediate field, but the immediates 
are used in 32-bit operations. For example, lw adds a 12-bit offset to a 
32-bit base register. What should go in the upper 20 bits of the 32 bits? 
For positive immediates, the upper bits should be all 0’s, but for negative 

addi s0, s1, 12

addi s2, t1, -14

Field Values Machine Code

(0x00C48413)

(0xFF230913)

Assembly
imm11:0 rs1 rd opfunct3

12 9 8 190

-14 6 18 190

imm11:0 rs1 rd opfunct3
0000 0000 1100 01001 01000 001 0011000

1111 1111 0010 00110 10010 001 0011000
lw   t2, -6(s3) -6 19 7 32 (0xFFA9A383)1111 1111 1010 10011 00111 000 0011010

addi x8, x9, 12

addi x18,x6, -14

lw   x7, -6(x19)
lb   s4, 0x1F(s4)

12 bits 5 bits 3 bits 5 bits 7 bits

0x1F 20 20 30lb   x20,0x1F(x20) (0x01FA0A03)

12 bits 5 bits 3 bits 5 bits 7 bits

0000 0001 1111 10100 10100 000 0011000

5 23 18 191slli x18, x23, 5 (0x005B9913)0000 0000 0101 10111 10010 001 0011001slli s2, s7, 5

29 7 6 195srai x6, x7, 29 (0x41D3D313)0100 0001 1101 00111 00110 001 0011101srai t1, t2, 29 (upper 7 bits = 32)

Figure 6.17 Machine code for I-type instructions

  lw   t3, -36(s4) -36 20 28 32
  lw  x28, -36(x20) 

Field ValuesAssembly

12 bits 5 bits 3 bits 5 bits 7 bits

(0xFDCA2E03)1111 1101 1100 10100 11100 000 0011010
12 bits 5 bits 3 bits 5 bits 7 bits

Machine Code
imm11:0 rs1 rd opfunct3 imm11:0 rs1 rd opfunct3

Figure 6.18 Machine code for the I-type instruction of Example 6.4
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immediates, the upper bits should be all 1’s. Recall from Section 1.4.6 
that this is called sign extension.

6 . 4 . 3   S/B-Type Instructions

Like I-type instructions, S/B-type (store/branch) instructions use two  
register operands and one immediate operand. However, both of the 
register operands are source registers (rs1 and rs2) in S/B-type, whereas 
I-type instructions use one source register (rs1) and one destination  
register (rd). Figure 6.19 shows the S/B-type machine instruction format. 
The instruction replaces the funct7 and rd fields of R-type instructions 
with the 12-bit immediate imm. Thus, this immediate field is split across 
two bit ranges, bits 31:25 and bits 11:7, of the instruction.

Store instructions use S-type and branch instructions use B-type.  
S- and B-type formats differ only in how the immediate is encoded. 
S-type instructions encode a 12-bit signed (two’s complement) immedi-
ate, with the top seven bits (imm11:5) in bits 31:25 of the instruction and 
the lower five bits (imm4:0) in bits 11:7 of the instruction.

B-type instructions encode a 13-bit signed immediate representing 
the branch offset, but only 12 of the bits are encoded in the instruc-
tion. The least significant bit is always 0, because branch amounts are 
always an even number of bytes, as will be explained later. The imme-
diate of the B-type instruction is a somewhat strange bit swizzling 
of the immediate. imm12 is in instr31; imm11 is in instr7 ; imm10:5 is in 
instr30:25 ; imm4:1 is in instr11:8 ; and imm0 is always 0 and, hence, isn’t 
part of the instruction. This bit mashup is done so that immediate bits 
occupy the same instruction bit across instruction formats as much as 
possible and so that the sign bit is always in instr31, as will be described 
in Section 6.4.5.

Figure 6.20 shows several examples of encoding store instructions 
using the S-type format. rs1 is the base address, imm is the offset, and 
rs2 is the value to be stored to memory. Recall that negative immediate 
values are represented using 12-bit two’s complement notation. For 
example, in sw x7, −6(x19), register x19 is the base address (rs1), x7 is 
the second source (rs2), the value to be stored to memory, and −6 is the 
offset. For all S-type instructions, op is 35 (01000112) and funct3 distin-
guishes between sb (0), sh (1), and sw (2).

Remember that an M-bit 
two’s complement number 
is sign-extended to an N-bit 
number (N>M) by copying 
the sign bit (most significant 
bit) of the M-bit number into 
all of the upper bits of the 
N-bit number. Sign-extending 
a two’s complement number 
does not change its value. 
For example, 11012 is a 4-bit 
two’s complement number 
representing −310. When 
sign-extended to 8 bits, it 
becomes 111111012 and still 
represents −310. 

In the sw assembly instruction, 
rs2 is the leftmost register, that 
is: sw rs2, offset(rs1) 

imm11:5 rs2 rs1 imm4:0 op S-Typefunct3

imm12,10:5 rs2 rs1 imm4:1,11 op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

B-Typefunct3

31:25 24:20 19:15 14:12 11:7 6:0

Figure 6.19 S- and B-type 
instruction formats
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Branches (beq, bne, blt, bge, bltu, and bgeu) use the B-type 
instruction format. Figure 6.21 shows some example code with the 
branch if equal instruction, beq. Instruction addresses are given to the 
left of each instruction. The branch target address (BTA) is the des-
tination of the branch. The beq instruction in Figure 6.21 has a BTA 
of 0x80, the instruction address of the L1 label. The branch offset is 
sign-extended and added to the address of the branch instruction to 
obtain the branch target address.

For B-type instructions, rs1 and rs2 are the two source registers, 
and the 13-bit immediate branch offset, imm12:0 , gives the number of 
bytes between the branch instruction and the BTA. In this case, the 
BTA is four instructions after the beq instruction, that is, 4 × 4 = 16 
bytes past beq. Thus, the branch offset is 16. Only bits 12:1 are 
encoded in the instruction because bit 0 of the branch offset is 
always 0.

For 32-bit instructions, bits 
1:0 of the 13-bit branch offset  
(imm12:0) are always zero because  
32-bit instructions occupy 
4 bytes of memory. Thus, 
instruction addresses are always 
divisible by four and neither 
bits 1 nor 0 of the branch 
offset need to be encoded in  
the instruction. However, 
RV32I only omits bit 0. This  
enables compatibility with 16-bit  
(2-byte) RISC-V compressed 
instructions (see Section 6.6.5). 
Compilers can then mix 16-bit 
and 32-bit instructions if the 
processor hardware supports 
both instruction sizes. 

sw t2, -6(s3)

sh s4, 23(t0)

Field Values Machine CodeAssembly

sb t5, 0x2D(zero)

imm11:5 rs2 rs1 imm4:0 opfunct3

1111 111 7 19 11010 352

imm11:5 rs2 rs1 imm4:0 opfunct3

1111 111 00111 10011 11010 010 0011010 (0xFE79AD23)

0000 000 10100 00101 10111 010 0011001 (0x01429BA3)

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 001 11110 00000 01101 010 0011000 (0x03E006A3)

0000 000 20 5 10111 351

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 001 30 0 01101 350

sw x7, -6(x19)

sh x20,23(x5)

sb x30,0x2D(x0)

Figure 6.20 Machine code for S-type instructions

beq s0, t5, L1

Field Values Machine CodeAssembly

30 8 990 0000 000 11110 01000 1000 0 110 0011000 (0x01E40863)
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

beq x8, x30, 16

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3 imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

0 0 0 0 0 0 0 0 1 0 0 0 0
12 11 10 9 8 7 6 5 4 3 2 1 0bit number

imm12:0 = 16

#Address # RISC-V Assembly
0x70 beq s0, t5, L1
0x74 add s1, s2, s3
0x78 sub s5, s6, s7
0x7C lw t0, 0(s1)
0x80 L1: addi s1, s1, -15

L1 is 4 instructions (i.e., 16 bytes) past beq

1
2
3
4

0000 000 1000 0

x

Figure 6.21 B-type instruction format and calculations for beq
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Example 6.5 ENCODING B-TYPE ASSEMBLY INSTRUCTIONS INTO 
MACHINE CODE

Consider the following RISC-V assembly code snippet. The instruction address 
is written to the left of each instruction. Translate the branch if not equal (bne) 
instruction into machine code.

Address Instruction

0x354   L1: addi s1, s1, 1

0x358           sub  t0, t1, s7

...          ...

0xEB0          bne  s8, s9, L1

Solution According to Table 6.1, s8 and s9 are registers 24 and 25. So, rs1 is 24 
and rs2 is 25. The label L1 is 0xEB0 − 0x354 = 0xB5C (2908) bytes before the 
bne instruction. So, the 13-bit immediate is −2908 (10100101001002). From 
Appendix B, the op is 99 (11000112) and funct3 is 1 (0012). Thus, the machine 
code is given in Figure 6.22. Notice that branch instructions can branch forward 
(to higher addresses) or, as in this case, backward (to lower addresses).
 

6 . 4 . 4   U/J-Type Instructions

U/J-type (upper immediate/jump) instructions have one destination regis-
ter operand rd and a 20-bit immediate field, as shown in Figure 6.23. 
Like other formats, U/J-type instructions have a 7-bit opcode. In U-type 
instructions, the remaining bits specify the most significant 20 bits of a 
32-bit immediate. In J-type instructions, the remaining 20 bits specify 
the most significant 20 bits of a 21-bit immediate jump offset. As with 
B-type instructions, the least significant bit of the immediate is always 0 
and is not encoded in the J-type instruction.

As with B-type instructions, 
the J-type immediate bits are 
oddly scrambled. Computers 
don’t care, but this is 
annoying to humans. 

bne s8, s9, L1

Field values Machine codeAssembly

25 24 991 1100 101 11001 11000 0010 0 110 0011001 (0xCB9C1263)
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

bne x24, x25, L1

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3 imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

1 0 1 0 0 1 0 1 0 0 1 0 0
12 11 10 9 8 7 6 5 4 3 2 1 0bit number

imm12:0 = -2908

1100 101 0010 0

x

Figure 6.22 Machine code for the B-type instruction of Example 6.5
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Figure 6.24 shows the load upper immediate instruction, lui,  
translated into machine code. The 32-bit immediate consists of the 
upper 20 bits encoded in the instruction and 0’s in the lower bits. So, in 
this case, after the instruction executes, register s5 (rd) holds the value 
0x8CDEF000.

Figure 6.25 shows some example code using the jump and link 
instruction, jal. The instruction address is written to the left of each 
instruction. Like branch instructions, J-type instructions jump to an 
instruction address that is relative to the current PC, that is, the instruc-
tion address of the jal instruction. In Figure 6.25, the jump target 
address (JTA) is 0xABC04, which is 0xA67F8 bytes past the jal  
instruction at address 0x540C because 0xABC04 − 0x540C = 0xA67F8 
bytes. Like branch instructions, the least significant bit is not encoded in 

imm31:12 rd op U-Type

imm20,10:1,11,19:12 rd op
20 bits 5 bits 7 bits

J-Type

31:12 11:7 6:0

Figure 6.23 U- and J-type 
instruction formats

lui s5, 0x8CDEF

Field Values Machine Code

(0x8CDEFAB7)

Assembly

imm31:12 rd op

0x8CDEF 21 55

imm31:12 rd op

1000 1100 1101 1110 1111 10101 011 0111lui x21,0x8CDEF
20 bits 5 bits 7 bits 20 bits 5 bits 7 bits

Figure 6.24 Machine code for U-type instruction lui

0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0bit number

imm = 0xA67F8

# Address RISC-V Assembly
0x0000540C jal ra, func1
0x00005410 add s1, s2, s3
... ...

0x000ABC04 func1: add s4, s5, s8
... ...

func1 is 0xA67F8 bytes past jal

jal ra, func1

Field Values Machine Code

(0x7F8A60EF)

Assembly

rd op
0111 1111 1000 1010 0110 1 111

rd op
00001 110 1111jal x1, 0xA67F8

20 bits 5 bits 7 bits 20 bits 5 bits 7 bits

imm20,10:1,11,19:12imm20,10:1,11,19:12

0111 1111 1000 1010 0110

x

Figure 6.25 Machine code for J-type instruction jal
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the instruction because it is always 0. The remaining bits are swizzled 
into the 20-bit immediate field, as shown in Figure 6.25. If a destination 
register, rd, is not specified by a jal assembly instruction, that field 
defaults to ra (x1). For example, the instruction jal L1 is equivalent to 
jal ra, L1 and has rd = 1. Ordinary jump (j) is encoded as jal with rd 
= 0.

6 . 4 . 5   Immediate Encodings

RISC-V uses 32-bit signed immediates. Only 12 to 21 bits of the imme-
diate are encoded in the instruction. Figure 6.26 shows how immedi-
ates are formed for each instruction type. I- and S-type instructions 
encode 12-bit signed immediates. J- and B-type instructions use 21- and 
13-bit signed immediates, where the least significant bit is always 0 (see 
Sections 6.4.3 and 6.4.4). U-type instructions encode the top 20 bits of a 
32-bit immediate.

jalr is an I-type (not J-type!) 
instruction. jal is the only 
J-type instruction. 

0

0
0imm20:12

imm11:1

imm11:1

imm20:12

imm11

imm12

imm20

I, S
B
U
J

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
imm11:1

imm0

imm31:21
Figure 6.26 RISC-V immediates

S
B
U
J

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
20 10 9 8 7 6 5 4 3 2 1 11 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

12 10 9 8 7 6 5 4 3 2 1 11

11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0 I
rs2

rs2

rs1

rs1

rs1

funct3

funct3

funct3

rd

rd

rd

Figure 6.27 RISC-V immediate 
encodings in machine instructions

Across instruction formats, RV32I attempts to keep immediate bits 
in the same instruction bits with the aim of simplifying hardware design 
(and at the cost of complicating instruction encodings). Figure  6.27 
highlights this consistency by showing instruction fields for all formats. 
(The opcode is bits 6:0 for all instructions and is not shown.) instr31 
always holds the sign bit of the immediate. instr30:20 holds imm30:20 for 
U-type instructions. Otherwise, instr30:25 holds imm10:5 instr19:12 holds 
imm19:12 for U/J-type instructions. imm4:1 occupies either instr24:21 or 
instr11:8. Immediate bit 11 (when it is not the sign bit) and bit 0 are rov-
ing bits that are in bit 0 or 20 of the instruction.
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Keeping immediate bit locations consistent across instruction  
formats is another example of regularity simplifying the design— 
specifically, it minimizes the number of wires and multiplexers needed to 
extract and sign-extend the immediate. Exercises 6.47 and 6.48 explore 
the hardware implications of this design decision further.

6 . 4 . 6   Addressing Modes

An addressing mode defines how an instruction specifies its operands. 
This section summarizes the modes used for addressing instruction 
operands. RISC-V uses four main modes: register, immediate, base, 
and PC-relative addressing. Most other architectures provide similar 
addressing modes, so understanding these modes helps you learn other 
assembly languages. The first three modes (register, immediate, and base 
addressing) define modes of reading and writing operands. The last 
mode (PC-relative addressing) defines a mode of writing the program 
counter (PC).

Register-Only Addressing
Register-only addressing uses registers for all source and destination 
operands. All R-type instructions use register-only addressing.

Immediate Addressing
Immediate addressing uses an immediate, along with registers, as operands.  
Some I-type instructions, such as add immediate (addi) and xori, use 
immediate addressing with a 12-bit signed immediate. Shift instructions 
with an immediate shift amount (slli, srli, and srai) are I-type 
instructions that encode the 5-bit unsigned immediate shift amount in 
imm4:0. Load instructions (lb, lh, and lw) use the I-type instruction format 
but use base addressing, which is discussed next.

Base Addressing
Memory access instructions, such as load word (lw) and store word 
(sw), use base addressing. The effective address of the memory oper-
and is calculated by adding the base address in register rs1 to the sign- 
extended 12-bit offset found in the immediate field. Loads are I-type 
instructions and stores are S-type instructions.

PC-Relative Addressing
Branch and jump and link (jal) instructions use PC-relative addressing 
to specify the new value of the PC. The signed offset encoded in the 
immediate field is added to the PC to obtain the target address, the new 
PC; hence, the target address is said to be relative to the current PC. 
Branches and jal use a 13- and 21-bit signed immediate, respectively, 
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for the offset. The most significant bits of the offset are encoded in  
the 12- and 20-bit immediate fields of the B- and J-type instructions. The 
offset’s least significant bit is always 0, so it is not encoded in the instruction. 
The auipc (add upper immediate to PC) instruction also uses 
PC-relative addressing. For example, the instruction auipc s3, 0xABCDE 
places PC + 0xABCDE000 in s3.

6 . 4 . 7   Interpreting Machine Language Code

To interpret machine language, one must decipher the fields of each 
32-bit instruction word. Different instructions use different formats, but 
all formats share a 7-bit opcode field. Thus, the best place to begin is 
to look at the opcode to determine if it is an R-, I-, S/B-, or U/J-type 
instruction.

Example 6.6 TRANSLATING MACHINE LANGUAGE TO ASSEMBLY 
LANGUAGE

Translate the following machine language code into assembly language.

  0x41FE83B3
  0xFDA48293

Solution First, we represent each instruction in binary and look at the seven least 
significant bits to find the opcode for each instruction.

  0100 0001 1111 1110 1000 0011 1011 0011  (0x41FE83B3)
  1111 1101 1010 0100 1000 0010 1001 0011  (0xFDA48293)

The opcode determines how to interpret the rest of the bits. The first instruc-
tion’s opcode is 01100112 ; so, according to Table B.1 in Appendix B, it is an 
R-type instruction and we can divide the rest of the bits into the R-type fields, as 
shown at the top of Figure 6.28. The second instruction’s opcode is 00100112 , 
which means it is an I-type instruction. We group the remaining bits into the 
I-type format, as seen in Figure 6.28, which shows the assembly code equivalent 
of the two machine instructions.

The jump and link register 
(jalr) instruction uses base 
addressing, not PC-relative 
addressing. It can jump to 
any instruction address in the 
32-bit address space because 
its target address is formed by 
adding rs1 to the 12-bit signed 
immediate. The return address, 
PC+4, is written to rd.

The sequence of instructions 
below allows this program 
to jump to any address. 
Instruction addresses are listed 
to the left of each instruction. 
In this case, the program 
jumps to address 0x12345678 
and writes 0x0100FE7C (i.e., 
PC+4) to t1.

# Address RISC-V assembly

0x0100FE74 lui  s1,     0x12345
0x0100FE78 jalr t1,    s1,    0x678
... ...
0x12345678 ... 

addi t0, s1, -38

Field ValuesMachine Code

(0xFDA48293)

Assembly

imm11:0 rs1 rd opfunct3
-38 9 5 190

imm11:0 rs1 rd opfunct3
1111 1101 1010 01001 00101 001 0011000 addi x5, x9, -38

funct7 rs2 rs1 rd opfunct3
32 31 29 7 510

7 bits 7 bits5 bits 5 bits5 bits 3 bits 7 bits 7 bits5 bits 5 bits5 bits 3 bits

7 bits5 bits5 bits 3 bits

0100 000 11111 11101 00111 011 0011000 sub t2, t4, t6(0x41FE83B3) sub x7, x29,x31
funct7 rs2 rs1 rd opfunct3

12 bits7 bits5 bits5 bits 3 bits12 bits

Figure 6.28 Machine code to assembly code translation
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6 . 4 . 8   The Power of the Stored Program

A program written in machine language is a series of 32-bit numbers 
representing the instructions. Like other binary numbers, these instructions  
can be stored in memory. This is called the stored program concept, and 
it is a key reason why computers are so powerful. Running a different 
program does not require large amounts of time and effort to reconfigure  
or rewire hardware; it only requires writing a new program to memory.  
In contrast to dedicated hardware, the stored program offers general- 
purpose computing. In this way, a computer can execute applications 
ranging from a calculator to a word processor to a video player simply 
by changing the stored program.

Instructions in a stored program are retrieved, or fetched, from 
memory and executed by the processor. Even large, complex programs  
are simply a series of memory accesses and instruction executions. 
Figure  6.29 shows how machine instructions are stored in memory.  
In RISC-V programs, the instructions are normally stored starting  
at low addresses, but this may differ for each implementation. Figure 6.29 
shows the code stored between addresses 0x00000830 and 0x0000083C. 
Remember that RISC-V memory is byte-addressable, so instruction 
addresses advance by 4, not 1.

To run or execute the stored program, the processor fetches the 
instructions from memory sequentially. The fetched instructions are 
then decoded and executed by the digital hardware. The address of the 
current instruction is kept in the 32-bit program counter (PC) register. 

Ada Lovelace, 1815–1852
A British mathematician who 
wrote the first computer 
program, which calculated 
the Bernoulli numbers using 
Charles Babbage’s Analytical 
Engine. She was the daughter 
of the poet Lord Byron. 

addi s2, t1, -14

Machine codeAssembly code

add s2, s3, s4

sub t0, t1, t2

lw t2, -6(s3)

0x01498933

0x407302B3

0xFF230913

0xFFA9A383

Address Instructions

0000083C F F A 9 A 3 8 3

F F 2 3 0 9 1 3

4 0 7 3 0 2 B 3

0 1 4 9 8 9 3 3

00000838

00000834

00000830

Main memory

PC

Figure 6.29 Stored program
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To execute the code in Figure 6.29, the PC is initialized to address 
0x00000830. The processor fetches the instruction at that memory 
address and executes the instruction, 0x01498933 (add s2, s3, s4). 
The processor then increments the PC by 4 to 0x00000834, fetches and  
executes that instruction, and repeats.

The architectural state of a microprocessor holds everything necessary 
to determine what a program will do. For RISC-V, the architectural state 
includes the memory, register file, and PC. If the operating system (OS) 
saves the architectural state at some point in the program, it can interrupt  
the program, do something else, and then restore the state such that 
the program continues properly, unaware that it was ever interrupted.  
The architectural state is also of great importance when we build a 
microprocessor in Chapter 7.

6.5  LIGHTS, CAMERA, ACTION: COMPILING, ASSEMBLING,  
AND LOADING*

Until now, we have shown how to translate short high-level code snip-
pets into assembly and machine code. This section describes how to 
compile and assemble a complete high-level program and how to load 
the program into memory for execution. We begin by introducing an 
example RISC-V memory map, which defines where code, data, and 
stack memory are located.

Figure 6.30 shows the steps required to translate a program from a 
high-level language into machine language and to start executing that 
program. First, a compiler translates the high-level code into assembly 
code. The assembler translates the assembly code into machine code and 
puts it in an object file. The linker combines the machine code with code 
from libraries and other files and determines the proper branch addresses 
and variable locations to produce an entire executable program. In practice, 
most compilers perform all three steps of compiling, assembling, and 
linking. Finally, the loader loads the program into memory and starts 
execution. The remainder of this section walks through these steps for a 
simple program.

6 . 5 . 1   The Memory Map

With 32-bit addresses, the RISC-V address space spans 232 bytes (4 GB). 
Word addresses are multiples of 4 and range from 0 to 0xFFFFFFFC. 
Figure 6.31 shows an example memory map. Our memory map divides 
the address space into five parts or segments: the text, global data, and 
dynamic data segments, and segments for exception handlers and the 
operating system (OS), which includes memory dedicated to input/out-
put (I/O). The following sections describe each segment. We present an 

Assembly code

High level code

Compiler

Object file

Assembler

Executable

Linker

Memory

Loader

Object files
Library files

Figure 6.30 Steps for translating 
and starting a program
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example RISC-V memory map here; however, RISC-V does not define 
a specific memory map. While the exception handler is typically located 
at either low or high addresses, the user can define where the text (code 
and constant data), memory-mapped I/O, stack, and global data are 
placed. This allows for flexibility, especially with smaller systems, such 
as handheld devices, where only part of the memory range is used and, 
thus, populated with physical memory.

The Text Segment
The text segment stores the machine language user program. In addition 
to code, it may include literals (constants) and read-only data.

The Global Data Segment
The global data segment stores global variables that, in contrast to 
local variables, can be accessed by all functions in a program. Local 
variables are defined within a function and can only be accessed by 
that function; they are typically located in registers or on the stack. 
Global variables are allocated in memory before the program begins 
executing, and they are typically accessed using the global pointer reg-
ister gp (register x3) that points to the middle of the global data seg-
ment. In this case, gp is 0x10000800. Using the 12-bit signed offset, 
programmers can use gp to access the entire global data segment.

SegmentAddress

sp

0x00010000

0x00000000

Operating
System & I/O

Stack

Heap

Text

Exception
Handlers

Dynamic Data

0xFFFFFFFC

Global Data

0xBFFFFFF0
0xC0000000

gp

0x10001000

PC

0x10000000

0x10000FFC

Figure 6.31 Example RISC-V memory map
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The Dynamic Data Segment

The dynamic data segment holds the stack and the heap. The data in this 
segment is not known at start-up but is dynamically allocated and deal-
located throughout the execution of the program.

Upon start-up, the operating system sets up the stack pointer (sp, 
register x2) to point to the top of the stack, in this case 0xBFFFFFF0. 
The stack typically grows downward, as shown here. The stack includes 
temporary storage and local variables, such as arrays, that do not fit in 
the registers. As discussed in Section 6.3.7, functions also use the stack 
to save and restore registers. Each stack frame is accessed in last-in-first-
out order.

The heap stores data that is allocated by the program during run-
time. In C, memory allocations are made by the malloc function; in 
C++ and Java, new is used to allocate memory. Like a heap of clothes on 
a dorm room floor, heap data can be used and discarded in any order. 
The heap typically grows upward from the bottom of the dynamic data 
segment.

If the stack and heap ever grow into each other, the program’s data 
can become corrupted. The memory allocator ensures that this never 
happens by returning an out-of-memory error if there is insufficient 
space to allocate more dynamic data.

The Exception Handler, OS, and I/O Segments
The lowest part of the example RISC-V memory map is reserved for 
the exception handlers (see Section 6.6.2) and boot code that is run at 
start-up. The highest part of the memory map is reserved for the operat-
ing system and memory-mapped I/O (see Section 9.2).

6 . 5 . 2   Assembler Directives

Assembler directives guide the assembler in allocating and initializing 
global variables, defining constants, and differentiating between code 
and data. Table 6.5 lists common RISC-V assembler directives, and 
Code Example 6.29 shows how to use them.

The .data, .text, .bss, and .section .rodata assembler direc-
tives tell the assembler to place the proceeding data or code in the global 
data, text (code), BSS, or read-only data (.rodata) segments of memory, 
respectively. The BSS segment is located in the global data segment but 
is initialized to zero. The read-only data segment is constant data that is 
placed in the text segment (i.e., in the program memory). 

The program in Code Example 6.29 begins by making the main 
label global (.globl main) so that the main function can be called from 
outside this file, typically by the OS or bootloader. The value N is then 
set to 5 (.equ N, 5). The assembler replaces N with 5 before translating 

RISC-V requires that sp 
maintain 16-byte alignment 
to enable compatibility with 
the quad-precision RISC-V 
base instruction set, RV128I, 
which operates on 128-bit 
(i.e., 16-byte) data. So, sp 
decrements by multiples of 16 
to make room on the stack, 
even if smaller amounts of 
stack space are needed. We 
glossed over this requirement 
in Section 6.3.7 to highlight 
functionality above 
convention. 

BSS stands for block started 
symbol and it was initially a 
keyword to allocate a block of 
uninitialized data. Now, most 
operating systems initialize data 
in the BSS segment to zero. 
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Table 6.5 RISC-V assembler directives

Assembler Directive Description

.text Text section

.data Global data section

.bss Global data initialized to 0

.section .foo Section named .foo

.align N Align next data/instruction on 2N-byte boundary

.balign N Align next data/instruction on N-byte boundary

.globl sym Label sym is global

.string “str” Store string “str” in memory

.word w1, w2,..., wN Store N 32-bit values in successive memory words

.byte b1, b2,..., bN Store N 8-bit values in successive memory bytes

.space N Reserve N bytes to store variable

.equ name,  constant Define symbol name with value constant

.end End of assembly code

assembly instructions into machine code. For example, the instruction 
lw t5, N*4(t0) is translated into lw t5, 20(t0) and then converted 
into machine code (0x0142AF03). Next, the program allocates the fol-
lowing global variables, as shown in Figure 6.32: A (a 7-element array of 
32-byte values), str1 (a null-terminated string), B and C (4 bytes each), 
and D (1 byte). A, B, and str1 are initialized, respectively, to {5, 42, -88, 
2, -5033, 720, 314}, 0x32A, and “RISC-V” (i.e., {52, 49, 53, 43, 2D, 56, 00} –  
see Table 6.2). Remember that, in the C programming language, strings 
are terminated with the null character (0x00). The variables C and D are 
uninitialized by the user and are located in the BSS segment. This assem-
bler includes 16 bytes of unallocated memory between the data and BSS 
segments, as indicated by the gray boxes in Figure 6.32.

The .align 2 assembler directive aligns the proceeding data or code 
on a 22 = 4-byte boundary. The .balign 4 (byte align 4) assembler 
directive is equivalent. These assembler directives help maintain align-
ment for data and instructions. For example, if the .align 2 were 
removed before B is allocated (i.e., before B: .word 0x32A), B would 
have been allocated directly after the str1 variable, in bytes 0x2157 – 
0x215A (instead of 0x2158 – 0x215B). 

The program from  Code 
Example 6.29 was run on 
Western Digital’s open-source 
commercial SweRV EH1 
RISC-V core. Other processors 
use different memory maps, so 
would place variables and code 
at different addresses. The free 
RVfpga (RISC-V FPGA) course 
from Imagination Technologies 
shows how to use the SweRV 
EH1 core targeted to an 
FPGA to run C and assembly 
programs and to explore, 
expand, and modify that 
RISC-V procesor and system. 
See https://university.imgtec.
com/rvfpga/. 

Notice that str2 is located 
in the code segment (not the 
data segment) at address 
0x140, near the user code 
(main) which starts at address 
0x88. By placing code and 
data together, the program 
minimizes the needed memory 
and the number of instructions 
to access data, which are 
both critical in handheld and 
embedded systems. 

https://university.imgtec.com/rvfpga/
https://university.imgtec.com/rvfpga/
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Code Example 6.29 USING ASSEMBLER DIRECTIVES

.globl main #  make the main label global

.equ N, 5  #  N = 5

.data  #  global data segment
A: .word 5, 42, −88, 2, −5033, 720, 314
str1: .string "RISC-V"
.align 2  #  align next data on 2^2-byte boundary
B: .word 0x32A

.bss #  bss segment – variables initialized to 0
C: .space 4
D: .space 1

.balign 4  #  align next instruction on 4-byte boundary

.text  #  text segment (code)
main:
  la   t0, A #  t0 = address of A   = 0x2150
  la   t1, str1  #  t1 = address of str1   = 0x216C
  la   t2, B  #  t2 = address of B  = 0x2174
  la   t3, C  #  t3 = address of C   = 0x2188
  la   t4, D  #  t4 = address of D  = 0x218C
  lw   t5, N*4(t0) #  t5 = A[N] = A[5] = 720  = 0x2D0
  lw   t6, 0(t2)  #  t6 = B = 810  = 0x32A
  add t5, t5, t6  #  t5 = A[N] + C = 720 + 810 = 1530 = 0x5FA
  sw   t5, 0(t3)  #  C    = 1530   = 0x5FA
  lb   t5, N−1(t1) #  t5 = str1[N−1] = str1[4] = '−'  = 0x2D
  sb   t5, 0(t4)  #  D   = str1[N−1]  = 0x2D
  la   t5, str2  #  t5 = address of str2  = 0x140
  lb   t6, 8(t5) #  t6 = str2[8] = 'r'  = 0x72
  sb   t6, 0(t1)  #  str1[0] = 'r'   = 0x72
  jr   ra #  return
.section .rodata
str2: .string "Hello world!"
.end # end of assembly file

Word
Address Data

Memory

MSB LSB

216C 72

2174
2170 2D56

2A03
00
00

217C
2178

FA05002188

2180

218C 2D

00

Variable

B

C

str1

D

495343

00
2184

Figure 6.33 Final values of global 
variables C, D, and str1

The main function begins by loading the addresses of the global 
variables into t0 – t4 using the load address (la) pseudoinstruction 
(see Table B.7, located on the inside covers of the textbook). The pro-
gram retrieves A[5] and C from memory, adds them together, and places 
the result (0x5FA) in D. Then it loads the value of str1[4] (which is 
‘–’ = ASCII code 0x2D) using instruction lb t5, N−1(t1) and places 
that value in global variable B. At the end, the program reads str2[8], 
which is the character ‘r’, and places that value in str1[0]. The main 
function finishes by returning to the operating system or boot code using 
jr ra. Figure 6.33 shows the final values of C, D, and str1. The .end 
assembly directive indicates the end of the assembly file.

6 . 5 . 3   Compiling

A compiler translates high-level code into assembly language, and an 
assembler then translates that assembly code into machine code. The 
examples in this section are based on GCC, a popular and widely used 
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Address
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0500
2A00

0000
00
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MSB LSB

215C
2158 A8FF

0200
FFFF
00

2164
2160 57EC

D002
FFFF
00

216C
2168 3A01

52
0000
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2A03
00
00
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0000002188

2180

218C 00

00

00

00

00

Variable

A

B

C

str1

D

495343

00
2184

Figure 6.32 Memory allocation  
of global variables in Code 
Example 6.29
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Code Example 6.30 COMPILING A HIGH-LEVEL PROGRAM

High-Level Code
 
int f, g, y;

int func(int a, int b) {
 if (b < 0)
  return (a + b);
 else
  return(a + func(a, b − 1));
}

void main() {
 f=2;
 g=3;
 y=func(f,g);

 return;
}

RISC-V Assembly Code
    .text
    .globl func
    .type func, @function

func:
    addi sp,sp,−16
    sw ra,12(sp)
    sw s0,8(sp)
    mv s0,a0
    add a0,a1,a0
    bge a1,zero,.L5

.L1:
    lw ra,12(sp)
    lw s0,8(sp)
    addi sp,sp,16
    jr ra

.L5:
    addi a1,a1,−1
    mv a0,s0
    call func
    add a0,a0,s0
    j .L1

    .globl main
    .type main, @function

main:
    addi sp,sp,−16
    sw ra,12(sp)
    lui a5,%hi(f)
    li a4,2
    sw a4,%lo(f)(a5)
    lui a5,%hi(g)
    li a4,3
    sw a4,%lo(g)(a5)
    li a1,3
    li a0,2
    call func
    lui a5,%hi(y)
    sw a0,%lo(y)(a5)
    lw ra,12(sp)
    addi sp,sp,16
    jr ra
    .comm y,4,4
    .comm g,4,4
    .comm f,4,4

free compiler. GCC is part of a toolchain that includes other capabilities, 
some of which will be discussed in this section. Code Example 6.30 
shows a simple high-level program with three global variables and two 
functions, along with the assembly code produced by GCC from SiFive’s 
Freedom E SDK toolchain. See the Preface for instructions about using 
RISC-V compilers.

In Code Example 6.30, the main function starts by storing ra on 
the stack. It makes room for four words (16 bytes) but only uses one of 
the stack locations. Recall that sp must maintain 16-byte alignment for 

Grace Hopper, 1906–1902
Graduated from Yale 
University with a Ph.D. in 
mathematics. Developed 
the first compiler while 
working for the Remington 
Rand Corporation and was 
instrumental in developing 
the COBOL programming 
language. As a naval 
officer, she received many 
awards, including a World 
War II Victory Medal 
and the National Defense 
Service Medal. She has 
also documented the first 
computer “bug,” which, 
in this case was an actual 
insect that interfered with a 
punchcard. 
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compatibility with RV128I. main then writes the value 2 to global vari-
able f and 3 to global variable g. The global variables are not yet placed 
in memory—they will be later, by the assembler. So, for now, the assem-
bly code uses two instructions (lui followed by sw) instead of just one 
(sw) to store to each global variable in case it needs to specify a 32-bit 
address.

The program then puts f and g (i.e., 2 and 3) into the argument 
registers, a0 and a1, and calls func by using the pseudocode call func. 
The function (func) stores ra and s0 on the stack. It then places a0 
(a) in s0 (because it will be needed after the recursive call to func) and  
calculates a0  =  a0  +  a1 (the return value = a  +  b). func then branches if a1 
(b) is greater than or equal to zero. Otherwise, it restores ra, s0, and sp 
and returns using jr ra. If the branch is taken (b ≥ 0), func decrements 
a1 (b), and recursively calls func. After it returns from the recursive  
call, it adds the return value (a0) and s0 (a) and jumps to label .L1, 
where ra, s0, and sp are restored and the function returns. The main  
function then stores the returned result from func (a0) into global variable y,  
restores ra and sp, and returns y. At the bottom of the assembly code, 
the program indicates that it has three 4-byte-wide global variables f, g, 
and y, using .comm g, 4, 4, etc. The first 4 indicates 4-byte alignment 
and the second 4 indicates the size of the variable (4 bytes).

To compile, assemble, and link a C program named prog.c with 
GCC, use the command:

gcc –O1 –g prog.c –o prog

This command produces an executable output file called prog. The 
–O1 flag asks the compiler to perform basic optimizations rather than 
producing grossly inefficient code. The –g flag tells the compiler to 
include debugging information in the file.

To see the intermediate steps, we can use GCC’s –S flag to compile 
but not assemble or link.

gcc –O1 –S prog.c –o prog.s

The output, prog.s, is rather verbose, but the interesting parts are 
shown in Code Example 6.30.

6 . 5 . 4   Assembling

An assembler turns the assembly language code into an object file con-
taining machine language code. GCC can create the object file from 
either prog.s or directly from prog.c using:

gcc –c prog.s –o prog.o

or

gcc –O1 –g –c prog.c –o prog.o
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The assembler makes two passes through the assembly code. On 
the first pass, the assembler assigns instruction addresses and finds all 
of the symbols, such as labels and global variable names. The names and 
addresses of the symbols are kept in a symbol table. On the second pass 
through the code, the assembler produces the machine language code. 
Addresses for labels are taken from the symbol table. The machine lan-
guage code and symbol table are stored in the object file.

We can disassemble the object file using the objdump command to 
see the assembly language code beside the machine language code.

objdump –S prog.o

The following shows the disassembly of the .text section. If the code 
was originally compiled with –g, the disassembler also shows the corre-
sponding lines of C code, as shown below, interspersed with the assem-
bly code. Notice that the call pseudoinstruction was translated into 
two RISC-V instructions: auipc ra, 0x0 and jalr ra in case the func-
tion is far away, that is, farther away from the current PC than jal’s 
signed 21-bit offset can reach. The instructions for storing to the global 
variables are also just placeholders until the global variables are placed 
in memory. For example, the three instructions at addresses 0x48 to 
0x50 are for storing the value 2 in global variable f. Once f is placed in 
memory in the linking stage, the instructions will be updated.

00000000 <func>:
int f, g, y;
int func(int a, int b) {
 0: ff010113 addi sp,sp,−16
 4: 00112623 sw ra,12(sp)
 8: 00812423 sw s0,8(sp)
 c: 00050413 mv s0,a0
 if (b<0) return (a+b);
 10: 00a58533 add a0,a1,a0
 14: 0005da63 bgez a1,28 <.L5>
00000018 <.L1>:
 else return(a + func(a, b-1));
}
 18: 00c12083 lw ra,12(sp)
 1c: 00812403 lw s0,8(sp)
 20: 01010113 addi sp,sp,16
 24: 00008067 ret
00000028 <.L5>:
 else return(a + func(a, b-1));
 28: fff58593 addi a1,a1,−1
 2c: 00040513 mv a0,s0

6.5 Lights, Camera, Action: Compiling, Assembling, and Loading



ArchitectureCHAPTER SIX352

 30: 00000097 auipc ra,0x0
 34: 000080e7 jalr ra # 30 <.LVL5+0x4>
 38: 00850533 add a0,a0,s0
 3c: fddff06f j 18 <.L1>

00000040 <main>:
void main() {
 40: ff010113 addi sp,sp,−16
 44: 00112623 sw ra,12(sp)
 f=2;
 48: 000007b7 lui a5,0x0
 4c: 00200713 li a4,2
 50: 00e7a023 sw a4,0(a5) # 0 <func>
 g=3;
 54: 000007b7 lui a5,0x0
 58: 00300713 li a4,3
 5c: 00e7a023 sw a4,0(a5) # 0 <func>
 y=func(f,g);
 60: 00300593 li a1,3
 64: 00200513 li a0,2
 68: 00000097 auipc ra,0x0
 6c: 000080e7 jalr ra # 68 <main+0x28>
 70: 000007b7 lui a5,0x0
 74: 00a7a023 sw a0,0(a5) # 0 <func>
 return;
}
 78: 00c12083 lw ra,12(sp)
 7c: 01010113 addi sp,sp,16
 80: 00008067 ret

We can view the symbol table from the object file using objdump with 
the −t flag. The interesting parts are shown below. We added labels for the 
three columns of interest: the symbol’s memory address, size, and name. 
Because the program has not yet been placed in memory (it has not been 
linked), the addresses are only placeholders for now. The .text indicates 
the code (text) segment and .data the data (global data) segment. The size 
of those two symbols is currently 0 because the program has not yet been 
linked. The size of the two functions, func and main, are listed: func is 
0x40 (64) bytes = 16 instructions, and main is 0x44 (68) bytes = 17 instruc-
tions, as shown in the code above. The global variable symbols f, g, and y 
are listed and are 4 bytes each, but their addresses are listed as a placeholder 
value, 0x00000004, because they have not yet been assigned addresses.

objdump −t prog.o
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SYMBOL TABLE:

Address Size Symbol Name
00000000   l   d   .text 00000000 .text
00000000   l   d   .data 00000000 .data
00000000   g   F   .text 00000040 func
00000040   g   F   .text 00000044 main
00000004       O   *COM* 00000004 f
00000004       O   *COM* 00000004 g
00000004       O   *COM* 00000004 y

6 . 5 . 5   Linking

Most large programs contain more than one file. If the programmer  
edits only one of the files, it would be wasteful to recompile and  
reassemble the other files. In particular, programs often call functions in 
library files; these library files almost never change. If a file of high-level  
code is not changed, the associated object file need not be updated. 
Also, a program typically involves some start-up code (to initialize the 
stack, heap, and so forth) that must be executed before calling the main 
function.

The job of the linker is to combine all of the object files and the 
start-up code into one machine language file called the executable and 
assign addresses for global variables. The linker relocates the data and 
instructions in the object files so that they are not all on top of each 
other. It uses the information in the symbol tables to adjust the code 
based on the new label and global variable addresses. Invoke GCC to 
link the object file using:

gcc prog.o −o prog

We can again disassemble the executable using:

objdump −S −t prog

The start-up code is too lengthy to show, but the updated symbol 
table and program code disassembled from the executable are shown 
below. We have again added labels to the columns of interest. The 
functions and global variables are now relocated to actual addresses. 
According to the symbol table, the overall text and data segments 
(which include start-up code and system data) begin at 0x10074 and 
0x115e0, respectively. func starts at address 0x10144 and is 0x3c bytes 
(15 instructions). main starts at 0x10180 and is 0x34 bytes (13 instruc-
tions). The global variables are each 4 bytes; f is located at memory 
address 0x11a30, g at 0x11a34, and y at 0x11a38.

We will largely ignore the 
unlabeled columns in this 
symbol table. They show 
the flags associated with the 
symbols (l for local or g for 
global, and d for debug, F 
for function, or O for object) 
and the section in which the 
symbol is located (.text, 
.data, or *COM* (common) 
when it is not located in a 
section). 
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SYMBOL TABLE:

Address Size Symbol Name
00010074   l   d   .text 00000000 .text
000115e0   l   d   .data 00000000 .data
00010144   g   F   .text 0000003c func
00010180   g   F   .text 00000034 main
00011a30   g   O   .bss 00000004 f
00011a34   g   O   .bss 00000004 g
00011a38   g   O   .bss 00000004 y

Notice that the size of func, as shown below, is now only 15 
instructions instead of 16. The call to func was nearby; so, only one 
instruction, jalr, was needed to make the call. Likewise, the main code 
reduced from 17 to 13 instructions because of near calls and stores near 
to the global pointer, gp. The program stores to f using a single instruc-
tion: sw a4,  −944(gp). From this instruction, we can also determine 
the value of the global pointer, gp, that was initialized by the start-up 
code. We know that f is at address 0x11a30; so, gp is 0x11a30 + 944 = 
0x11DE0.

00010144 <func>:
int f, g, y;

int func(int a, int b) {
  10144: ff010113 addi sp,sp,−16
  10148: 00112623 sw ra,12(sp)
  1014c: 00812423 sw s0,8(sp)
  10150: 00050413 mv s0,a0
 if (b<0) return (a+b);
  10154: 00a58533 add a0,a1,a0
  10158: 0005da63 bgez a1,1016c <func+0x28>
 else return(a + func(a, b-1));
}
  1015c: 00c12083 lw ra,12(sp)
  10160: 00812403 lw s0,8(sp)
  10164: 01010113 addi sp,sp,16
  10168: 00008067 ret
 else return(a + func(a, b-1));
  1016c: fff58593 addi a1,a1,−1
  10170: 00040513 mv a0,s0
  10174: fd1ff0ef jal ra,10144 <func>
  10178: 00850533 add a0,a0,s0
  1017c: fe1ff06f j 1015c <func+0x18>

00010180 <main>:

Notice that now that the 
global variables, f, g, and 
y, are allocated memory 
addresses, they are listed as 
global symbols (as indicated 
by the g flag) and are located 
in the .bss segment, where 
uninitialized global variables 
are placed. 
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void main() {
  10180: ff010113 addi sp,sp,−16
  10184: 00112623 sw ra,12(sp)
 f=2;
  10188: 00200713 li a4,2
  1018c: c4e1a823 sw a4,−944(gp) # 11a30 <f>
 g=3;
  10190: 00300713 li a4,3
  10194: c4e1aa23 sw a4,−940(gp) # 11a34 <g>
 y=func(f,g);
  10198: 00300593 li a1,3
  1019c: 00200513 li a0,2
  101a0: fa5ff0ef jal ra,10144 <func>
  101a4: c4a1ac23 sw a0,−936(gp) # 11a38 <y>

 return;
}
    101a8: 00c12083 lw ra,12(sp)
  101ac: 01010113 addi sp,sp,16
  101b0: 00008067 ret

6 . 5 . 6   Loading

The operating system loads a program by reading the text segment of 
the executable file from a storage device (usually the hard disk or flash 
storage) into the text segment of memory. The operating system jumps 
to the beginning of the program to begin executing. Figure 6.34 shows 
the memory map at the beginning of program execution.

6.6  ODDS AND ENDS*
This section covers a few optional topics that do not fit naturally else-
where in the chapter. These topics include endianness, exceptions, signed 
and unsigned arithmetic instructions, floating-point instructions, and 
compressed (16-bit) instructions.

6 . 6 . 1   Endianness

Byte-addressable memories are organized in a big-endian or little-endian 
fashion, as shown in Figure 6.35. In both formats, a 32-bit word’s most 
significant byte (MSB) is on the left and the least significant byte (LSB) 
is on the right. Word addresses are the same in both formats and refer 
to the same four bytes. Only the addresses of bytes within a word differ 
(see Figure 6.35). In big-endian machines, bytes are numbered starting 
with 0 at the big (most significant) end. In little-endian machines, bytes 
are numbered starting with 0 at the little (least significant) end.
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Figure 6.34 prog loaded into 
memory
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Figure 6.35 Big- and little-endian memory 
addressing
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RISC-V is typically little-endian, although a big-endian variant has 
been defined. IBM’s PowerPC (formerly found in Macintosh computers)  
uses big-endian addressing. Intel’s x86 architecture (found in PCs) uses 
little-endian addressing. The choice of endianness is completely arbitrary 
but leads to hassles when sharing data between  big- and little-endian 
computers. In examples in this text, we use little-endian format whenever 
byte ordering matters. 

6 . 6 . 2   Exceptions

An exception is like an unscheduled function call caused by an event in 
hardware or software. For example, the processor may receive notification 
that the user pressed a key on a keyboard. The processor may stop what it 
is doing, determine which key was pressed, save it for future reference, and 
then resume the program that was running. Such a hardware exception 
triggered by an input/output (I/O) device such as a keyboard is often called 
an interrupt. Alternatively, the program may encounter an error condition 
caused by the software, such as an undefined instruction. Software excep-
tions are sometimes called traps. Other causes of exceptions include reset 
and attempts to read nonexistent memory. Like any other function call, an 
exception must save the return address, jump to some address, do its 
work, clean up after itself, and return to the program where it left off.

Execution Modes and Privilege Levels
A RISC-V processor can operate in one of several execution modes with 
different privilege levels. Privilege levels dictate what instructions can be 
executed and what memory can be accessed. The three main RISC-V privi-
lege levels are user mode, supervisor mode, and machine mode, in order of 
increasing privilege. Machine mode (M-mode) is the highest privilege level; 
a program running in this mode can access all registers and memory loca-
tions. M-mode is the only required privilege mode and the only mode used 

The terms big-endian and 
little-endian come from 
Jonathan Swift’s Gulliver’s 
Travels, first published in 
1726 under the pseudonym 
of Isaac Bickerstaff. In his 
stories, the Lilliputian king 
required his citizens (the 
Little-Endians) to break their 
eggs on the little end. The 
Big-Endians were rebels who 
broke their eggs on the big end.

These terms were 
first applied to computer 
architectures by Danny 
Cohen in his paper “On Holy 
Wars and a Plea for Peace” 
published on April Fools’ 
Day, 1980 (USC/ISI IEN 
137). (Photo courtesy of The 
Brotherton Collection, Leeds 
University Library.) 

A fourth privilege level exists 
called hypervisor mode 
(H-mode) that supports 
machine virtualization, that 
is, the appearance of multiple 
machines (potentially with 
multiple operating systems) 
running on a single physical 
machine. H-mode has higher 
privilege than S-mode but not 
as much privilege as M-mode. 
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in processors without an operating system (OS), including many embedded  
systems. User applications that run on top of an OS typically run in user 
mode (U-mode) and the OS runs in supervisor mode (S-mode); user programs 
do not have access to privileged registers or memory locations reserved 
for the OS. The different modes keep the key state from being corrupted. 
We discuss exceptions when running in M-mode. Exceptions that occur at 
other levels are similar but use registers associated with that mode.

Exception Handlers
Exception handlers use four special-purpose registers, called control and 
status registers (CSRs), to handle an exception: mtvec, mcause, mepc, 
and mscratch. The machine trap-vector base-address register, mtvec, 
holds the address of the exception handler code. When an exception 
occurs, the processor records the cause of an exception in mcause (see 
Table 6.6), stores the PC of the excepting instruction in mepc, the 
machine exception PC register, and jumps to the exception handler at 
the address preconfigured in mtvec.

After jumping to the address in mtvec, the exception handler reads 
the mcause register to examine what caused the exception and responds 
appropriately (e.g., by reading the keyboard on a hardware interrupt). 

RISC-V defines a whole slew 
of CSRs, all of which must be 
initialized at start-up. 

The value of mcause can be 
classified as either an interrupt 
or an exception, as indicated by  
the left-most column in Table 6.6,  
which is bit 31 of mcause. 
Bits [30:0] of mcause hold the 
exception code, that indicates 
the cause of the interrupt or 
exception. 

Table 6.6 Common exception cause encodings

Interrupt Exception Code Description

1 3 Machine software interrupt

1 7 Machine timer interrupt

1 11 Machine external interrupt

0 0 Instruction address misaligned

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store address misaligned

0 7 Store access fault

0 8 Environment call from U-Mode

0 9 Environment call from S-Mode

0 11 Environment call from M-Mode

Exceptions can use one of two 
exception handling modes: 
direct or vectored. RISC-V 
typically uses the direct mode 
described here, where all 
exceptions branch to same 
address, that is, the base address 
encoded in bits 31:2 of mtvec. 
In vectored mode, exceptions 
branch to an offset from the 
base address, depending on the 
cause of the exception. Each 
offset is separated by a small 
number of addresses—for  
example, 32 bytes—so the  
exception handler code may need  
to jump to a larger exception 
handler to deal with the exception. 
The exception mode is encoded 
in bits 1:0 of mtvec; 002 is for  
direct mode and 012 for vectored. 
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It then either aborts the program or returns to the program by execut-
ing the mret, machine exception return instruction, that jumps to the 
address in mepc. Holding the PC of the excepting instruction in mepc is 
analogous to using ra to store the return address during a jal instruc-
tion. Exception handlers must use program registers (x1−x31) to handle 
exceptions, so they use the memory pointed to by mscratch to store and 
restore these registers.

Exception-Related Instructions
Exception handlers use special instructions to deal with exceptions. 
These instructions are called privileged instructions because they access 
CSRs. They are part of the base RV32I instruction set (see Appendix B, 
Table B.8). The mepc and mcause registers are not part of the RISC-V 
program registers (x1−x31), so the exception handler must move these 
special-purpose (CSR) registers into the program registers to read and 
operate on them. RISC-V uses three instructions to read, write, or both 
read and write CSRs: csrr (read CSR), csrw (write CSR), and csrrw 
(read/write CSR). For example, csrr t1,  mcause reads the value in 
mcause into t1; csrw mepc,  t2 writes the value in t2 into mepc; and 
csrrw t1,  mscratch, t0 simultaneously reads the value in mscratch 
into t1 and writes the value in t0 into mscratch.

Exception Handling Summary
In summary, when a processor detects an exception, it:

 1. Jumps to the exception handler address held in mtvec.

 2. The exception handler saves registers on a small stack pointed to 
by mscratch and then uses csrr (read CSR) to look at the cause of 
the exception (encoded in mcause) and respond accordingly.

 3. When the handler is finished, it optionally increments mepc by 4, 
restores registers from memory and either aborts the program or 
returns to the user code using the mret instruction, which jumps to 
the address held in mepc.

Example 6.7 EXCEPTION HANDLER CODE

Write an exception handler for dealing with the following two exceptions: illegal 
instruction (mcause = 2) and load address misaligned (mcause = 4). If an illegal 
instruction occurs, the program should simply continue executing after the ille-
gal instruction. Upon a load address misaligned exception, the program should 
abort. If any other exception occurs, the program should attempt to re-execute 
the instruction.

Exception-related registers 
are specific to the operating 
mode. M-mode registers 
are mtvec, mepc, mcause, 
and mscratch, and S-mode 
registers are sepc, scause, 
and sscratch. H-mode 
also has its own registers. 
Separate exception registers 
dedicated to each mode 
provide hardware support for 
multiple privilege levels. 

csrrw is an actual RISC-V 
instruction (see Table B.8 in 
Appendix B), but csrr and 
csrw are pseudoinstructions. 
csrr is implemented as csrrs 
rd, CSR, x0 and csrw as csrrw 
x0, CSR, rs1. 
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At start-up, the processor 
jumps to the reset exception 
vector, a hardwired memory 
address—for example, 
0x200—which is the starting 
address of the boot loader 
code, also called boot code. 
Although reset is not a typical 
exception that occurs during 
program execution, it is 
called such because reset is 
an exceptional state of the 
processor. The boot code 
configures the memory system, 
initializes the CSRs and stack 
pointer, and reads part of the 
OS from disk. Then, it begins 
a much longer boot process 
in the OS. The OS eventually 
will load a program, change 
to unprivileged user mode, 
and jump to the start of 
the program. In bare metal 
systems—that is, systems with 
no OS—user code (potentially 
with a lightweight boot 
code for setting up the stack 
pointer, etc.) is typically placed 
directly at the reset vector. 

Solution The exception handler begins by preserving program registers that  
will be overwritten. It then checks for each exception cause and (1) continues  
executing just past the excepting instruction (i.e., at mepc + 4) upon an  
illegal instruction exception, (2) aborts upon a misaligned load address, or (3) 
attempts to re-execute the excepting instruction (i.e., returns to mepc) upon any  
other exception. Before returning to the program, the handler restores any registers 
that were overwritten. To abort the program, the handler jumps to exit code 
located at the exit label (not shown). For programs running on top of an OS, 
the j exit instruction may be replaced by an environment call (ecall) with the 
return code stored in a program register such as a0.

# save registers that will be overwritten
 csrrw t0, mscratch, t0 # swap t0 and mscratch
 sw t1, 0(t0)  # save t1 on mscratch stack
 sw t2, 4(t0)  # save t2 on mscratch stack

# check cause of exception
 csrr t1, mcause  # t1 = mcause
 addi t2, x0, 2  # t2 = 2 (illegal instruction exception code)

illegalinstr:
 bne t1, t2, checkother # branch if not an illegal instruction
 csrr t2, mepc  # t2 = exception PC
 addi t2, t2, 4  # increment exception PC by 4
 csrw mepc, t2  # mepc = mepc + 4
 j done   # restore registers and return

checkother:
 addi t2, x0, 4  # t2 = 4 (misaligned load exception code)
 bne t1, t2, done # branch if not a misaligned load
 j exit   # exit program
# restore registers and return from the exception
done:
 lw t1, 0(t0)  # restore t1 from mscratch stack
 lw t2, 4(t0)  # restore t2 from mscratch stack
 csrrw t0, mscratch, t0 # swap t0 and mscratch
 mret # return to program (PC = mepc)
 ...
exit:
 ...
 

A particularly important 
exception is a system call, 
also called an environment 
call. Programs use these 
to call a function in the 
OS, which runs at a higher 
privilege level than user code. 
This exception is initiated by 
the user program executing 
the ecall instruction. Like 
a function call, the program 
may set up argument registers 
before making the system 
call. 
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6 . 6 . 3   Signed and Unsigned Instructions

Recall that a binary number may be signed or unsigned. As with most 
architectures, RISC-V uses two’s complement representation for 
signed numbers. RISC-V has certain instructions that come in signed 
and unsigned flavors, including multiplication, division, set less than, 
branches, and partial word loads.

Multiplication and Division
Multiplication and division behave differently for signed and unsigned 
numbers. For example, as an unsigned number, 0xFFFFFFFF rep-
resents a large number, but as a signed number it represents –1. Hence, 
0xFFFFFFFF × 0xFFFFFFFF would equal 0xFFFFFFFE00000001 if the 
numbers were unsigned but 0x0000000000000001 if the numbers were 
signed. (Notice that the lower 32 bits are the same for both signed and 
unsigned multiplication.) Therefore, multiplication and division come in 
both signed and unsigned flavors. mulh and div treat the operands as 
signed numbers. multhu and divu treat the operands as unsigned num-
bers. mulhsu treats the first operand as signed and the second operand 
as unsigned. All multiply high instructions (mulh, mulhu, and mulhsu) 
put the most significant 32 bits in the destination register rd. The lower 
32 bits of the result are the same for unsigned or signed multiplication, 
so mul puts the lower 32 bits of the multiplication result in rd for both 
unsigned and signed multiplication.

Set Less Than
Set less than instructions compare either two registers (slt) or a register  
and an immediate (slti). Set less than also comes in signed (slt and  
slti) and unsigned (sltu and sltiu) versions. In a signed comparison,  
0x80000000 is less than any other number, because it is the most 
negative two’s complement number. In an unsigned comparison, 
0x80000000 is greater than 0x7FFFFFFF but less than 0x80000001, 
because all numbers are positive. Beware that sltiu sign-extends the 
12-bit immediate before treating it as an unsigned number. For example,  
sltiu s0, s1, −1273 compares s1 to 0xFFFFFB07, treating the  
immediate as a large positive number.

Branches
The branch if less than and branch if greater than or equal to instruc-
tions also come in signed (blt and bge) and unsigned (bltu and bgeu) 
versions. The signed versions treat the two source operands as two’s 
complement numbers and the unsigned versions treat the source oper-
ands as unsigned numbers.

Unlike other architectures, 
such as MIPS and ARM, 
RISC-V does not include 
instructions (or exceptions) 
for detecting overflow 
because it can be detected 
using a series of existing 
instructions. For example, 
the following code detects 
unsigned overflow when 
adding t1 and t2.

add  t0, t1, t2
bltu t0, t1, overflow

In other words, if the result 
(t0) is less than either of the 
operands (in this case, t1), 
overflow occurred.

The following code detects 
overflow when adding two 
signed numbers, t1 and t2:

add  t0, t1, t2
slti t3, t2, 0
slt  t4, t0, t1
bne  t3, t4, overflow

In equation form, overflow = 
(t2 < 0) & (t0 ≥ t1) | 
(t2 ≥ 0) & (t0 < t1) 

In words, overflow occurs 
when one operand is negative 
(t3 = 1) and the result is not 
less than the other operand 
(t4 = 0), or when one 
operand is greater than or 
equal to 0 (t3 = 0), and the 
result is less than the other 
operand (t4 = 1).
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Loads
As described in Section 6.3.6, byte loads come in signed (lb) and 
unsigned (lbu) versions. lb sign-extends the byte, and lbu zero-extends 
the byte to fill the entire 32-bit register. Similarly, signed and unsigned 
half-word loads (lh and lhu) load two bytes into the lower half and 
sign- or zero-extend the upper half of the word.

6 . 6 . 4   Floating-Point Instructions

The RISC-V architecture defines optional floating-point extensions 
called RVF, RVD, and RVQ for operating on single-, double-, and 
quad-precision floating-point numbers, respectively. RVF/D/Q define 
32 floating-point registers, f0 to f31, with a width of 32, 64, or 128 
bits, respectively. When a processor implements multiple floating-point  
extensions, it uses the lower part of the floating-point register for lower- 
precision instructions. f0 to f31 are separate from the program (also 
called integer) registers, x0 to x31. As with program registers, floating- 
point registers are reserved for certain purposes by convention, as given 
in Table 6.7.

Table B.3 in Appendix B lists all of the floating-point instructions. 
Computation and comparison instructions use the same mnemonics 
for all precisions, with .s, .d, or .q appended at the end to indicate 
precision. For example, fadd.s, fadd.d, and fadd.q perform single-, 
double-, and quad-precision addition, respectively. Other floating-point 
instructions include fsub, fmul, fdiv, fsqrt, fmadd (multiply-add), 
and fmin. Memory accesses use separate instructions for each precision. 
Loads are flw, fld, and flq, and stores are fsw, fsd, and fsq.

Floating-point instructions use R-, I-, and S-type formats, as well as a 
new format, the R4-type instruction format (see Figure B.1 in Appendix B). 

Table 6.7 RISC-V floating-point register set

Name Register Number Use

ft0–7 f0–7 Temporary variables

fs0–1 f8–9 Saved variables

fa0–1 f10–11 Function arguments / Return values

fa2–7 f12–17 Function arguments

fs2–11 f18–27 Saved variables

ft8–11 f28–31 Temporary variables
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This format is needed for multiply-add instructions, which use four register 
operands. Code Example 6.31 modifies Code Example 6.21 to operate on 
an array of single-precision floating-point scores. The changes are in bold.

6 . 6 . 5   Compressed Instructions

RISC-V’s compressed instruction extension (RVC) reduces the size of 
common integer and floating-point instructions to 16 bits by reducing 
the sizes of the control, immediate, and register fields and by taking 
advantage of redundant or implied registers. This reduced instruction 
size decreases cost, power, and required memory—all of which can be 
crucial for handheld and mobile applications. According to the RISC-V 
Instruction Set Manual, typically 50% to 60% of a program’s instruc-
tions can be replaced with RVC instructions. 16-bit instructions still 
operate on the base data size (32, 64, or 128 bits), as determined by the 
base instruction set. Assembly programs may use a mix of compressed 
and 32-bit instructions if the processor can handle both.

Most RV32I instructions have a compressed counterpart start-
ing with c., as listed in Table B.6 of Appendix B. To reduce their 
size, most compressed instructions only specify two registers; the first 
source is also the destination. Most use 3-bit register codes to specify 
one of 8 registers from x8 to x15. x8 is encoded as 0002, x9 as 0012, 
and so on. Immediates are also shorter (6–11 bits), and fewer bits are 
available for opcodes. Figure B.2, located on the inside back cover of 
this book, shows the compressed instruction formats.

High-Level Code
int i;
float scores[200];

for (i = 0; i < 200; i = i + 1)

  scores[i] = scores[i] + 10;

Code Example 6.31 USING A FOR LOOP TO ACCESS AN ARRAY OF FLOATS

RISC-V Assembly Code
# s0 = scores base address, s1 = i

   addi         s1,    zero, 0     # i = 0
   addi         t2,    zero, 200   # t2 = 200
   addi         t3,    zero, 10    # t3 = 10
   fcvt.s.w  ft0, t3              # ft0 = 10.0
 

for:
   bge           s1,  t2,  done   # if i >= 200 then done
   slli         t3,  s1,  2   # t3 = i * 4
   add           t3,  t3,  s0   # address of scores[i]
   flw           ft1, 0(t3)   # ft1 = scores[i]
   fadd.s      ft1, ft1, ft0   # ft1 = scores[i] + 10
   fsw           ft1, 0(t3)   # scores[i] = t1
   addi          s1,   s1,  1   # i = i + 1
   j              for   # repeat
done:
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High-Level Code
int i;
int scores[200];

for (i = 0; i < 200; i = i + 1)

 scores[i] = scores[i] + 10;

RISC-V Assembly Code
# s0 = scores base address, s1 = i

 c.li s1, 0 # i = 0
 addi t2, zero, 200 # t2 = 200

for:
 bge   s1, t2, done # if i >= 200 then done
 c.lw   a3, 0(s0) # a3 = scores[i]
 c.addi a3, 10 # a3 = scores[i] + 10
 c.sw   a3, 0(s0) # scores[i] = a3
 c.addi s0, 4 #  next element of 

scores
 c.addi s1, 1 # i = i + 1
 c.j   for # repeat
done:

Code Example 6.32 USING COMPRESSED INSTRUCTIONS

Code Example 6.32 modifies Code Example 6.21 to use compressed 
instructions. Notice that the constant 200 is too large to fit in a com-
pressed immediate, so s0 is initialized with an uncompressed addi. 
There is no compressed c.bge, so we also use a noncompressed bge. We 
also increment s0 as a pointer to scores[i] because shifting and add-
ing is cumbersome with 2-operand compressed instructions. The pro-
gram is shrunk from 40 to 22 bytes.

Many RISC-V assemblers 
generate code using a 
mix of compressed and 
uncompressed instructions, 
using compressed instructions 
wherever possible to 
minimize code size. 

6.7  EVOLUTION OF THE RISC-V ARCHITECTURE
RISC-V was designed to be a commercially viable, open-source computer  
architecture, that is robust, efficient, and flexible. RISC-V differentiates  
itself from other architectures because it is open source, uses base  
instruction sets to ease compatibility, supports the full range of micro-
architectures, from embedded systems to high-performance computers, 
offers both defined and customizable extensions, and provides features, 
such as compressed instructions and RV128I, that optimize hardware 
and support both existing and future designs, ensuring the architecture’s 
longevity.

RISC-V has also created a community of both industry and aca-
demic partners by forming RISC-V International (see riscv.org), thereby 
accelerating innovation, commercialization, and collaboration. This con-
sortium of developers also helps design and ratify the RISC-V architecture.  
RISC-V International has grown to have more than 500 industrial and 
academic members as of 2021, including Western Digital, NVIDIA, 
Microchip, and Samsung.

The RISC-V architecture is 
described in The RISC-V 
Instruction Set Manual  
(riscv.org/specifications). Early 
versions of the manual, 
through version 2.2, are 
a gem of a specification, 
succinct, readable, and 
interspersed with the 
rationale behind the design 
decisions embodied in the 
architecture. 

http://riscv.org
http://riscv.org/specifications
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6 . 7 . 1   RISC-V Base Instruction Sets and Extensions

RISC-V includes various base instruction sets and extensions so that it 
can support a broad range of processors—from small, inexpensive embed-
ded processors, such as those in handheld devices, to high-performance, 
multicore, multithreaded systems. RISC-V has 32-, 64-, and 128-bit base 
instruction sets: RV32I/E, RV64I, and RV128I. The 32-bit base instruc-
tion set comes in the standard version RV32I discussed in this chapter 
and in an embedded version RV32E with only 16 registers, intended for 
very low-cost processors. As of 2021, only the RV32I and RV64I instruc-
tion sets are frozen; RV32E and RV128I are still being defined. Along 
with these base architectures, RISC-V also defines the extensions listed in  
Table 6.8. The most commonly used extensions—those for floating-point 
operations (RVF/D/Q), compressed instructions (RVC), and atomic 
instructions (RVA)—are fully specified and frozen to enable develop-
ment and commercialization. The remaining extensions are still being 
developed.

All RISC-V processors must support one of the base architectures—
RV32/64/128I or RV32E—and may optionally support extensions, such 
as the compressed or floating-point extensions. By using extensions, 
instead of new architecture versions, RISC-V alleviates the burden of 
backward or forward compatibility between microarchitectures. All 

Table 6.8 RISC-V extensions

Extension Description Status

M Integer multiplication and division Frozen

F Single-precision floating-point Frozen

D Double-precision floating-point Frozen

Q Quad-precision floating-point Frozen

C Compressed instructions Frozen

A Atomic instructions Frozen

B Bit manipulations Open

L Decimal floating-point Open

J Dynamically translated languages Open

T Transactional memory Open

P Packed-SIMD instructions Open

V Vector operations Open



6.7 Evolution of the RISC-V Architecture 365

processors must support at least the base architecture. However, a pro-
cessor need not support all (or even any) of the extensions.

To understand the evolution of the RISC-V architecture, it is important  
to understand other architectures that preceded RISC-V and, notably,  
the MIPS architecture. RISC-V follows many principles from the MIPS  
architecture but also benefits from the perspective of modern architectures  
and applications to include features that support embedded, multicore,  
and multithreaded systems and extensibility, among other features. The  
next section compares the RISC-V and MIPS architectures.

6 . 7 . 2   Comparison of RISC-V and MIPS Architectures

The RISC-V architecture has many similarities to the MIPS architec ture 
developed by John Hennessy in the 1980’s, but it eliminates some unnec-
essary complexity—and introduces some, in the case of immediates!  
Similarities include assembly and machine code formats, instruction  
mnemonics, register naming, and stack and calling conventions. 
Differences include RISC-V’s immediate sizes and encodings, branch-
ing relative to PC (instead of PC+4), both branches and jumps being 
PC-relative, removal of the branch delay slot from MIPS, a strict defini-
tion of source and destination register instruction fields, different num-
bers of temporary, saved, and argument registers, and more extensibility 
by including more control bits in the instruction. By keeping rs1, rs2, and 
rd in the same bitfields of every instruction type that uses them, RISC-V 
simplifies the decoder hardware relative to MIPS. Similarly, RISC-V’s 
immediate encodings simplify the immediate extension hardware.

6 . 7 . 3   Comparison of RISC-V and ARM Architectures

ARM is a RISC architecture that was developed around the same time 
as the MIPS architecture in the 1980’s. Over the past decade or more, 
ARM processors have dominated the mobile devices arena and are also 
found in other applications, such as robots, pinball machines, and serv-
ers. ARM’s similarities to RISC-V include its small number of machine 
code formats and assembly instructions and similar stack and calling 
conventions. ARM differs from RISC-V by including conditional exe-
cution, complex indexing modes for accessing memory, its ability to 
push and pop multiple registers onto/off the stack using a single instruc-
tion, optionally shifted source registers, and unconventional  immediate 
encodings. Immediates are encoded as an 8-bit value and a 4-bit rota-
tion, and they encode only positive immediates (subtraction is deter-
mined by the control bits). These features—particularly, conditional 
execution, shifted registers, and indexing modes—are typically only 
found in CISC architectures, but ARM includes them to reduce program 
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and, thus, memory size, which is critical for embedded and handheld 
devices. However, these design decisions also result in more complex 
hardware.

6.8  ANOTHER PERSPECTIVE: x86 ARCHITECTURE
Almost all personal computers today use x86 architecture microproces-
sors. x86, also called IA-32, is a 32-bit architecture originally developed 
by Intel. AMD also sells x86-compatible microprocessors.

The x86 architecture has a long and convoluted history dating 
back to 1978, when Intel announced the 16-bit 8086 microprocessor. 
IBM selected the 8086 and its cousin, the 8088, for IBM’s first personal 
computers. In 1985, Intel introduced the 32-bit 80386 microprocessor, 
which was backward compatible with the 8086, so it could run software 
developed for earlier PCs. Processor architectures compatible with the 
80386 are called x86 processors. The Pentium, Core, and Athlon proces-
sors are well known x86 processors.

Various groups at Intel and AMD over many years have shoehorned 
more instructions and capabilities into the antiquated architecture. The 
result is far less elegant than RISC-V. However, software compatibility is far 
more important than technical elegance, so x86 has been the de facto PC 
standard for more than two decades. More than 100 million x86 proces-
sors are sold every year. This huge market justifies more than $5 billion of 
research and development annually to continue improving the processors.

x86 is an example of a complex instruction set computer (CISC) 
architecture. In contrast to RISC architectures such as RISC-V, each 
CISC instruction can do more work. Programs for CISC architectures 
usually require fewer instructions. The instruction encodings were 
selected to be more compact to save memory when RAM was far more 
expensive than it is today; instructions are of variable length and are 
often less than 32 bits. The trade-off is that complicated instructions are 
more difficult to decode and tend to execute more slowly.

This section introduces the x86 architecture. The goal is not to make 
you into an x86 assembly language programmer but rather to illustrate 
some of the similarities and differences between x86 and RISC-V. We 
think it is interesting to see how x86 works. However, none of the material 
in this section is needed to understand the rest of the book. Major differences 
between x86 and RISC-V (RV32I) are summarized in Table 6.9.

6 . 8 . 1   x86 Registers

The 8086 microprocessor provided eight 16-bit registers. It could sep-
arately access the upper and lower eight bits of some of these registers. 
When the 32-bit 80386 was introduced, the registers were extended to 
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Table 6.9 Major differences between RISC-V (RV32I) and x86

Feature RISC-V x86

# of registers 32 general-purpose 8, some restrictions on purpose

# of operands 3 (2 sources, 1 destination) 2 (1 source, 1 source/destination)

Operand locations Registers or immediates Registers, immediates, or memory

Operand size 32 bits 8, 16, or 32 bits

Condition flags No Yes

Instruction types Simple Simple and complicated

Instruction encoding Fixed: 4 bytes Variable: 1–15 bytes
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Figure 6.36 x86 registers

32 bits. These registers are called EAX, ECX, EDX, EBX, ESP, EBP, ESI, 
and EDI. For backward compatibility, the bottom 16 bits and some of 
the bottom 8-bit portions are also usable, as shown in Figure 6.36

The eight registers are almost, but not quite, general purpose. 
Certain instructions cannot use certain registers. Other instructions 
always put their results in certain registers. Like sp in RISC-V, ESP is 
normally reserved for the stack pointer.

The x86 program counter is called the EIP (the extended instruction 
pointer). Like the RISC-V PC, it advances from one instruction to the 
next or can be changed with branch and function call instructions.

6 . 8 . 2   x86 Operands

RISC-V instructions always act on registers or immediates. Explicit load 
and store instructions are needed to move data between memory and the 
registers. In contrast, x86 instructions may operate on registers, immedi-
ates, or memory. This partially compensates for the small set of registers.

RISC-V instructions generally specify three operands: two sources 
and one destination. x86 instructions specify only two operands. The 
first is a source. The second is both a source and the destination. Hence, 
x86 instructions always overwrite one of their sources with the result. 
Table 6.10 lists the combinations of operand locations in x86. All com-
binations are possible except memory to memory.

Like RISC-V (RV32I), x86 has a 32-bit memory space that is 
byte-addressable. However, unlike RISC-V, x86 supports a wider vari-
ety of memory indexing modes. Memory locations are specified with any 
combination of a base register, displacement, and a scaled index regis-
ter. Table 6.11 illustrates these combinations. The displacement can be an  
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8-, 16-, or 32-bit value. The scale multiplying the index register can be 1, 
2, 4, or 8. The base + displacement mode is equivalent to the RISC-V base 
addressing mode for loads and stores, but RISC-V instructions do not 
allow for scaling. x86 also provides a scaled index. In x86, the scaled index 
provides an easy way to access arrays or structures of 2-, 4-, or 8-byte  
elements without having to issue a sequence of instructions to generate the 
address. While RISC-V always acts on 32-bit words, x86 instructions can 
operate on 8-, 16-, or 32-bit data. Table 6.12 illustrates these variations.

Table 6.12 Instructions acting on 8-, 16-, or 32-bit data

Example Meaning Data Size

add AH, BL AH <− AH + BL 8-bit

add AX, −1 AX <− AX + 0xFFFF 16-bit

add EAX, EDX EAX <− EAX + EDX 32-bit

Table 6.10 Operand locations

Source/ Destination Source Example Meaning

register register add EAX, EBX EAX <− EAX + EBX

register immediate add EAX, 42 EAX <− EAX + 42

register memory add EAX, [20] EAX <− EAX + Mem[20]

memory register add [20], EAX Mem[20] <− Mem[20] + EAX

memory immediate add [20], 42 Mem[20] <− Mem[20] + 42

Table 6.11 Memory addressing modes

Example Meaning Comment

add EAX, [20] EAX <− EAX + Mem[20] displacement

add EAX, [ESP] EAX <− EAX + Mem[ESP] base addressing

add EAX, [EDX+40] EAX <− EAX + Mem[EDX+40] base + displacement

add EAX, [60+EDI*4] EAX <− EAX + Mem[60+EDI*4] displacement + scaled index

add EAX, [EDX+80+EDI*2] EAX <− EAX + Mem[EDX+80+EDI*2] base + displacement + scaled index
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6 . 8 . 3   Status Flags

x86, like many CISC architectures, uses condition flags (also called  
status flags) to make decisions about branches and to keep track of  
carries and arithmetic overflow. x86 uses a 32-bit register, called EFLAGS, 
that stores the status flags. Some of the bits of the EFLAGS register are 
given in Table 6.13. Other bits are used by the operating system. The 
architectural state of an x86 processor includes EFLAGS as well as the 
eight registers and the EIP.

6 . 8 . 4   x86 Instructions

x86 has a larger set of instructions than RISC-V. Table 6.14 describes 
some of the general-purpose instructions. x86 also has instructions for 
floating-point arithmetic and for arithmetic on multiple short data ele-
ments packed into a longer word. D indicates the destination (a regis-
ter or memory location), and S indicates the source (a register, memory 
location, or immediate).

Note that some instructions always act on specific registers. For 
example, 32×32-bit multiplication always takes one of the sources from 
EAX and always puts the 64-bit result in EDX and EAX. LOOP always 
stores the loop counter in ECX. PUSH, POP, CALL, and RET use the 
stack pointer, ESP.

Conditional jumps check the flags and branch if the appropriate 
condition is met. They come in many flavors. For example, JZ jumps 
if the zero flag (ZF) is 1. JNZ jumps if the zero flag is 0. The jumps 
usually follow an instruction, such as the compare instruction (CMP), 
that sets the flags. Table 6.15 lists some of the conditional jumps and 
how they depend on the flags set by a prior compare operation. Unlike 
RISC-V, conditional jumps (called conditional branches in RISC-V) usu-
ally require two instructions instead of one.

Table 6.13 Selected EFLAGS

Name Meaning

CF (Carry Flag) Carry out generated by last arithmetic 
operation. Indicates overflow in unsigned 
arithmetic. Also used for propagating the carry 
between words in multiple-precision arithmetic

ZF (Zero Flag) Result of last operation was zero

SF (Sign Flag) Result of last operation was negative (msb = 1)

OF (Overflow Flag) Overflow of two’s complement arithmetic
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Table 6.14 Selected x86 instructions

Instruction Meaning Function

ADD/SUB add/subtract D = D + S / D = D − S

ADDC add with carry D = D + S + CF

INC/DEC increment/decrement D = D + 1 / D = D − 1

CMP compare set flags based on D − S

NEG negate D = − D

AND/OR/XOR logical AND/OR/XOR D = D op S

NOT logical NOT D = D

IMUL/MUL signed/unsigned multiply EDX:EAX = EAX × D

IDIV/DIV signed/unsigned divide EDX:EAX/D 
EAX = quotient; EDX = remainder

SAR/SHR arithmetic/logical shift right D = D >>> S / D = D >> S

SAL/SHL left shift D = D << S

ROR/ROL rotate right/left rotate D by S

RCR/RCL rotate right/left with carry rotate CF and D by S

BT bit test CF = D[S] (the Sth bit of D)

BTR/BTS bit test and reset/set CF = D[S]; D[S] = 0 / 1

TEST set flags based on masked bits set flags based on D AND S

MOV move D = S

PUSH push onto stack ESP = ESP − 4; Mem[ESP] = S

POP pop off stack D = MEM[ESP]; ESP = ESP + 4

CLC, STC clear/set carry flag CF = 0 / 1

JMP unconditional jump relative jump:   EIP = EIP + S
absolute jump: EIP = S

Jcc conditional jump if (flag) EIP = EIP + S

LOOP loop ECX = ECX −1
if (ECX ≠ 0) EIP = EIP + imm

CALL function call ESP = ESP − 4;
MEM[ESP] = EIP; EIP = S

RET function return EIP = MEM[ESP]; ESP = ESP + 4
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6 . 8 . 5   x86 Instruction Encoding

The x86 instruction encodings are truly messy, a legacy of decades of 
piecemeal changes. Unlike RISC-V, whose instructions are uniformly 
32 bits (or 16 bits for compressed instructions), x86 instructions vary 
from 1 to 15 bytes, as shown in Figure 6.37.3 The opcode may be 1, 
2, or 3 bytes. It is followed by four optional fields: ModR/M, SIB, 
Displacement, and Immediate. ModR/M specifies an addressing mode. 
SIB specifies the scale, index, and base registers in certain addressing 

3 It is possible to construct 17-byte instructions if all of the optional fields are used. 
However, x86 places a 15-byte limit on the length of legal instructions.

Figure 6.37 x86 instruction 
encodings

Prefixes ModR/M SIB Displacement Immediate

Up to 4 optional
prefixes

of 1 byte each

1-, 2-, or 3-byte
opcode

1 byte
(for certain
addressing

modes)

1 byte
(for certain
addressing

modes)

1, 2, or 4 bytes
for addressing

modes with
displacement

1, 2, or 4 bytes
for addressing

modes with
immediate

Scale Index BaseMod R/MReg/
Opcode

Opcode

2 bits 3 bits 3 bits2 bits 3 bits 3 bits

Table 6.15 Selected branch conditions

Instruction Meaning Function after CMP D, S

JZ/JE jump if ZF = 1 jump if D = S

JNZ/JNE jump if ZF = 0 jump if D ≠ S

JGE jump if SF = OF jump if D ≥ S

JG jump if SF = OF and ZF = 0 jump if D > S

JLE jump if SF ≠ OF or ZF = 1 jump if D ≤ S

JL jump if SF ≠ OF jump if D < S

JC/JB jump if CF = 1

JNC jump if CF = 0

JO jump if OF = 1

JNO jump if OF = 0

JS jump if SF = 1

JNS jump if SF = 0
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modes. Displacement indicates a 1-, 2-, or 4-byte displacement in certain 
addressing modes. Immediate is a 1-, 2-, or 4-byte constant for instruc-
tions using an immediate as the source operand. Moreover, an instruc-
tion can be preceded by up to four optional byte-long prefixes that 
modify its behavior.

The ModR/M byte uses the 2-bit Mod and 3-bit R/M field to spec-
ify the addressing mode for one of the operands. The operand can come 
from one of the eight registers or from one of 24 memory addressing 
modes. Due to artifacts in the encodings, the ESP and EBP registers are 
not available for use as the base or index register in certain addressing 
modes. The Reg field specifies the register used as the other operand. For 
certain instructions that do not require a second operand, the Reg field 
is used to specify three more bits of the opcode.

In addressing modes using a scaled index register, the SIB byte spec-
ifies the index register and the scale (1, 2, 4, or 8). If both a base and 
index are used, the SIB byte also specifies the base register.

RISC-V fully specifies the instruction in the op, funct3, and funct7 
fields of the instruction. x86 uses a variable number of bits to specify 
different instructions. It uses fewer bits to specify more common instruc-
tions, decreasing the average length of the instructions. Some instructions 
even have multiple opcodes. For example, ADD AL, imm8 performs an 
8-bit add of an immediate to AL. It is represented with the 1-byte opcode, 
0x04, followed by a 1-byte immediate. The A register (AL, AX, or EAX) 
is called the accumulator. On the other hand, ADD D, imm8 performs an 
8-bit add of an immediate to an arbitrary destination, D (memory or a 
register). It is represented with the 1-byte opcode 0x80 followed by one or 
more bytes specifying D, followed by a 1-byte immediate. Many instruc-
tions have shortened encodings when the destination is the accumulator.

In the original 8086, the opcode specified whether the instruction 
acted on 8- or 16-bit operands. When the 80386 introduced 32-bit 
operands, no new opcodes were available to specify the 32-bit form. 
Instead, the same opcode was used for both 16- and 32-bit forms. An 
additional bit in the code segment descriptor used by the OS specified 
which form the processor should choose. The bit is set to 0 for back-
ward compatibility with 8086 programs, defaulting the opcode to 
16-bit operands. It is set to 1 for programs to default to 32-bit oper-
ands. Moreover, the programmer can specify prefixes to change the 
form for a particular instruction. If the prefix 0x66 appears before the 
opcode, the alternative size operand is used (16 bits in 32-bit mode, or 
32 bits in 16-bit mode).

6 . 8 . 6   Other x86 Peculiarities

The 80286 introduced segmentation to divide memory into segments of 
up to 64 KB in length. When the OS enables segmentation, addresses are 
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computed relative to the beginning of the segment. The processor checks 
for addresses that go beyond the end of the segment and indicates an 
error, thus preventing programs from accessing memory outside their 
own segment. Segmentation proved to be a hassle for programmers and 
is not used in modern versions of the Windows operating system.

x86 contains string instructions that act on entire strings of bytes 
or words. The operations include moving, comparing, or scanning for 
a specific value. In modern processors, these instructions are usually 
slower than performing the equivalent operation with a series of simpler 
instructions, so they are best avoided.

As mentioned earlier, the 0x66 prefix is used to choose between 16- 
and 32-bit operand sizes. Other prefixes include ones used to lock the 
bus (to control access to shared variables in a multiprocessor system), to 
predict whether a branch will be taken or not, and to repeat the instruc-
tion during a string move.

Intel and Hewlett-Packard jointly developed a new 64-bit archi-
tecture called IA-64 in the mid-1990’s. It was designed from a clean 
slate, bypassing the convoluted history of x86, taking advantage of 20 
years of new research in computer architecture, and providing a 64-bit 
address space. However, the first IA-64 chip was too late to market and 
never became a commercial success. Most computers needing the large 
address space now use the 64-bit extensions of x86.

The bane of any architecture is to run out of memory capacity. With 
32-bit addresses, x86 can access 4 GB of memory. This was far more 
than the largest computers had in 1985. However, by the early 2000’s, 
it had become limiting. In 2003, AMD extended the address space and 
register sizes to 64 bits, calling the enhanced architecture AMD64. 
AMD64 has a compatibility mode that allows it to run 32-bit programs 
unmodified while the OS takes advantage of the bigger address space. In 
2004, Intel gave in and adopted the 64-bit extensions, renaming them 
Extended Memory 64 Technology (EM64T). With 64-bit addresses, 
computers can access 16 exabytes (16 billion GB) of memory.

For those interested in examining x86 architecture in more detail, 
the x86 Intel Architecture Software Developer’s Manual is freely avail-
able on Intel’s website.

6 . 8 . 7   The Big Picture

This section has given a taste of some of the differences between the 
RISC-V architecture and the x86 CISC architecture. x86 tends to have 
shorter programs because a complex instruction is equivalent to a series 
of simple RISC-V instructions and because the instructions are encoded 
to minimize memory usage. However, the x86 architecture is a hodge-
podge of features accumulated over the years, some of which are no 
longer useful but must be kept for compatibility with old programs. 



ArchitectureCHAPTER SIX374

It has too few registers, and the instructions are difficult to decode. 
Merely explaining the instruction set is difficult. Despite all these fail-
ings, x86 is firmly entrenched as the dominant computer architecture 
for PCs because the value of software compatibility is so great and 
because the huge market justifies the effort required to build fast x86 
microprocessors.

6.9  SUMMARY
To command a computer, you must speak its language. A computer 
architecture defines how to command a processor. Many different com-
puter architectures are in widespread commercial use today, but once 
you understand one, learning others is much easier. The key questions to 
ask when approaching a new architecture are:

▸ What is the data word length?

▸ What are the registers?

▸ How is memory organized?

▸ What are the instructions?

RISC-V (RV32I) is a 32-bit architecture because it operates on 
32-bit data. The RISC-V architecture has 32 general-purpose registers. 
In principle, almost any register can be used for any purpose. However, 
by convention, certain registers are reserved for certain purposes for ease 
of programming and so that functions written by different programmers 
can communicate easily. For example, register 0 (zero) always holds 
the constant 0, ra holds the return address after a jal instruction, and 
a0 to a7 hold the arguments of a function. a0 to a1 hold a function’s 
return value. RISC-V has a byte-addressable memory system with 32-bit 
addresses. Instructions are 32 bits long and are word-aligned for effi-
cient access. This chapter discussed the most commonly used RISC-V 
instructions.

The power of defining a computer architecture is that a program 
written for any given architecture can run on many different implemen-
tations of that architecture. For example, programs written for the Intel 
Pentium processor in 1993 will generally still run (and run much faster) 
on the Intel i9 or AMD Ryzen processors in 2021.

In the first part of this book, we learned about the circuit and logic 
levels of abstraction. In this chapter, we jumped up to the architecture 
level. In the next chapter, we study microarchitecture, the arrangement 
of digital building blocks that implement a processor architecture.

Microarchitecture is the link between hardware and software. We 
believe it is one of the most exciting topics in all of engineering: You will 
learn to build your own microprocessor!
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Exercises

Exercise 6.1 Give three examples from the RISC-V architecture of each of 
the architecture design principles: (1) regularity supports simplicity; (2) make 
the common case fast; (3) smaller is faster; and (4) good design demands 
good compromises. Explain how each of your examples exhibits the design 
principle.

Exercise 6.2 The RISC-V architecture has a register set that consists of 
32 32-bit registers. Is it possible to design a computer architecture without a 
register set? If so, briefly describe the architecture, including the instruction set. 
What are advantages and disadvantages of this architecture over the RISC-V 
architecture?

Exercise 6.3 Write the following strings using ASCII encoding. Write your final 
answers in hexadecimal.

 (a) hello there

 (b) bag o’ chips

 (c) To the rescue!

Exercise 6.4 Repeat Exercise 6.3 for the following strings.

 (a) Cool

 (b) RISC-V

 (c) boo!

Exercise 6.5 Show how the strings in Exercise 6.3 are stored in a byte-
addressable memory starting at memory address 0x004F05BC. The first 
character of the string is stored at the lowest byte address (in this case, 
0x004F05BC). Clearly indicate the memory address of each byte.

Exercise 6.6 Repeat Exercise 6.5 for the strings in Exercise 6.4.

Exercise 6.7 The nor instruction is not part of the RISC-V instruction set 
because the same functionality can be implemented using existing instructions. 
Write a short assembly code snippet that has the following functionality: s3 = s4  
NOR s5. Use as few instructions as possible.

Exercise 6.8 The nand instruction is not part of the RISC-V instruction set 
because the same functionality can be implemented using existing instructions. 
Write a short assembly code snippet that has the following functionality: s3 = s4 
NAND s5. Use as few instructions as possible.
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Exercise 6.9 Convert the following high-level code snippets into RISC-V 
assembly language. Assume that the (signed) integer variables g and h are in 
registers a0 and a1, respectively. Clearly comment your code.

 a) if (g > h)
            g = g + 1;

else
            h = h − 1;

 b) if (g <= h)
            g = 0;

 else
            h = 0;

Exercise 6.10 Repeat Exercise 6.9 for the following code snippets.

 a) if (g >= h)
            g = g + h;

else
            g = g − h;

 b) if (g < h)
            h = h + 1;

 else
            h = h * 2;

Exercise 6.11 Convert the following high-level code snippet into RISC-V 
assembly. Assume that the base addresses of array1 and array2 are held in 
t1 and t2 and that the array2 array is initialized before it is used. Use as few 
instructions as possible. Clearly comment your code.

int i;
int array1[100];
int array2[100];
...
for (i = 0; i < 100; i = i + 1)

 array1[i] = array2[i];

Exercise 6.12 Repeat Exercise 6.11 for the following high-level code snippet. 
Assume that the temp array is initialized before it is used and that t3 holds the 
base address of temp.

int i;
int temp[100];
...
for (i = 0; i < 100; i = i + 1)
temp[i] = temp[i] * 128;
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Exercise 6.13 Write RISC-V assembly code for placing the following immediates 
(constants) in s7. Use a minimum number of instructions.

 (a) 29

 (b) –214

 (c) –2999

 (d) 0xABCDE000

 (e) 0xEDCBA123

 (f) 0xEEEEEFAB

Exercise 6.14 Repeat Exercise 6.13 for the following immediates.

 (a) 47

 (b) -349

 (c) 5328

 (d) 0xBBCCD000

 (e) 0xFEEBC789

 (f) 0xCCAAB9AB

Exercise 6.15 Write a function in a high-level language for int find42(int 
array[], int size).  size specifies the number of elements in array, and 
array[] specifies the base address of the array. The function should return the 
index number of the first array entry that holds the value 42. If no array entry  
is 42, it should return the value –1. Clearly comment your code.

Exercise 6.16 The high-level function strcpy (string copy) copies the character 
string src to the character string dst.

// C code
void strcpy(char dst[], char src[]) {
 int i = 0;
 do {
 dst[i] = src[i];

 } while (src[i++]);
}

 (a) Implement the strcpy function in RISC-V assembly code. Use t0 for i.

 (b) Draw a picture of the stack before, during, and after the strcpy function 
call. Assume sp = 0xFFC000 just before strcpy is called.

Exercise 6.17 Convert the high-level function from Exercise 6.15 into RISC-V 
assembly code. Clearly comment your code.

This simple string copy 
function has a serious flaw: 
it has no way of knowing 
that dst has enough space 
to receive src. If a malicious 
programmer were able to 
execute strcpy with a long 
string src, the programmer 
might be able to write bytes 
all over memory, possibly 
even modifying code stored in 
subsequent memory locations. 
With some cleverness, the 
modified code might take 
over the machine. This is 
called a buffer overflow 
attack; it is employed by 
several nasty programs, 
including the infamous 
Blaster worm, which caused 
an estimated $525 million in 
damages in 2003. 
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Exercise 6.18 Consider the RISC-V assembly code below. func1, func2, and 
func3 are nonleaf functions. func4 is a leaf function. The code is not shown 
for each function, but the comments indicate which registers are used within 
each function. You may assume that the functions do not need to save any 
nonpreserved registers on their stacks.

0x00091000 func1: ...  # func1 uses t2−t3, s4−s10
...
0x00091020       jal func2
...
0x00091100 func2: ...  # func2 uses a0−a2, s0−s5
...
0x0009117C       jal func3
...
0x00091400 func3: ...  # func3 uses t3, s7−s9
...
0x00091704       jal func4
...
0x00093008 func4: ...  # func4 uses s10−s12
...
0x00093118       jr  ra

 (a) How many words are the stack frames of each function?

 (b) Sketch the stack after func4 is called. Clearly indicate which registers 
are stored where on the stack and mark each of the stack frames. Give 
values where possible. Assume that sp = 0xABC124 just before func1 is 
called.

Exercise 6.19 Each number in the Fibonacci series is the sum of the previous two 
numbers. Table 6.16 lists the first few numbers in the series, fib(n).

 (a) What is fib(n) for n = 0 and n = –1?

 (b) Write a function called fib in a high-level language that returns the 
Fibonacci number for any nonnegative value of n. Hint: You probably will 
want to use a loop. Clearly comment your code.

 (c) Convert the high-level function of part (b) into RISC-V assembly code. Add 
comments after every line of code that explain clearly what it does. Use a 
simulator to test your code on fib(9). (See the Preface for links to a RISC-V 
simulator.)

Table 6.16 Fibonacci series

n 1 2 3 4 5 6 7 8 9 10 11 …

fib(n) 1 1 2 3 5 8 13 21 34 55 89 …
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Exercise 6.20 Consider Code Example 6.28. For this exercise, assume 
factorial(n) is called with input argument n = 5.

 (a) What value is in a0 when factorial returns to the calling function?

 (b) Suppose you replace the instructions at addresses 0x8508 and 0x852C with 
nops. Will the program:

  (1) enter an infinite loop but not crash;
  (2)  crash (cause the stack to grow or shrink beyond the dynamic data 

segment or the PC to jump to a location outside the program);
  (3)  produce an incorrect value in a0 when the program returns to loop  

(if so, what value?); or
  (4) run correctly despite the deleted lines?

 (c) Repeat part (b) with the following instruction modifications:
  (1) Replace the instructions at addresses 0x8504 and 0x8528 with nops.
  (2) Replace the instruction at address 0x8518 with a nop.
  (3) Replace the instruction at address 0x8530 with a nop.

Exercise 6.21 Ben Bitdiddle is trying to compute the function f(a, b) = 2a + 3b 
for nonnegative b. He goes overboard in the use of function calls and recursion 
and produces the following high-level code for functions f and g.

// high-level code for functions f and g
int f(int a, int b) {
   int j;

   j = a;
   return j + a + g(b);
}

int g(int x) {
   int k;

   k = 3;
   if (x = = 0) return 0;
   else return k + g(x − l);
}

Ben then translates the two functions into RISC-V assembly language as follows. 
He also writes a function, test, that calls the function f(5,3).

# RISC-V assembly code
# f: a0 = a, a1 = b, s4 = j;
# g: a0 = x, s4 = k

0x8000 test:  addi  a0, zero, 5 # a = 5
0x8004 addi  a1, zero, 3  # b = 3
0x8008  jal  f  # call f(5, 3)
0x800C loop:  j  loop  # and loop forever
0x8010 f: addi sp, sp, −16  # make room on stack
0x8014  sw  a0, 0xC(sp) # save a0
0x8018  sw  a1, 0x8(sp)  # save a1
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0x801C  sw  ra, 0x4(sp)    # save ra
0x8020  sw  s4, 0x0(sp)   # save s4
0x8024  addi s4, a0, 0    # j = a
0x8028  addi a0, a1, 0    # place b as argument for g()
0x802C  jal  g   # call g
0x8030  lw  t0, 0xC(sp)   # restore a into t0
0x8034  add  a0, a0, t0    # a0 = g(b) + a
0x8038  add  a0, a0, s4    # a0 = (g(b) + a) + j
0x803C  lw  s4, 0x0(sp)    # restore registers
0x8040  lw  ra, 0x4(sp)
0x8044  addi sp, sp, 16
0x8048  jr  ra    # return
0x804C g:  addi sp, sp, −8   # make room on stack
0x8050  sw  ra, 4(sp)   # save registers
0x8054  sw  s4, 0(sp)
0x8058  addi s4, zero, 3   # k = 3
0x805C  bne  a0, zero, else   # if (x != 0), goto else
0x8060  addi a0, zero, 0    # return 0
0x8064  j  done    # clean up and return
0x8068 else:  addi a0, a0, −1    # decrement x
0x806C  jal  g   # call g(x − 1)
0x8070  add  a0, s4, a0    # return k + g(x − 1)
0x8074 done:  lw  s4, 0(sp)   # restore registers
0x8078  lw  ra, 4(sp)
0x807C  addi sp, sp, 8
0x8080  jr  ra   # return

You will probably find it useful to make drawings of the stack similar to the one 
in Figure 6.10 to help you answer the following questions.

 (a) If the code runs starting at test, what value is in a0 when the program gets 
to loop? Does his program correctly compute 2a + 3b?

 (b) Suppose Ben replaces the instruction at address 0x8014 with a nop. Will the 
program

  (1) enter an infinite loop but not crash;
  (2)  crash (cause the stack to grow or shrink beyond the dynamic data 

segment or the PC to jump to a location outside the program);
  (3)  produce an incorrect value in a0 when the program returns to loop  

(if so, what value?); or
  (4) run correctly despite the deleted lines?

 (c) Repeat part (b) when the following instructions are changed. Note that 
labels aren’t changed, only instructions.

  (i) Instructions at 0x8014 and 0x8030 are replaced with nops.
  (ii) Instructions at 0x803C and 0x8040 are replaced with nops.
  (iii) Instruction at 0x803C is replaced with a nop.
  (iv) Instruction at 0x8030 is replaced with a nop.
  (v) Instructions at 0x8054 and 0x8074 are replaced with nops.



Exercises 381

  (vi) Instructions at 0x8020 and 0x803C are replaced with nops.
  (vii) Instructions at 0x8050 and 0x8078 are replaced with nops.

Exercise 6.22 Convert the following RISC-V assembly code into machine 
language. Write the instructions in hexadecimal.

 addi s3, s4, 28
 sll  t1, t2, t3
 srli s3, s1, 14
 sw  s9, 16(t4)

Exercise 6.23 Repeat Exercise 6.22 for the following RISC-V assembly code:

 add  s7, s8, s9
 srai t0, t1, 0xC
 ori s3, s1, 0xABC
 lw  s4, 0x5C(t3)

Exercise 6.24 Consider all instructions with an immediate field.

 (a) Which instructions from Exercise 6.22 use an immediate field in their 
machine code format?

 (b) What is the instruction type (I-, S-, B-, U-, or J-type) for the instructions 
from part (a)?

 (c) Write out the 5- to 21-bit immediates of each instruction from part (a) in 
hexadecimal. If the number is extended, also write them as 32-bit extended 
immediates. Otherwise, indicate that they are not extended.

Exercise 6.25 Repeat Exercise 6.24 for the instructions in Exercise 6.23.

Exercise 6.26 Consider the RISC-V machine code snippet below. The first 
instruction is listed at the top.

 (a) Convert the machine code snippet into RISC-V assembly language.

 (b) Reverse engineer a high-level program that would compile into this 
assembly language routine and write it. Clearly comment your code.

 (c) Explain in words what the program does. a0 and a1 are the inputs, and 
they initially contain positive numbers, A and B. At the end of the program, 
register a0 holds the output (i.e., return value).

0x01800513
0x00300593
0x00000393
0x00058E33
0x01C54863
0x00138393
0x00BE0E33
0xFF5FF06F
0x00038533
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Exercise 6.27 Repeat Exercise 6.26 for the following machine code. a0 and 
a1 are the inputs. a0 contains a 32-bit number and a1 is the address of a 
32-element array of characters (char).

0x01F00393
0x00755E33
0x001E7E13
0x01C580A3
0x00158593
0xFFF38393
0xFE03D6E3
0x00008067

Exercise 6.28 Convert the following branch instructions into machine code. 
Instruction addresses are given to the left of each instruction.

 a) 0x0000A000 beq t4, zero, Loop
0x0000A004 ...
0x0000A008 ...
0x0000A00C Loop: ...

 b) 0x00801000  bne s5, a1, L1
... ...
0x0080174C L1:  ...

 c) 0x0000C10C Back: ...
... ...
0x0000D000 blt s1, s2, Back

 d) 0x01030AAC  bge t4, t6, L2
...  ...
0x01031AA4 L2: ...

 e) 0x0BC08004 L3:  ...
...  ...
0x0BC09000 beq s3, s7, L3

Exercise 6.29 Convert the following branch instructions into machine code. 
Instruction addresses are given to the left of each instruction.

 a) 0xAA00E124 blt t4, s3, Loop
0xAA00E128 ...
0xAA00E12C ...
0xAA00E130 Loop: ...

 b) 0xC0901000  bge t1, t2, L1
...  ...
0xC090174C L1: ...
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 c) 0x1230D10C Back: ...
...  ...
0x1230D908  bne s10, s11, Back

 d) 0xAB0C99A8  beq a0, s1, L2
...  ...
0xAB0CA0FC L2:  ...

 e) 0xFFABCF04 L3:  ...
...  ...
0xFFABD640  blt s1, t3, L3

Exercise 6.30 Convert the following jump instructions into machine code. 
Instruction addresses are given to the left of each instruction.

 a) 0x1234ABC0  j Loop
...  ...
0x123CABBC Loop: ...

 b) 0x12345678 Back: ...
...  ...
0x123B8760  jal s0, Back

 c) 0xAABBCCD0  jal L1
...  ...
0xAABDCD98 L1:  ...

 d) 0x11223344  j L2
...  ...
0x1127BCDC L2:  ...

 e) 0x9876543C L3:  ...
...  ...
0x9886543C  jal L3

Exercise 6.31 Convert the following jump instructions into machine code. 
Instruction addresses are given to the left of each instruction.

 a) 0x0000ABC0  jal Loop
...  ...
0x0000EEEC Loop: ...

 b) 0x0000C10C Back: ...
...  ...
0x000F1230  jal Back

 c) 0x00801000  jal s1, L1
...  ...
0x008FFFDC L1:  ...
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 d) 0xA1234560  j L2
...  ...
0xA131347C L2:  ...

 e) 0xF0BBCCD4 L3:  ...
...  ...
0xF0CBCCD4  j L3

Exercise 6.32 Consider the following RISC-V assembly language snippet. The 
numbers to the left of each instruction indicate the instruction address.

0xA0028 Func1: addi t4, a1, 0
0xA002C  ori  a0, a0, 32
0xA0030  sub  a1, a1, a0
0xA0034  jal  Func2
...  ...
0xA0058 Func2: lw  t2, 4(a0)
0xA005C  sw  t2, 16(a1)
0xA0060  srli t3, t2, 8
0xA0064  beq  t2, t3, Else
0xA0068  jr  ra
0xA006C Else:  addi a0, a0, 4
0xA0070  j  Func2

 (a) Translate the instruction sequence into machine code. Write the machine 
code instructions in hexadecimal.

 (b) List the instruction type and addressing mode used at each line of code.

Exercise 6.33 Consider the following C code snippet.

// C code
void setArray(int num) {
   int i;
   int array[10];

 for (i = 0; i < 10; i = i + 1)
   array[i] = compare(num, i);
}

int compare(int a, int b) {
   if (sub(a, b) >= 0)
     return 1;
 else
    return 0;
}
int sub(int a, int b) {
    return a − b;
}

 (a) Implement the C code snippet in RISC-V assembly language. Use s4 to hold 
the variable i. Be sure to handle the stack pointer appropriately. The array is 
stored on the stack of the setArray function (see the end of Section 6.3.7). 
Clearly comment your code.
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 (b) Assume that setArray is the first function called. Draw the status of the 
stack before calling setArray and during each function call. Indicate stack 
addresses and the names of registers and variables stored on the stack; mark 
the location of sp; and clearly mark each stack frame. Assume that sp starts 
at 0x8000.

 (c) How would your code function if you failed to store ra on the stack?

Exercise 6.34 Consider the following high-level function.

// C code
int f(int n, int k) {
   int b;

   b = k + 2;
   if (n = = 0)
     b = 10;
   else
     b = b + (n * n) + f(n − 1, k + 1);
   return b * k;
}

 (a) Translate the high-level function f into RISC-V assembly language. Pay 
particular attention to properly saving and restoring registers across 
function calls and using the RISC-V preserved register conventions. Clearly 
comment your code. Assume that the function starts at instruction address 
0x8100. Keep local variable b in s4. Clearly comment your code.

 (b) Step through your function from part (a) by hand for the case of f(2, 4). 
Draw a picture of the stack similar to the one in Figure 6.10, and assume 
that sp is equal to 0xBFF00100 when f is called. Write the stack addresses 
and the register name and data value stored at each location in the stack 
and keep track of the stack pointer value (sp). Clearly mark each stack 
frame. You might also find it useful to keep track of the values in a0, a1, 
and s4 throughout execution. Assume that when f is called, s4 = 0xABCD 
and ra = 0x8010.

 (c) What is the final value of a0 when f(2, 4) is called?

Exercise 6.35  What is the maximum number of instructions that a branch 
instruction (like beq) can branch forward (i.e., to higher instruction addresses)?

Exercise 6.36 What is the maximum number of instructions that a branch 
instruction (like beq) can branch backward (i.e., to lower instruction addresses)?

Exercise 6.37 Write assembly code that conditionally branches to an instruction 
32 Minstructions forward from a given instruction. Recall that 1 Minstruction = 220 
instructions = 1,048,576 instructions. Assume that your code begins at address 
0x8000. Use a minimum number of instructions.
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Exercise 6.38 Explain why it is advantageous to have a large immediate field in 
the machine format for the jump and link instruction, jal.

Exercise 6.39 Consider a function that takes a 10-entry array of 32-bit integers 
stored in little-endian format and converts it to big-endian format.

 (a) Write this function in high-level code.

 (b) Convert this function to RISC-V assembly code. Comment all your code 
and use a minimum number of instructions.

Exercise 6.40 Consider two strings: string1 and string2.

 (a) Write high-level code for a function called concat that concatenates 
(joins together) the two strings: void concat(char string1[], char 
string2[], char stringconcat[]). The function does not return a 
value. It concatenates string1 and string2 and places the resulting string 
in stringconcat. You may assume that the character array stringconcat 
is large enough to accommodate the concatenated string. Clearly comment 
your code.

 (b) Convert the function from part (a) into RISC-V assembly language. Clearly 
comment your code.

Exercise 6.41 Write a RISC-V assembly program that adds two positive 
single-precision floating-point numbers held in a0 and a1. Do not use any 
of the RISC-V floating-point instructions. You need not worry about any of 
the encodings that are reserved for special purposes (e.g., 0, NANs, etc.) or 
numbers that overflow or underflow. Use a simulator to test your code. (See 
the Preface for links to a RISC-V simulator.) You will need to manually set the 
values of a0 and a1 to test your code. Demonstrate that your code functions 
reliably. Clearly comment your code.

Exercise 6.42 Expand the RISC-V assembly program from Exercise 6.41 to 
handle both positive and negative single-precision floating-point numbers. 
Clearly comment your code.

Exercise 6.43 Consider a function that sorts a 10-element array called scores 
from lowest to highest. After the function completes, scores[0] holds the 
smallest value and scores[9] holds the highest value.

 (a) Write a high-level sort function that performs the function above. sort 
receives a single argument, the address of the scores array. Clearly 
comment your code.

 (b) Convert the sort function into RISC-V assembly language. Clearly 
comment your code.
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Exercise 6.44 Consider the following RISC-V program. Assume that the 
instructions are placed starting at memory address 0x8400 and that global 
variables x and y are at memory addresses 0x10024 and 0x10028, respectively.

# RISC-V assembly code
main:
 addi sp, sp, −4  # make room on stack
 sw  ra, 0(sp)  # save ra on stack
 lw  a0, −940(gp) # a0 = x
 lw  a1, −936(gp)  # a1 = y
 jal  diff  # call diff()
 lw  ra, 0(sp)  # restore registers
 addi sp, sp, 4
 jr  ra  # return

diff:
 sub  a0, a0, a1  # return (a0−a1)
 jr  ra

 (a) First, show the instruction address next to each assembly instruction.

 (b) Describe the symbol table: that is, list the name, address, and size of each 
symbol (i.e., function label and global variable).

 (c) Convert all instructions into machine code.

 (d) How big (how many bytes) are the data and text segments?

 (e) Sketch a memory map showing where data and instructions are stored, 
similar to Figure 6.34. Be sure to label the values of PC and gp at the 
beginning of the program.

Exercise 6.45 Repeat Exercise 6.44 for the following RISC-V code. Assume that 
the instructions are placed starting at memory address 0x8534 and that global 
variables g and h are at memory addresses 0x1305C and 0x13060.

# RISC-V assembly code
main:  addi sp, sp, −8
  sw  ra, 4(sp)
  sw  s4, 0(sp)
  addi s4, zero, 15 
  sw  s4, −300(gp)   # g = 15
  addi a1, zero, 27   # arg1 = 27
  sw  a1, −296(gp)   # h = 27
  lw  a0, −300(gp)   # arg0 = g = 15
  jal  greater
  lw  s4, 0(sp)
  lw  ra, 4(sp)
  addi sp, sp, 8
  jr  ra
greater:  blt  a1, a0, isGreater
  addi a0, zero, 0
  jr  ra
 isGreater: addi a0, zero, 1
  jr  ra 
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Exercise 6.46 Explain the advantages and disadvantages of the bit-swizzling 
found in the encodings of RISC-V immediates.

Exercise 6.47 Consider sign-extension of the immediates in RISC-V instructions. 
Design a sign-extension unit for RISC-V immediates using the steps below. 
Minimize the amount of hardware needed.

 (a) Sketch the schematic for a sign-extension unit that sign-extends the 12-bit 
immediate in I-type instructions. The circuit’s input is the upper 12 bits of 
the instruction, Instr31:20, which encodes the 12-bit signed immediate. The 
output is a 32-bit sign-extended immediate, ImmExt31:0.

 (b) Expand the sign-extension unit from part (a) to also sign-extend the 12-bit 
immediate found in S-type instructions. Modify the inputs as needed, and 
reuse hardware when possible.

 (c) Expand the sign-extension unit from part (b) to also sign-extend the 13-bit 
immediate found in B-type instructions.

 (d) Expand the sign-extension unit from part (c) to also sign-extend the 21-bit 
immediate found in J-type instructions.

Exercise 6.48 In this exercise, you will design an alternate extension unit for 
RISC-V immediates using a minimum amount of hardware. Suppose that the 
RISC-V architects had chosen to use immediate encodings that were more 
straightforward to humans, as shown in Figure 6.38. This figure shows all 
instruction fields except op. The immediate encodings in Figure 6.38 use no bit-
swizzling (but still split the immediate field in S/B-type instructions across two 
instruction fields). Bits that differ from the actual RISC-V immediate encodings 
(shown in Figure 6.27) are highlighted in blue. Specifically, these hypothetical 
(straightforward) immediate encodings differ from actual RISC-V immediate 
encodings for the B- and J-type formats.

 (a) Sketch the schematic for a sign-extension unit that sign-extends the 12-bit 
immediate in I-type instructions. The circuit’s input is the upper 12 bits of 

Figure 6.38 Alternate immediate encodings
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the instruction, Instr31:20, which encodes the 12-bit signed immediate. The 
output is a 32-bit sign-extended immediate, ImmExt31:0.

 (b) Expand the sign-extension unit from part (a) to also sign-extend the 12-bit 
immediate found in S-type instructions. Modify the inputs as needed, and 
reuse hardware when possible.

 (c) Expand the sign-extension unit from part (b) to also sign-extend the 13-bit 
immediate found in (the modified) B-type instructions (see Figure 6.38).

 (d) Expand the sign-extension unit from part (c) to also sign-extend the 21-bit 
immediate found in (the modified) J-type instructions (see Figure 6.38).

 (e) If you completed Exercise 6.47, compare this to the hardware in the actual 
RISC-V extension unit.

Exercise 6.49 Consider how far jal instructions can jump.

 (a) How many instructions can a jal instruction jump forward (i.e., to higher 
addresses)?

 (b) How many instructions can a jal instruction jump backward (i.e., to lower 
addresses)?

Exercise 6.50 Consider memory storage of a 32-bit word stored at the 42nd 
memory word in a byte-addressable memory. Remember, the 0th word is stored 
at memory address 0, the first word at address 4, and so on.

 (a) What is the byte address of the 42nd word stored in memory?

 (b) What are the byte addresses that the 42nd word spans?

 (c) Draw the number 0xFF223344 stored at word 42 in both big-endian and 
little-endian machines. Clearly label the byte address corresponding to each 
data byte value.

Exercise 6.51 Repeat Exercise 6.50 for memory storage of a 32-bit word stored 
at the 15th word in a byte-addressable memory.

Exercise 6.52 Explain how the following RISC-V program can be used to 
determine whether a computer is big-endian or little-endian:

 addi s7, 100
 lui  s3, 0xABCD8   # s3 = 0xABCD8000
 addi s3, s3, 0x765  # s3 = 0xABCD8765
 sw s3, 0(s7)
 lb  s2, 1(s7)
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Interview Questions

The following exercises present questions that have been asked at interviews for 
digital design jobs.

Question 6.1 Write a RISC-V assembly language program for swapping the 
contents of two registers, a0 and a1. You may not use any other registers.

Question 6.2 Suppose you are given an array of both positive and negative 
integers. Write RISC-V assembly code that finds the subset of the array with 
the largest sum. Assume that the array’s base address and the number of array 
elements are in a0 and a1, respectively. Your code should place the resulting 
subset of the array starting at the base address in a2. Write code that runs as fast 
as possible.

Question 6.3 You are given an array that holds a sentence in a null-terminated 
string. Write a RISC-V assembly language program to reverse the words in the 
sentence and store the new sentence back in the array.

Question 6.4 Write a RISC-V assembly language program to count the number 
of ones in a 32-bit number.

Question 6.5 Write a RISC-V assembly language program to reverse the bits in a 
register. Use as few instructions as possible.

Question 6.6 Write a succinct RISC-V assembly language program to test 
whether overflow occurs when a2 is subtracted from a3.

Question 6.7 Write a RISC-V assembly language program for testing whether 
a given string is a palindrome. (Recall that a palindrome is a word that is the 
same forward and backward. For example, the words “wow” and “racecar” are 
palindromes.)
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7.1  INTRODUCTION
In this chapter, you will learn how to piece together a microprocessor. 
Indeed, you will puzzle out three different versions, each with different 
trade-offs between performance, cost, and complexity.

To the uninitiated, building a microprocessor may seem like black 
magic. But it is actually relatively straightforward and, by this point, you 
have learned everything you need to know. Specifically, you have learned 
to design combinational and sequential logic given functional and timing 
specifications. You are familiar with circuits for arithmetic and memory. 
And you have learned about the RISC-V architecture, which specifies 
the programmer’s view of the RISC-V processor in terms of registers, 
instructions, and memory.

This chapter covers microarchitecture, which is the connection 
between logic and architecture. Microarchitecture is the specific arrange-
ment of registers, arithmetic logic units (ALUs), finite state machines 
(FSMs), memories, and other logic building blocks needed to implement 
an architecture. A particular architecture, such as RISC-V, may have 
many different microarchitectures, each with different trade-offs of per-
formance, cost, and complexity. They all run the same programs, but 
their internal designs vary widely. We design three different microarchi-
tectures in this chapter to illustrate the trade-offs.

7 . 1 . 1   Architectural State and Instruction Set

Recall that a computer architecture is defined by its instruction set and 
architectural state. The architectural state for the RISC-V processor con-
sists of the program counter and the 32 32-bit registers. Any RISC-V 
microarchitecture must contain all of this state. Based on the current 
architectural state, the processor executes a particular instruction with a 
particular set of data to produce a new architectural state. Some 
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microarchitectures contain additional nonarchitectural state to either 
simplify the logic or improve performance; we point this out as it arises.

To keep the microarchitectures easy to understand, we focus on a 
subset of the RISC-V instruction set. Specifically, we handle the follow-
ing instructions:

▸ R-type instructions: add, sub, and, or, slt

▸ Memory instructions: lw, sw

▸ Branches: beq

These particular instructions were chosen because they are sufficient 
to write useful programs. Once you understand how to implement these 
instructions, you can expand the hardware to handle others.

7 . 1 . 2   Design Process

We divide our microarchitectures into two interacting parts: the data-
path and the control unit. The datapath operates on words of data. It 
contains structures such as memories, registers, ALUs, and multiplexers. 
We are implementing the 32-bit RISC-V (RV32I) architecture, so we use 
a 32-bit datapath. The control unit receives the current instruction from 
the datapath and tells the datapath how to execute that instruction. 
Specifically, the control unit produces multiplexer select, register enable, 
and memory write signals to control the operation of the datapath.

A good way to design a complex system is to start with hardware 
containing the state elements. These elements include the memories and 
the architectural state (the program counter and registers). Then, add 
blocks of combinational logic between the state elements to compute the 
new state based on the current state. The instruction is read from part 
of memory; load and store instructions then read or write data from 
another part of memory. Hence, it is often convenient to partition the 
overall memory into two smaller memories, one containing instructions 
and the other containing data. Figure 7.1 shows a block diagram with 
the four state elements: the program counter, register file, and instruc-
tion and data memories.

In this chapter, heavy lines indicate 32-bit data busses. Medium lines 
indicate narrower busses, such as the 5-bit address busses on the register 
file. Narrow lines indicate 1-bit wires, and blue lines are used for con-
trol signals, such as the register file write enable. Registers usually have 
a reset input to put them into a known state at start-up, but reset is not 
shown to reduce clutter.

The program counter (PC) points to the current instruction. Its 
input, PCNext, indicates the address of the next instruction.

The architectural state is 
the information necessary 
to define what a computer 
is doing. If one were to save 
a copy of the architectural 
state and contents of memory, 
then turn off a computer, 
then turn it back on and 
restore the architectural state 
and memory, the computer 
would resume the program 
it was running, unaware that 
it had been powered off and 
back on. Think of a science 
fiction novel in which the 
protagonist’s brain is frozen, 
then thawed years later to 
wake up in a new world. 

At the very least, the program 
counter must have a reset 
signal to initialize its value 
when the processor turns 
on. Upon reset, RISC-V 
processors normally 
initialize the PC to a low 
address in memory, such as 
0x00001000, and we start 
our programs there. 
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The instruction memory has a single read port.1 It takes a 32-bit 
instruction address input, A, and reads the 32-bit data (i.e., instruction) 
from that address onto the read data output, RD.

The 32-element × 32-bit register file holds registers x0–x31. Recall 
that x0 is hardwired to 0. The register file has two read ports and one 
write port. The read ports take 5-bit address inputs, A1 and A2, each 
specifying one of the 25 = 32 registers as source operands. The register 
file places the 32-bit register values onto read data outputs RD1 and 
RD2. The write port, port 3, takes a 5-bit address input, A3; a 32-bit 
write data input, WD3; a write enable input, WE3; and a clock. If its 
write enable (WE3) is asserted, then the register file writes the data 
(WD3) into the specified register (A3) on the rising edge of the clock.

The data memory has a single read/write port. If its write enable, 
WE, is asserted, then it writes data WD into address A on the rising 
edge of the clock. If its write enable is 0, then it reads from address A 
onto the read data bus, RD.

The instruction memory, register file, and data memory are all read 
combinationally. In other words, if the address changes, then the new 
data appears at RD after some propagation delay; no clock is involved. 
The clock controls writing only. These memories are written only on 
the rising edge of the clock. In this fashion, the state of the system is 
changed only at the clock edge. The address, data, and write enable must 
set up before the clock edge and must remain stable until a hold time 
after the clock edge.

Because the state elements change their state only on the rising edge 
of the clock, they are synchronous sequential circuits. A microprocessor 

1  This is an oversimplification used to treat the instruction memory as a ROM. In most real 
processors, the instruction memory must be writable so that the operating system (OS) can 
load a new program into memory. The multicycle microarchitecture described in Section 7.4 
is more realistic in that it uses a single memory that contains both instructions and data and 
that can be both read and written.
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Figure 7.1 State elements of a RISC-V processor
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is built of clocked state elements and combinational logic, so it too is a 
synchronous sequential circuit. Indeed, a processor can be viewed as a 
giant finite state machine or as a collection of simpler interacting state 
machines.

7 . 1 . 3   Microarchitectures

In this chapter, we develop three microarchitectures for the RISC-V 
architecture: single-cycle, multicycle, and pipelined. They differ in how 
the state elements are connected and in the amount of nonarchitectural 
state needed.

The single-cycle microarchitecture executes an entire instruction in 
one cycle. It is easy to explain and has a simple control unit. Because it  
completes the operation in one cycle, it does not require any nonarchitectural  
state. However, the cycle time is limited by the slowest instruction. 
Moreover, the processor requires separate instruction and data memories, 
which is generally unrealistic.

The multicycle microarchitecture executes instructions in a series of 
shorter cycles. Simpler instructions execute in fewer cycles than compli-
cated ones. Moreover, the multicycle microarchitecture reduces the 
hardware cost by reusing expensive hardware blocks, such as adders 
and memories. For example, the adder may be used on different cycles 
for several purposes while carrying out a single instruction. The multicycle 
microprocessor accomplishes this by introducing several nonarchitectural 
registers to hold intermediate results. The multicycle processor executes 
only one instruction at a time, but each instruction takes multiple clock 
cycles. This processor requires only a single memory, accessing it on one 
cycle to fetch the instruction and on another to read or write data. 
Because they use less hardware than single-cycle processors, multicycle 
processors were the historical choice for inexpensive systems.

The pipelined microarchitecture applies pipelining to the single-cycle 
microarchitecture. It therefore can execute several instructions simul-
taneously, improving the throughput significantly. Pipelining must add 
logic to handle dependencies between simultaneously executing instruc-
tions. It also requires nonarchitectural pipeline registers. Pipelined  
processors must access instructions and data in the same cycle; they generally 
use separate instruction and data caches for this purpose, as discussed in 
Chapter 8. The added logic and registers are worthwhile; all commercial 
high-performance processors use pipelining today.

We explore the details and trade-offs of these three microarchitec-
tures in the subsequent sections. At the end of the chapter, we briefly 
mention additional techniques that are used to achieve even more speed 
in modern high-performance microprocessors.

Examples of classic multicycle 
processors include the 1947 
MIT Whirlwind, the IBM  
System/360, the Digital 
Equipment Corporation VAX,  
the 6502 used in the Apple II,  
and the 8088 used in the IBM  
PC. Multicycle microarchitectures  
are still used in inexpensive 
microcontrollers such as the  
8051, the 68HC11, and the  
PIC16-series found in appliances, 
toys, and gadgets. 

Intel processors have been 
pipelined since the 80486 was 
introduced in 1989. Nearly all 
RISC microprocessors are also 
pipelined, and all commercial 
RISC-V processors have been 
pipelined. Because of the 
decreasing cost of transistors, 
pipelined processors now cost 
fractions of a penny, and the 
entire system, with memory and 
peripherals, costs 10’s of cents. 
Thus, pipelined processors 
are replacing their slower 
multicycle siblings in even the 
most cost-sensitive applications. 
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7.2  PERFORMANCE ANALYSIS
As we mentioned, a particular processor architecture can have many 
microarchitectures with different cost and performance trade-offs. The 
cost depends on the amount of hardware required and the implemen-
tation technology. Precise cost calculations require detailed knowledge 
of the implementation technology but, in general, more gates and more 
memory mean more dollars.

This section lays the foundation for analyzing performance. There 
are many ways to measure the performance of a computer system, and 
marketing departments are infamous for choosing the method that makes 
their computer look fastest, regardless of whether the measurement has 
any correlation to real-world performance. For example, microprocessor 
makers often market their products based on the clock frequency and the 
number of cores. However, they gloss over the complications that some 
processors accomplish more work than others in a clock cycle and that 
this varies from program to program. What is a buyer to do?

The only gimmick-free way to measure performance is by measur-
ing the execution time of a program of interest to you. The computer 
that executes your program fastest has the highest performance. The 
next best choice is to measure the total execution time of a collection of  
programs that are similar to those you plan to run. This may be necessary 
if you have not written your program yet or if somebody else who does 
not have your program is making the measurements. Such collections 
of programs are called benchmarks, and the execution times of these  
programs are commonly published to give some indication of how a  
processor performs.

Dhrystone, CoreMark, and SPEC are three popular benchmarks. 
The first two are synthetic benchmarks composed of important common 
pieces of programs. Dhrystone was developed in 1984 and remains com-
monly used for embedded processors, although the code is somewhat 
unrepresentative of real-life programs. CoreMark is an improvement 
over Dhrystone and involves matrix multiplications that exercise the 
multiplier and adder, linked lists to exercise the memory system, state 
machines to exercise the branch logic, and cyclical redundancy checks 
that involve many parts of the processor. Both benchmarks are less than 
16 KB in size and do not stress the instruction cache.

The SPECspeed 2017 Integer benchmark from the Standard 
Performance Evaluation Corporation (SPEC) is composed of real pro-
grams, including x264 (video compression), deepsjeng (an artificial intel-
ligence chess player), omnetpp (simulation), and GCC (a C compiler). 
The benchmark is widely used for high-performance processors because 
it stresses the entire system in a representative way.

When customers buy computers 
based on benchmarks, they 
must be careful because 
computer makers have 
strong incentive to bias the 
benchmark. For example, 
Dhrystone involves extensive 
string copying, but the strings 
are of known constant length 
and word alignment. Thus, a 
smart compiler may replace 
the usual code involving 
loops and byte accesses with 
a series of word loads and 
stores, improving Dhrystone 
scores by more than 30% but 
not speeding up real-world 
applications. The SPEC89 
benchmark contained a Matrix 
300 program in which 99% 
of the execution time was in 
one line. IBM sped up the 
program by a factor of 9 
using a compiler technique 
called blocking. Benchmarking 
multicore computing is even 
harder because there are 
many ways to write programs, 
some of which speed up in 
proportion to the number 
of cores available but are 
inefficient on a single core. 
Others are fast on a single core 
but scarcely benefit from extra 
cores. 
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Equation 7.1 gives the execution time of a program, measured in 
seconds.
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(7.1)

The number of instructions in a program depends on the processor 
architecture. Some architectures have complicated instructions that do 
more work per instruction, thus reducing the number of instructions in 
a program. However, these complicated instructions are often slower 
to execute in hardware. The number of instructions also depends enor-
mously on the cleverness of the programmer. For the purposes of this 
chapter, we assume that we are executing known programs on a RISC-V 
processor, so the number of instructions for each program is constant, 
independent of the microarchitecture. The cycles per instruction (CPI) 
is the number of clock cycles required to execute an average instruction. 
It is the reciprocal of the throughput (instructions per cycle, or IPC). 
Different microarchitectures have different CPIs. In this chapter, we 
assume we have an ideal memory system that does not affect the CPI. In 
Chapter 8, we examine how the processor sometimes has to wait for the 
memory, which increases the CPI.

The number of seconds per cycle is the clock period, Tc. The clock 
period is determined by the critical path through the logic in the proces-
sor. Different microarchitectures have different clock periods. Logic and 
circuit designs also significantly affect the clock period. For example, a 
carry-lookahead adder is faster than a ripple-carry adder. Manufacturing 
advances also improve transistor speed, so a microprocessor built today 
will be faster than one from last decade, even if the microarchitecture 
and logic are unchanged.

The challenge of the microarchitect is to choose the design that  
minimizes the execution time while satisfying constraints on cost and/or  
power consumption. Because microarchitectural decisions affect both 
CPI and Tc and are influenced by logic and circuit designs, determining 
the best choice requires careful analysis.

Many other factors affect overall computer performance. For example,  
the hard disk, the memory, the graphics system, and the network connection 
may be limiting factors that make processor performance irrelevant. The 
fastest microprocessor in the world does not help surfing the Internet on 
a poor connection. But these other factors are beyond the scope of this 
book.

7.3  SINGLE-CYCLE PROCESSOR
We first design a microarchitecture that executes instructions in a single  
cycle. We begin constructing the datapath by connecting the state 
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elements from Figure 7.1 with combinational logic that can execute the 
various instructions. Control signals determine which specific instruc-
tion is performed by the datapath at any given time. The control unit 
contains combinational logic that generates the appropriate control 
signals based on the current instruction. Finally, we analyze the perfor-
mance of the single-cycle processor.

7 . 3 . 1   Sample Program

For the sake of concreteness, we will have the single-cycle processor run 
the short program from Figure 7.2 that exercises loads, stores, an R-type 
instruction (or), and a branch (beq). Suppose that the program is stored 
in memory starting at address 0x1000. The figure indicates the address 
of each instruction, the instruction type, the instruction fields, and the 
hexadecimal machine language code for the instruction.

Assume that register x5 initially contains the value 6 and x9 contains 
0x2004. Memory location 0x2000 contains the value 10. The program 
counter begins at 0x1000. The lw reads 10 from address (0x2004  –  4) 
= 0x2000 and puts it in x6. The sw writes 10 to address (0x2004  +  8) = 
0x200C. The or computes x4 = 6 | 10 = 01102 | 10102 = 11102 = 14. 
Then, beq goes back to label L7, so the program repeats forever.

7 . 3 . 2   Single-Cycle Datapath

This section gradually develops the single-cycle datapath, adding one 
piece at a time to the state elements from Figure 7.1. The new connections  
are emphasized in black (or blue, for new control signals), whereas the 
hardware that has already been studied is shown in gray. The example 
instruction being executed is shown at the bottom of each figure. 

The program counter contains the address of the instruction to  
execute. The first step is to read this instruction from instruction memory. 
Figure 7.3 shows that the PC is simply connected to the address input of  
the instruction memory. The instruction memory reads out, or fetches, the 
32-bit instruction, labeled Instr. In our sample program from Figure 7.2,  
PC is 0x1000. (Note that this is a 32-bit processor, so PC is really 
0x00001000, but we omit leading zeros to avoid cluttering the figure.) 

We italicize signal names in 
the text but not the names 
of hardware modules. For 
example, PC is the signal 
coming out of the PC register, 
or simply, the PC. 

Figure 7.2 Sample program exercising different types of instructions

Address Instruction Type Fields Machine Language

0x1000 L7: lw  x6, -4(x9) I 111111111100  01001 010 00110   0000011 FFC4A303
f3imm11:0 rd oprs1

0x1004     sw  x6, 8(x9) S 0000000 00110 01001 010 01000   0100011 0064A423
f3imm11:5 imm4:0 oprs1rs2

0x1008     or  x4, x5, x6 R 0000000 00110 00101 110 00100   0110011 0062E233
f3funct7 rd oprs1rs2

0x100C     beq x4, x4, L7 B 1111111 00100 00100 000 10101   1100011 FE420AE3
f3imm12,10:5 imm4:1,11 oprs1rs2
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Instr is lw, 0xFFC4A303, as also shown at the bottom of Figure 7.3. 
These sample values are annotated in light blue on the diagram.

The processor’s actions depend on the specific instruction that was 
fetched. First, we will work out the datapath connections for the lw 
instruction. Then, we will consider how to generalize the datapath to 
handle other instructions.

lw
For the lw instruction, the next step is to read the source register con-
taining the base address. Recall that lw is an I-type instruction, and the 
base register is specified in the rs1 field of the instruction, Instr19:15. 
These bits of the instruction connect to the A1 address input of the reg-
ister file, as shown in Figure 7.4. The register file reads the register value 
onto RD1. In our example, the register file reads 0x2004 from x9.

The lw instruction also requires an offset. The offset is stored in 
the 12-bit immediate field of the instruction, Instr31:20. It is a signed 
value, so it must be sign-extended to 32 bits. Sign extension simply 
means copying the sign bit into the most significant bits: ImmExt31:12 
= Instr31 , and ImmExt11:0 = Instr31:20. Sign-extension is performed by 
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an Extend unit, as shown in Figure 7.5, which receives the 12-bit signed  
immediate in Instr31:20 and produces the 32-bit sign-extended immediate,  
ImmExt. In our example, the two’s complement immediate −4 is 
extended from its 12-bit representation 0xFFC to a 32-bit representation 
0xFFFFFFFC.

The processor adds the base address to the offset to find the 
address to read from memory. Figure 7.6 introduces an ALU to perform 
this addition. The ALU receives two operands, SrcA and SrcB. SrcA is 
the base address from the register file, and SrcB is the offset from the 
sign-extended immediate, ImmExt. The ALU can perform many opera-
tions, as was described in Section 5.2.4. The 3-bit ALUControl signal 
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specifies the operation (see Table 5.3 on page 250). The ALU receives  
32-bit operands and generates a 32-bit ALUResult. For the lw instruc-
tion, ALUControl should be set to 000 to perform addition. ALUResult 
is sent to the data memory as the address to read, as shown in Figure 7.6. 
In our example, the ALU computes 0x2004 + 0xFFFFFFFC = 0x2000. 
Again, this is a 32-bit value, but we omit the leading zeros to avoid clut-
tering the figure.

This memory address from the ALU is provided to the address (A) 
port of the data memory. The data is read from the data memory onto the 
ReadData bus and then written back to the destination register at the end 
of the cycle, as shown in Figure 7.7. Port 3 of the register file is the write 
port. lw’s destination register, indicated by the rd field (Instr11:7), is con-
nected to A3, port 3’s address input. The ReadData bus is connected to 
WD3, port 3’s write data input. A control signal called RegWrite (register 
write) is connected to WE3, port 3’s write enable input, and is asserted 
during the lw instruction so that the data value is written into the register 
file. The write takes place on the rising edge of the clock at the end of the 
cycle. In our example, the processor reads 10 from address 0x2000 in the 
data memory and puts that value (10) into x6 in the register file.

While the instruction is being executed, the processor must also 
compute the address of the next instruction, PCNext. Because instruc-
tions are 32 bits (4 bytes), the next instruction is at PC+4. Figure 7.8 
uses an adder to increment the PC by 4. In our example, PCNext = 
0x1000 + 4 = 0x1004. The new address is written into the program 
counter on the next rising edge of the clock. This completes the datapath 
for the lw instruction.

Figure 7.7 Read memory and write result back to register file
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sw
Next, let us extend the datapath to handle sw, which is an S-type 
instruction. Like lw, sw reads a base address from port 1 of the regis-
ter file and sign-extends the immediate. The ALU adds the base address 
to the immediate to find the memory address. All of these functions 
are already supported in the datapath, but the 12-bit signed immediate 
is stored in Instr31:25,11:7 (instead of Instr31:20, as it was for lw). Thus, 
the Extend unit must be modified to also receive these additional bits, 
Instr11:7. For simplicity (and for future instructions such as jal), the 
Extend unit receives all the bits of Instr31:7. A control signal, ImmSrc, 
decides which instruction bits to use as the immediate. When ImmSrc = 
0 (for lw), the Extend unit chooses Instr31:20 as the 12-bit signed imme-
diate; when ImmSrc = 1 (for sw), it chooses Instr31:25,11:7.

The sw instruction also reads a second register from the register file 
and writes its contents to the data memory. Figure 7.9 shows the new 
connections for this added functionality. The register is specified in the 
rs2 field, Instr24:20, which is connected to the address 2 (A2) input of the 
register file. The register’s contents are read onto the read data 2 (RD2) 
output, which, in turn, is connected to the write data (WD) input of the 
data memory. The write enable port of the data memory, WE, is con-
trolled by MemWrite. For an sw instruction: MemWrite = 1 to write the 
data to memory; ALUControl = 000 to add the base address and offset; 
and RegWrite = 0, because nothing should be written to the register file. 
Note that data is still read from the address given to the data memory, 
but this ReadData is ignored because RegWrite = 0.
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In our example, the PC is 0x1004. Thus, the instruction mem-
ory reads out the sw instruction, 0x0064A423. The register file reads 
0x2004 (the base address) from x9 and 10 from x6 while the Extend 
unit extends the immediate offset 8 from 12 to 32 bits. The ALU computes 
0x2004 + 8 = 0x200C. The data memory writes 10 to address 0x200C. 
Meanwhile, the PC is incremented to 0x1008.

R-Type Instructions
Next, consider extending the datapath to handle the R-type instructions, 
add, sub, and, or, and slt. All of these instructions read two source reg-
isters from the register file, perform some ALU operation on them, and 
write the result back to the destination register. They differ only in the 
specific ALU operation. Hence, they can all be handled with the same 
hardware but with different ALUControl signals. Recall from Section 
5.2.4 that ALUControl is 000 for addition, 001 for subtraction, 010 for 
AND, 011 for OR, and 101 for set less than.

Figure 7.10 shows the enhanced datapath handling these R-type 
instructions. The datapath reads rs1 and rs2 from ports 1 and 2 of the 
register file and performs an ALU operation on them. We introduce a 
multiplexer and a new select signal, ALUSrc, to select between ImmExt 
and RD2 as the second ALU source, SrcB. For lw and sw, ALUSrc is 
1 to select ImmExt; for R-type instructions, ALUSrc is 0 to select the  
register file output RD2 as SrcB.

Figure 7.9 Write data to memory for sw instruction
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Let us name the value to be written back to the register file 
Result. For lw, Result comes from the ReadData output of the 
memory. However, for R-type instructions, Result comes from the 
ALUResult output of the ALU. We add the Result multiplexer to 
choose the proper Result based on the type of instruction. The mul-
tiplexer select signal ResultSrc is 0 for R-type instructions to choose 
ALUResult as Result; ResultSrc is 1 for lw to choose ReadData.  
We do not care about the value of ResultSrc for sw because it does 
not write the register file.

In our example, the PC is 0x1008. Thus, the instruction memory 
reads out the or instruction 0x0062E233. The register file reads source 
operands 6 from x5 and 10 from x6. ALUControl is 011, so the ALU 
computes 6 | 10 = 01102 | 10102 = 11102 = 14. The result is written 
back to x4. Meanwhile, the PC is incremented to 0x100C.

beq
Finally, we extend the datapath to handle the branch if equal (beq) 
instruction. beq compares two registers. If they are equal, it takes the 
branch by adding the branch offset to the program counter (PC).

The branch offset is a 13-bit signed immediate stored in the 12-bit 
immediate field of the B-type instruction. Thus, the Extend logic needs 
yet another mode to choose the proper immediate. ImmSrc is increased 
to 2 bits, using the encoding from Table 7.1. ImmExt is now either the 

Observe that our hardware 
computes all the possible 
answers needed by different 
instructions (e.g., ALUResult 
and ReadData) and then uses 
a multiplexer to choose the 
appropriate one based on the 
instruction. This is an important 
design strategy. Throughout 
the rest of this chapter, we will 
add multiplexers to choose the 
desired answer.

One of the major differences 
between software and hardware 
is that software operates 
sequentially, so we can compute 
just the answer we need. 
Hardware operates in parallel; 
therefore, we often compute all 
the possible answers and then 
pick the one we need. For  
example, while executing an 
R-type instruction with the ALU, 
the memory still receives an 
address and reads data from this 
address even though we don’t 
care what that data might be. 

Figure 7.10 Datapath enhancements for R-type instructions
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sign-extended immediate (when ImmSrc = 00 or 01) or the branch offset 
(when ImmSrc = 10).

Figure 7.11 shows the modifications to the datapath. We need 
another adder to compute the branch target address, PCTarget = PC + 
ImmExt. The two source registers are compared by computing (SrcA – 
SrcB) using the ALU. If ALUResult is 0, as indicated by the ALU’s Zero 
flag, the registers are equal. We add a multiplexer to choose PCNext 
from either PCPlus4 or PCTarget. PCTarget is selected if the instruction 
is a branch and the Zero flag is asserted. For beq, ALUControl = 001, 
so that the ALU performs a subtraction. ALUSrc = 0 to choose SrcB 
from the register file. RegWrite and MemWrite are 0, because a branch 
does not write to the register file or memory. We don’t care about the 
value of ResultSrc, because the register file is not written.

In our example, the PC is 0x100C, so the instruction memory reads out 
the beq instruction 0xFE420AE3. Both source registers are x4, so the 

Logically, we can build the 
Extend unit from a 32-bit 3:1 
multiplexer choosing one of 
three possible inputs based 
on ImmSrc and the various 
bitfields of the instruction. 
In practice, the upper bits of 
the sign-extended immediate 
always come from bit 31 of 
the instruction, Instr31, so 
we can optimize the design 
and only use a multiplexer to 
select the lower bits. 

Table 7.1 ImmSrc encoding

ImmSrc ImmExt Type Description

00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate

01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate

10 {{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1’b0} B 13-bit signed immediate

Figure 7.11 Datapath enhancements for beq
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register file reads 14 on both ports. The ALU computes 14 – 14 = 0, and the 
Zero flag is asserted. Meanwhile, the Extend unit produces 0xFFFFFFF4 
(i.e., −12), which is added to PC to obtain PCTarget = 0x1000. Note that 
we show the unswizzled upper 12 bits of the 13-bit immediate on the input 
of the Extend unit (0xFFA). The PCNext mux chooses PCTarget as the next 
PC and branches back to the start of the code at the next clock edge. 

This completes the design of the single-cycle processor datapath. We 
have illustrated not only the design itself but also the design process in 
which the state elements are identified and the combinational logic is 
systematically added to connect the state elements. In the next section, 
we consider how to compute the control signals that direct the operation 
of our datapath.

7 . 3 . 3   Single-Cycle Control

The single-cycle processor’s control unit computes the control signals 
based on op, funct3, and funct7. For the RV32I instruction set, only 
bit 5 of funct7 is used, so we just need to consider op (Instr6:0), funct3 
(Instr14:12), and funct75 (Instr30). Figure 7.12 shows the entire single- 
cycle processor with the control unit attached to the datapath.

We name the multiplexers 
(muxes) by the signals they 
produce. For example, the 
PCNext mux produces the 
PCNext signal, and the Result 
mux produces the Result signal. 

Figure 7.12 Complete single-cycle processor
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Figure 7.13 hierarchically decomposes the control unit, which is also 
referred to as the controller or the decoder, because it decodes what the 
instruction should do. We partition it into two major parts: the Main 
Decoder, which produces most of the control signals, and the ALU 
Decoder, which determines what operation the ALU performs.

Table 7.2 shows the control signals that the Main Decoder pro-
duces, as we determined while designing the datapath. The Main 
Decoder determines the instruction type from the opcode and then 
produces the appropriate control signals for the datapath. The Main 
Decoder generates most of the control signals for the datapath. It also 
produces internal signals Branch and ALUOp, signals used within the 
controller. The logic for the Main Decoder can be developed from the 
truth table using your favorite techniques for combinational logic 
design.

The ALU Decoder produces ALUControl based on ALUOp and 
funct3. In the case of the sub and add instructions, the ALU Decoder also 
uses funct75 and op5 to determine ALUControl, as given in in Table 7.3.  

Table 7.2 Main Decoder truth table

Instruction Op RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp

lw 0000011 1 00 1 0 1 0 00

sw 0100011 0 01 1 1 x 0 00

R-type 0110011 1 xx 0 0 0 0 10

beq 1100011 0 10 0 0 x 1 01

Figure 7.13 Single-cycle 
processor control unit
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ALUOp of 00 indicates add (e.g., to find the address for loads or 
stores). ALUOp of 01 indicates subtract (e.g., to compare two numbers 
for branches). ALUOp of 10 indicates an R-type ALU instruction where 
the ALU Decoder must look at the funct3 field (and sometimes also the 
op5 and funct75 bits) to determine which ALU operation to perform 
(e.g., add, sub, and, or, slt).

Example 7.1 SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that 
are used when executing an and instruction.

Solution Figure 7.14 illustrates the control signals and flow of data during exe-
cution of an and instruction. The PC points to the memory location holding 
the instruction; the instruction memory outputs this instruction. The main flow 
of data through the register file and ALU is represented with a heavy blue line. 
The register file reads the two source operands specified by Instr. SrcB should 
come from the second port of the register file (not ImmExt), so ALUSrc must 
be 0. The ALU performs a bitwise AND operation, so ALUControl must be 
010. The result comes from the ALU, so ResultSrc is 0, and the result is written 
to the register file, so RegWrite is 1. The instruction does not write memory, so 
MemWrite is 0.

The updating of PC with PCPlus4 is shown by a heavy gray line. PCSrc is 0 to 
select the incremented PC. Note that data does flow through the nonhighlighted 
paths, but the value of that data is disregarded. For example, the immediate is 
extended and a value is read from memory, but these values do not influence the 
next state of the system. 

According to Table B.1 in 
the inside covers of the book, 
add, sub, and addi all have 
funct3 = 000. add has funct7 
= 0000000 while sub has 
funct7 = 0100000, so funct75 
is sufficient to distinguish these 
two. But we will soon consider 
supporting addi, which doesn’t 
have a funct7 field but has an 
op of 0010011. With a bit of 
thought, we can see that an 
ALU instruction with funct3 = 
000 is sub if op5 and funct75 
are both 1, or add or addi 
otherwise. 

Table 7.3 ALU Decoder truth table

ALUOp funct3 {op5, funct75} ALUControl Instruction

00 x x 000 (add) lw, sw

01 x x 001 (subtract) beq

10 000 00, 01, 10 000 (add) add

000 11 001 (subtract) sub

010 x 101 (set less than) slt

110 x 011 (or) or

111 x 010 (and) and
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7 . 3 . 4   More Instructions

So far, we have considered only a small subset of the RISC-V instruction 
set. In this section, we enhance the datapath and controller to support 
the addi (add immediate) and jal (jump and link) instructions. These 
examples illustrate the principle of how to handle new instructions, and 
they give us a sufficiently rich instruction set to write many interesting 
programs. With enough effort, you could extend the single-cycle pro-
cessor to handle every RISC-V instruction. Moreover, we will see that 
supporting some instructions simply requires enhancing the decoders, 
whereas supporting others also requires new hardware in the datapath.

Example 7.2 addi INSTRUCTION

Recall that addi rd,rs1,imm is an I-type instruction that adds the value in rs1 
to a sign-extended immediate and writes the result to rd. The datapath already is 
capable of this task. Determine the necessary changes to the controller to support  
addi.

Solution All we need to do is add a new row to the Main Decoder truth table 
showing the control signal values for addi, as given in Table 7.4. The result 
should be written to the register file, so RegWrite = 1. The 12-bit immediate 
in Instr31:20 is sign-extended as it was with lw, another I-type instruction, so 

Figure 7.14 Control signals and data flow while executing an and instruction
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ImmSrc is 00 (see Table 7.1). SrcB comes from the immediate, so ALUSrc = 1.  
The instruction does not write memory nor is it a branch, so MemWrite = 
Branch = 0. The result comes from the ALU, not memory, so ResultSrc = 0.  
Finally, the ALU should add, so ALUOp = 10; the ALU Decoder makes 
ALUControl = 000 because funct3 = 000 and op5 = 0.

The astute reader may note that this change also provides the other I-type ALU 
instructions: andi, ori, and slti. These other instructions share the same op 
value of 0010011, need the same control signals, and only differ in the funct3 
field, which the ALU Decoder already uses to determine ALUControl and, thus, 
the ALU operation.
 

Example 7.3 jal INSTRUCTION

Show how to change the RISC-V single-cycle processor to support the jump and 
link (jal) instruction. jal writes PC+4 to rd and changes PC to the jump target 
address, PC + imm.

Solution The processor calculates the jump target address, the value of PCNext, 
by adding PC to the 21-bit signed immediate encoded in the instruction. The least 
significant bit of the immediate is always 0 and the next 20 most significant bits  
come from Instr31:12. This 21-bit immediate is then sign-extended. The datapath  
already has hardware for adding PC to a sign-extended immediate, selecting  
this as the next PC, computing PC+4, and writing a value to the register file. 
Hence, in the datapath, we must only modify the Extend unit to sign-extend the 
21-bit immediate and expand the Result multiplexer to choose PC+4 (i.e., PCPlus4) 
as shown in Figure 7.15. Table 7.5 shows the new encoding for ImmSrc to support 
the long immediate for jal.
 

The control unit needs to set PCSrc = 1 for the jump. To do this, we 
add an OR gate and another control signal, Jump, as shown in Figure 7.16. 
When Jump asserts, PCSrc = 1 and PCTarget (the jump target address) 
is selected as the next PC.

Table 7.4 Main Decoder truth table enhanced to support addi

Instruction Opcode RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp

lw 0000011 1 00 1 0 1 0 00

sw 0100011 0 01 1 1 x 0 00

R-type 0110011 1 xx 0 0 0 0 10

beq 1100011 0 10 0 0 x 1 01

addi 0010011 1 00 1 0 0 0 10
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Table 7.5 ImmSrc encoding.

ImmSrc ImmExt Type Description

00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate

01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate

10 {{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1’b0} B 13-bit signed immediate

11 {{12{Instr[31]}}, Instr[19:12], Instr[20], Instr[30:21], 1’b0} J 21-bit signed immediate

Figure 7.15 Enhanced datapath for jal
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Table 7.6 shows the updated Main Decoder table with a new row 
for jal. RegWrite = 1 and ResultSrc = 10 to write PC+4 into rd. ImmSrc 
= 11 to select the 21-bit jump offset. ALUSrc and ALUOp don’t matter 
because the ALU is not used. MemWrite = 0 because the instruction isn’t 
a store, and Branch = 0 because the instruction isn’t a branch. The new 
Jump signal is 1 to pick the jump target address as the next PC.

7 . 3 . 5   Performance Analysis

Recall from Equation 7.1 that the execution time of a program is the 
product of the number of instructions, the cycles per instruction, and 
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the cycle time. Each instruction in the single-cycle processor takes one 
clock cycle, so the clock cycles per instruction (CPI) is 1. The cycle time 
is set by the critical path. In our processor, the lw instruction is the most 
time-consuming and involves the critical path shown in Figure 7.17. As 
indicated by heavy blue lines, the critical path starts with the PC loading 
a new address on the rising edge of the clock. The instruction memory 
then reads the new instruction, and the register file reads rs1 as SrcA. 
While the register file is reading, the immediate field is sign-extended 
based on ImmSrc and selected at the SrcB multiplexer (path highlighted 
in gray). The ALU adds SrcA and SrcB to find the memory address. The 
data memory reads from this address, and the Result multiplexer selects 
ReadData as Result. Finally, Result must set up at the register file before 

Table 7.6 Main Decoder truth table enhanced to support jal

Instruction Opcode RegWrite ImmSrc ALUSrc MemWrite ResultSrc Branch ALUOp Jump

lw 0000011 1 00 1 0 01 0 00 0

sw 0100011 0 01 1 1 xx 0 00 0

R-type 0110011 1 xx 0 0 00 0 10 0

beq 1100011 0 10 0 0 xx 1 01 0

I-type ALU 0010011 1 00 1 0 00 0 10 0

jal 1101111 1 11 x 0 10 0 xx 1

Figure 7.16 Enhanced control 
unit for jal
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the next rising clock edge so that it can be properly written. Hence, the 
cycle time of the single-cycle processor is:

 
T t t t t t t

t t
c single pcq PC mem RFread dec ext mux

ALU

_ _ [ , ]= + + + +
+ +

max
 mmem mux RFsetupt t+ +  (7.2)

In most implementation technologies, the ALU, memory, and register 
file are substantially slower than other combinational blocks. Therefore, 
the critical path is through the register file—not through the decoder  
(controller), Extend unit, and multiplexer—and is the path highlighted 
in blue in Figure 7.17. The cycle time simplifies to:

 T t t t t t tc single pcq PC mem RFread ALU mux RFsetup_ _= + + + + +2  (7.3)

The numerical values of these times will depend on the specific imple-
mentation technology.

Other instructions have shorter critical paths. For example, R-type 
instructions do not need to access data memory. However, we are disciplining 
ourselves to synchronous sequential design, so the clock period is constant 
and must be long enough to accommodate the slowest instruction.

Remember that lw does not 
use the second read port  
(A2/RD2) of the register file. 

Figure 7.17 Critical path for lw
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Example 7.4 SINGLE-CYCLE PROCESSOR PERFORMANCE

Ben Bitdiddle is contemplating building the single-cycle processor in a 7-nm 
CMOS manufacturing process. He has determined that the logic elements have 
the delays given in Table 7.7. Help him compute the execution time for a pro-
gram with 100 billion instructions.

Solution According to Equation 7.3, the cycle time of the single-cycle processor is  
Tc_single = 40 + 2(200) + 100 + 120 + 30 + 60 = 750 ps. According to Equation 7.1,  
the total execution time is Tsingle = (100 × 109 instruction) (1 cycle/instruction) 
(750 × 10−12 s/cycle) = 75 seconds. 

7.4  MULTICYCLE PROCESSOR
The single-cycle processor has three notable weaknesses. First, it requires 
separate memories for instructions and data, whereas most processors 
have only a single external memory holding both instructions and data. 
Second, it requires a clock cycle long enough to support the slowest 
instruction (lw) even though most instructions could be faster. Finally, it 
requires three adders (one in the ALU and two for the PC logic); adders 
are relatively expensive circuits, especially if they must be fast.

The multicycle processor addresses these weaknesses by breaking an 
instruction into multiple shorter steps. The memory, ALU, and register 

Table 7.7 Delay of circuit elements

Element Parameter Delay (ps)

Register clk-to-Q tpcq 40

Register setup tsetup 50

Multiplexer tmux 30

AND-OR gate tAND-OR 20

ALU tALU 120

Decoder (control unit) tdec 25

Extend unit text 35

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60



MicroarchitectureCHAPTER SEVEN416

file have the longest delays, so to keep the delay for each short step 
approximately equal, the processor can use only one of those units in 
each step. The processor uses a single memory because the instruction 
is read in one step and data is read or written in a later step. And the 
processor needs only one adder, which is reused for different purposes 
on different steps. Various instructions use different numbers of steps, so 
simpler instructions can complete faster than more complex ones.

We design a multicycle processor following the same procedure we 
used for the single-cycle processor. First, we construct a datapath by 
connecting the architectural state elements and memories with combina-
tional logic. But, this time, we also add nonarchitectural state elements 
to hold intermediate results between the steps. Then, we design the  
controller. During the execution of a single instruction, the controller 
produces different signals on each step, so now the controller uses a finite 
state machine rather than combinational logic. Finally, we analyze the per-
formance of the multicycle processor and compare it with the single-cycle 
processor.

7 . 4 . 1   Multicycle Datapath

Again, we begin our design with the memory and architectural state of 
the processor, as shown in Figure 7.18. In the single-cycle design, we 
used separate instruction and data memories because we needed to read 
the instruction memory and read or write the data memory all in one 
cycle. Now, we choose to use a combined memory for both instructions 
and data. This is more realistic and is feasible because we can read the 
instruction in one cycle, then read or write the data in another cycle. The 
PC and register file remain unchanged.

As with the single-cycle processor, we gradually build the datapath  
by adding components to handle each step of each instruction. The PC 
contains the address of the instruction to execute. The first step is to 
read this instruction from memory. Figure 7.19 shows that the PC is 

Figure 7.18 State elements with unified instruction/data memory
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simply connected to the address input of the memory. The instruction is 
read and stored in a new nonarchitectural instruction register (IR) so 
that it is available for future cycles. The IR receives an enable signal, 
called IRWrite, which is asserted when the IR should be loaded with a 
new instruction.

lw
As we did with the single-cycle processor, we first work out the datapath 
connections for the lw instruction. After fetching lw, the second step is 
to read the source register containing the base address. This register is 
specified in the rs1 field, Instr19:15. These bits of the instruction are con-
nected to address input A1 of the register file, as shown in Figure 7.20. 
The register file reads the register onto RD1, and this value is stored in 
another nonarchitectural register, A.

Like in the single-cycle processor,  
we name the multiplexers and  
nonarchitectural registers by  
the signals they produce. For  
example, the instruction register 
produces the instruction signal  
(Instr), and the Result multiplexer 
produces the Result signal. 

Figure 7.19 Fetch instruction from memory
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Figure 7.20 Read one source from register file and extend second source from immediate field
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The lw instruction also requires a 12-bit offset found in the imme-
diate field of the instruction, Instr31:20, which must be sign-extended to 
32 bits, as shown in Figure 7.20. As in the single-cycle processor, the 
Extend unit takes a 2-bit ImmSrc control signal to specify a 12-, 13-, or 
21-bit immediate to extend for various types of instructions. The 32-bit 
extended immediate is called ImmExt. To be consistent, we might store 
ImmExt in another nonarchitectural register. However, ImmExt is a 
combinational function of Instr and will not change while the current 
instruction is being processed, so there is no need to dedicate a register 
to hold the constant value.

The address of the load is the sum of the base address and offset. 
In the third step, we use an ALU to compute this sum, as shown in 
Figure 7.21. ALUControl should be set to 000 to perform the addition. 
ALUResult is stored in a nonarchitectural register called ALUOut.

The fourth step is to load the data from the calculated address in 
the memory. We add a multiplexer in front of the memory to choose the  
memory address, Adr, from either the PC or ALUOut based on  
the AdrSrc select signal, as shown in Figure 7.22. The data read from 
memory is stored in another nonarchitectural register, called Data. Note 
that the address (Adr) multiplexer permits us to reuse the memory unit 
during the lw instruction. On the first step, the address is taken from the 
PC to fetch the instruction. On the fourth step, the address is taken from 
ALUOut to load the data. Hence, AdrSrc must have different values  
during different steps of a single instruction. In Section 7.4.2, we develop 
the FSM controller that generates these sequences of control signals.

Finally, the data is written back to the register file, as shown in 
Figure 7.23. The destination register is specified by the rd field of the 
instruction, Instr11:7. The result comes from the Data register. Instead 
of connecting the Data register directly to the register file’s WD3 
write port, let us add a multiplexer on the Result bus to choose either 
ALUOut or Data before feeding Result back to the register file’s 

Figure 7.21 Add base address to offset
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writedata port (WD3). This will be helpful because other instruc-
tions will need to write a result from the ALU to the register file. The 
RegWrite signal is 1 to indicate that the register file should be updated.

While all this is happening, the processor must update the program 
counter by adding 4 to the PC. In the single-cycle processor, a separate 
adder was needed. In the multicycle processor, we can use the exist-
ing ALU during the instruction fetch step because it is not busy. To do 
so, we must insert source multiplexers to choose PC and the constant 
4 as ALU inputs, as shown in Figure 7.24. A multiplexer controlled by 
ALUSrcA chooses either PC or A as SrcA. Another multiplexer chooses 
either 4 or ImmExt as SrcB. We also show additional multiplexer inputs 
that will be used when we implement more instructions. To update the 
PC, the ALU adds SrcA (PC) to SrcB (4), and the result is written into 
the program counter. The Result multiplexer chooses this sum from 
ALUResult rather than ALUOut; this requires a third multiplexer input. 
The PCWrite control signal enables the PC to be written only on certain 
cycles. This completes the datapath for the lw instruction.

Figure 7.22 Load data from memory
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Figure 7.23 Write data back to register file
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sw

Next, let us extend the datapath to handle the sw instruction. Like lw, 
sw reads a base address from port 1 of the register file and extends the 
immediate on the second step. Then, the ALU adds the base address to 
the immediate to find the memory address on the third step. The only 
new feature of sw is that we must read a second register from the regis-
ter file and write its contents into memory, as shown in Figure 7.25. The 
register is specified in the rs2 field of the instruction, Instr24:20, which 
is connected to the second port of the register file (A2). After it is read 

Figure 7.24 Increment PC by 4
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Figure 7.25 Enhanced datapath for sw instruction
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on the second step, the register’s contents are then stored in a nonar-
chitectural register, the WriteData register, just below the A register. It is 
then sent to the write data port (WD) of the data memory to be written 
on the fourth step. The memory receives the MemWrite control signal, 
which is asserted when memory should be written.

R-Type Instructions
R-type instructions operate on two source registers and write the result 
back to the register file. The datapath already contains all the connec-
tions necessary for these steps.

beq
beq checks whether two register contents are equal and computes 
the branch target address by adding the current PC to a 13-bit signed 
branch offset. The hardware to compare the registers using subtraction 
is already present in the datapath.

The ALU is not being used during the second step of instruc-
tion execution, so we use it then to calculate the branch target address 
PCTarget = PC + ImmExt. In this step, the instruction has been fetched 
from memory and PC has already been updated to PC+4. Thus, in the 
first step, the PC of the current instruction, OldPC, must be stored in 
a nonarchitectural register. In the second step, as the registers are also 
fetched, the ALU calculates PC + ImmExt by selecting OldPC for SrcA 
and ImmExt for SrcB and making ALUControl = 000 so that it per-
forms addition. The processor stores this sum in the ALUOut register. 
Figure 7.26 shows the updated datapath for beq.

In the third step, the ALU subtracts the source registers and asserts 
the Zero output if they are equal. If they are, the control unit asserts 

Figure 7.26 Enhanced datapath for beq target address calculation
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PCWrite and the Result multiplexer selects ALUOut (that contains the 
target address) to feed to the PC. No new hardware is needed.

This completes the design of the multicycle datapath. The design 
process is much like that of the single-cycle processor in that hardware 
is systematically connected between the state elements to handle each 
instruction. The main difference is that the instruction is executed in sev-
eral steps. Nonarchitectural registers are inserted to hold the results of 
each step. In this way, the memory can be shared for instructions and 
data and the ALU can be reused several times, thus reducing hardware 
costs. In the next section, we develop an FSM controller to deliver the 
appropriate sequence of control signals to the datapath on each step of 
each instruction.

7 . 4 . 2   Multicycle Control

As in the single-cycle processor, the control unit computes the control 
signals based on the op, funct3, and funct75 fields of the instruction 
(Instr6:0, Instr14:12, and Instr30). Figure 7.27 shows the entire multicycle 
processor with the control unit attached to the datapath. The datapath is 
shown in black and the control unit in blue.
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Figure 7.27 Complete multicycle processor
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The control unit consists of a Main FSM, ALU Decoder, and 
Instruction Decoder (Instr Decoder) as shown in Figure 7.28. The ALU 
Decoder is the same as in the single-cycle processor (see Table 7.3), but 
the combinational Main Decoder of the single-cycle processor is replaced 
with the Main FSM in the multicycle processor to produce a sequence of 
control signals on the appropriate cycles. A small Instruction Decoder 
combinationally produces the ImmSrc select signal based on the opcode 
using the ImmSrc column of Table 7.6. We design the Main FSM as a 
Moore machine so that the outputs are only a function of the current state. 
The remainder of this section develops the state transition diagram for 
the Main FSM.

The Main FSM produces multiplexer select, register enable, and 
memory write enable signals for the datapath. To keep the following 
state transition diagrams readable, only the relevant control signals are 
listed. Multiplexer select signals are listed only when their value matters; 
otherwise, they are don’t care. Enable signals (RegWrite, MemWrite, 
IRWrite, PCUpdate, and Branch) are listed only when they are asserted; 
otherwise, they are 0.

Fetch
The first step for any instruction is to fetch the instruction from memory 
at the address held in the PC. The FSM enters this Fetch state on reset. 
The control signals are shown in Figure 7.29. To read the instruction 

Figure 7.28 Multicycle control 
unit
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from memory, AdrSrc = 0, so the address is taken from the PC. IRWrite 
is asserted to write the instruction into the instruction register, IR. At 
the same time, the current PC is written into the OldPC register. The 
data flow through the datapath for this and the next two steps of the lw 
instruction is shown in Figure 7.32, with the flow during the Fetch stage 
highlighted in gray.

Decode
The second step is to read the register file and decode the instructions. 
The control unit decodes the instruction, that is, figures out what opera-
tion should be performed based on op, funct3, and funct75. In this state, 
the processor also reads the source registers, rs1 and rs2, and puts the 
values read into the A and WriteData nonarchitectural registers. No con-
trol signals are necessary for these tasks. Figure 7.30 shows the Decode  
state in the Main FSM and Figure 7.32 shows the flow through the datapath 
during this state in medium blue lines. After this step, the processor can 
differentiate its actions based on the instruction because the instruction 
has been fetched and decoded. We will first show the remaining steps for 
lw, then continue with the steps for the other RISC-V instructions.

MemAdr
The third step for lw is to calculate the memory address. The ALU adds 
the base address and the offset, so ALUSrcA = 10 to select A (the value 
read from rs1) as SrcA, and ALUSrcB = 01 to select ImmExt as SrcB. 
ImmSrc, as determined by the Instruction Decoder, is 00 to sign-extend 
the I-type immediate, and ALUOp is 00 to add SrcA and SrcB. At the 
end of this state, the ALU result (i.e., the address calculation) is stored in 
the ALUOut register. Figure 7.31 shows this MemAdr state added to the 
Main FSM, and Figure 7.32 shows the datapath flow during this state 
highlighted in dark-blue lines.

MemRead
The memory read (MemRead) step sends the calculated address to 
memory by sending ALUOut to the address port of the memory, Adr. 

Figure 7.30 Decode
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Figure 7.31 Memory address 
computation
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ResultSrc = 00 and AdrSrc = 1 to route ALUOut through the Result 
and Adr multiplexers to the memory address input. ReadData gets the 
value read from the desired address in memory. At the end of this state, 
ReadData is written into the Data register.

MemWB
In the memory writeback (MemWB) step, the data read from memory, 
Data, is written to the destination register. ResultSrc is 01 to select Data 
as the Result, and RegWrite is asserted to write the data to the regis-
ter file. The register file’s address and write data inputs for port 3 (A3 
and WD3) are already connected to rd (Instr11:7) and Result, respectively. 
Figures 7.33 and 7.34 show the MemRead and MemWB states and the 
flow through the datapath for both steps. MemWB is the final step in the 
lw instruction. Figure 7.33 also shows the transition from MemWB back 

Figure 7.33 Memory read 
(MemRead) and memory write 
back (MemWB) states
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Figure 7.34 Data flow during MemRead and MemWB
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to the Fetch state so that the next instruction can be fetched. However, 
the PC has not yet been incremented. We address this issue next. 

Before finishing the lw instruction, the processor must increment the 
PC so that it can fetch the next instruction. We could add another state for 
doing this but, instead, we save a cycle by noticing that the ALU is not 
being used in the Fetch step, so the processor can use that state to calculate 
PC+4 at the same time that it fetches the instruction. ALUSrcA = 00  
to get SrcA from the PC (i.e., from signal OldPC). ALUSrcB = 10 to get 
the constant 4 for SrcB. ALUOp = 00, so that the ALU adds PC to 4. To 
update the PC with PC+4, ResultSrc = 10 to choose ALUResult as the 
Result, and PCUpdate = 1 to force PCWrite high (see Figure 7.28). 
Figure 7.35 shows the modified Fetch state. The rest of the diagram 
remains the same as in Figure 7.33. Figure 7.36 highlights in blue the 
data flow for computing PC+4. The instruction fetch, which is occurring 
simultaneously, is highlighted in gray.

sw
Now, we expand the Main FSM to handle more RISC-V instructions. 
All instructions pass through the first two states, Fetch and Decode. 

We started this section stating 
that only one of the time-
consuming units (the memory, 
ALU, or register file) could be 
used in each step. However, 
here, we use both the register file 
and ALU. As long as the units 
are used at the same time—that 
is, in parallel—more than one 
unit can be used in a single step. 

Figure 7.35 Incrementing PC in 
the Fetch state
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The sw instruction uses the same MemAdr state as lw to calculate the 
memory address but then proceeds to the memory write (MemWrite) 
state, where WriteData, the value from rs2, is written to memory. 
WriteData is hardwired to the memory’s write data port (WD). The 
memory’s address port, Adr, is set to the calculated address in 
ALUOut by making ResultSrc = 00 and AdrSrc = 1. MemWrite is 
asserted to write the memory. This completes the sw instruction, so the 
Main FSM returns to the Fetch state to begin the next instruction. 
Figures 7.37 and 7.38 show the expanded Main FSM and the datapath 
flow for the MemWrite state. Note that the first two states of the FSM 
(Fetch and Decode), which are not shown in Figure 7.37, are the same 
as in Figure 7.33.

R-Type Instructions
After the Decode state, R-type ALU instructions proceed to the execute  
(ExecuteR) state, which performs the desired ALU computation. 
Namely, ALUSrcA = 10 and ALUSrcB = 00 to choose the contents of 
rs1 as SrcA and rs2 as SrcB. ALUOp = 10 so that the ALU Decoder uses 
the instruction’s control fields to determine what operation to perform. 

The ImmSrc signal differs for 
lw and sw in the MemAdr 
state. But recall that ImmSrc 
is produced combinationally 
by the Instruction Decoder 
(see Figure 7.28). 

Figure 7.36 Data flow while incrementing PC in the Fetch state
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ALUResult is written to the ALUOut register at the end of the cycle. 
R-type instructions then go to the ALU writeback (ALUWB) state where 
the computation result, ALUOut, is written back to the register file. 
In the ALUWB state, ResultSrc = 00 to select ALUOut as Result, and 
RegWrite = 1 so that rd is written with the result. Figure 7.39 shows 
the ExecuteR and ALUWB states added to the Main FSM. Figure 7.40 
shows the data flow during both states, with ExecuteR data flow shown 
in thick light-blue lines and ALUWB data flow in thick dark-blue lines.

beq
The final instruction, beq, compares two registers and computes the 
branch target address. Thus far, the ALU is idle during the Decode state, 
so we can use the ALU during that state to calculate the branch target 
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address, OldPC + ImmExt. ALUSrcA and ALUSrcB are both 01 so that 
OldPC is SrcA and the branch offset (ImmExt) is SrcB. ALUOp = 00 to 
make the ALU add. The target address is stored in the ALUOut register 
at the end of the Decode state. Figure 7.41 shows the enhanced Decode 
state as well as the subsequent BEQ state, which is discussed next. In 
Figure 7.42, the data flow during the Decode state is shown in light-blue 
and gray lines. The branch target address calculation is highlighted in 
light blue, and the register read and immediate extension is highlighted 
with thick gray lines.

After the Decode state, beq proceeds to the BEQ state, where it 
compares the source registers. ALUSrcA = 10 and ALUSrcB = 00 to 
select the values read from the register file as SrcA and SrcB. ALUOp 
= 01 so that the ALU performs subtraction. If the source registers are 
equal, the ALU’s Zero output asserts (because rs1 − rs2 = 0). Branch = 
1 in this state so that if Zero is also set, PCWrite is asserted (as shown 
in the PCWrite logic of Figure 7.28) and the branch target address (in 
ALUOut) becomes the next PC. ALUOut is routed to the PC register by 
ResultSrc being 00. Figure 7.41 shows the BEQ state, and Figure 7.42 

Even though the instruction 
is not yet decoded at the 
beginning of the Decode 
state—and it may not even be 
a beq instruction—the branch 
target address is calculated as 
if it were a branch. If it turns 
out that the instruction is not a 
branch or if the branch is not 
taken, the resulting calculation 
is simply not used. 
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Figure 7.40 Data flow during the ExecuteR and ALUWB states
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shows the data flow during the BEQ state. The path for comparing rs1 
and rs2 is shown in dark blue and the path to (conditionally) set PC to 
the target address is in gray through the Result register. This concludes 
the design of the controller for these instructions.

7 . 4 . 3   More Instructions

As we did with the single-cycle processor, we next consider examples 
of how to modify the multicycle processor datapath and controller to  
handle new instructions: I-type ALU instructions (addi, andi, ori, 
slti) and jal.

S1: Decode
ALUSrcA = 01
ALUSrcB = 01
ALUOp = 00

S7: ALUWB
ResultSrc = 00

RegWrite

Reset

S4: MemWB
ResultSrc = 01

RegWrite

S6: ExecuteR
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 10

S10: BEQ
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 01

ResultSrc = 00
Branch

S2: MemAdr
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 00

op = 0000011 (lw)
OR

op = 0100011 (sw)

op =
0000011

(lw)

op =
0100011

(sw)

op =
0110011
(R-type)

op =
1100011

(beq)

S0: Fetch
AdrSrc = 0

IRWrite
ALUSrcA = 00
ALUSrcB =10
ALUOp = 00

ResultSrc = 10
PCUpdate

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemWrite

Figure 7.41 Enhanced Decode state, with branch target address calculation, and BEQ state
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Example 7.5  EXPANDING THE MULTICYCLE PROCESSOR TO  
INCLUDE I-TYPE ALU INSTRUCTIONS

Expand the multicycle processor to include I-type ALU instructions addi, andi, 
ori, and slti.

Solution These I-type ALU instructions are nearly the same as their R-type equivalents 
(add, and, or, and slt) except that the second source comes from ImmExt rather than 
the register file. We introduce the ExecuteI state to perform the desired computation 
for all I-type ALU instructions. This state is like ExecuteR except that ALUSrcB = 01 
to choose ImmExt as SrcB. After the ExecuteI state, I-type ALU instructions proceed 
to the ALU writeback (ALUWB) state to write the result to the register file. Figure 7.43 
shows the enhanced Main FSM, which also includes the JAL state for Example 7.6.
 

Example 7.6  EXPANDING THE MULTICYCLE PROCESSOR TO INCLUDE jal

Expand the multicycle processor to include the jump and link instruction (jal).

Solution Like the I-type ALU instructions from Example 7.5, no additional hard-
ware is needed to implement the jal instruction. Only the Main FSM needs to be 
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Figure 7.42 Data flow during Decode and BEQ states
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updated. The first two steps are the same as the other instructions. During the 
Decode state, the jump target address is calculated using the same flow as the 
branch target address calculation but with ImmSrc = 11, as set by the Instruction 
Decoder. Thus, during the Decode state, the jump offset is sign-extended and 
added to the current PC (contained in signal OldPC) to form the jump target 
address, which is written to the ALUOut register at the end of that state. jal then 
proceeds to the JAL state, where the processor writes the target address to PC 
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Figure 7.43 Enhanced Main FSM: ExecuteI and JAL states

shows the new JAL state, and Figure 7.44 shows the data flow during the JAL 
state. The flow for updating the PC to the target address is in gray and the PC+4 
calculation is in blue. After the JAL state, jal proceeds to the ALUWB state, 
where the return address (ALUOut = PC+4) is written to rd. This concludes the 
jal instruction, so the Main FSM then goes back to the Fetch state. 
 

Putting these steps together, Figure 7.45 shows the complete Main FSM 
state transition diagram for the multicycle processor. The function of 
each state is summarized below the figure. Converting the diagram to 
hardware is a straightforward but tedious task using the techniques of 
Chapter 3. Better yet, the FSM can be coded in an HDL and synthesized 
using the techniques of Chapter 4.

7 . 4 . 4   Performance Analysis

The execution time of an instruction depends on both the number  
of cycles it uses and the cycle time. While the single-cycle processor  
performed all instructions in one cycle, the multicycle processor uses 

You may notice that by the 
time the processor reaches 
the JAL state, the PC register 
has already been updated to 
PC+4. So we could have just 
used the PC register output 
to write to rd. But that would 
have required us to extend 
the Result multiplexer to 
receive PC as an input. The 
solution above requires less 
hardware because it uses the 
existing datapath. 
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varying numbers of cycles for different instructions. However, the  
multicycle processor does less work in a single cycle and, thus, has a 
shorter cycle time.

The multicycle processor requires three cycles for branches, four 
for R-type, I-type ALU, jump, and store instructions, and five for loads. 
The number of clock cycles per instruction (CPI) depends on the relative  
likelihood that each instruction is used.
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Example 7.7 MULTICYCLE PROCESSOR CPI

The SPECINT2000 benchmark consists of approximately 25% loads, 10% 
stores, 11% branches, 2% jumps, and 52% R- or I-type ALU instructions.2 
Determine the average CPI for this benchmark.

Solution The average CPI is the weighted sum over each instruction of the CPI 
for that instruction multiplied by the fraction of time that instruction is used. For  
this benchmark, average CPI = (0.11)(3) + (0.10 + 0.02 + 0.52)(4) + (0.25)(5) = 4.14.  
This is better than the worst-case CPI of 5, which would be required if all 
instructions took the same number of cycles.
 

Recall that we designed the multicycle processor so that each cycle 
involved one ALU operation, memory access, or register file access. Let 
us assume that the register file is faster than the memory and that writing  
memory is faster than reading memory. Examining the datapath reveals two 
possible critical paths that would limit the cycle time, as shown in Figure 7.46:

 1. The path to calculate PC+4: From the PC register through the SrcA 
multiplexer, ALU, and Result multiplexer back to the PC register 
(highlighted in thick blue lines); or

2  Instruction frequencies from Patterson and Hennessy, Computer Organization and 
Design, 4th Edition, Morgan Kaufmann, 2011.
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 2. The path to read data from memory: From the ALUOut register 
through the Result and Adr muxes to read memory into the Data 
register (highlighted in thick gray lines)

Both of these paths also require a delay through the decoder after the 
state updates (i.e., after a tpcq delay) to produce the control (multiplexer  
select and ALUControl) signals. Thus, the clock period is given in 
Equation 7.4.

 T t t t t t tc multi pcq dec mux ALU mem setup_ [ , ]= + + + +max2  (7.4)

The numerical values of these times will depend on the specific imple-
mentation technology.

Example 7.8 MULTICYCLE PROCESSOR PERFORMANCE COMPARISON.

Ben Bitdiddle is wondering whether the multicycle processor would be faster 
than the single-cycle processor. For both designs, he plans on using the 7-nm 
CMOS manufacturing process with the delays given in Table 7.7 on page 415. 
Help him compare each processor’s execution time for 100 billion instructions 
from the SPECINT2000 benchmark (see Example 7.4).

Solution According to Equation 7.4, the cycle time of the multicycle processor is 
Tc_multi = tpcq + tdec + 2tmux + tmem + tsetup = 40 + 25 + 2(30) + 200 + 50 = 375 ps. 
Using the CPI of 4.14 from Example 7.7, the total execution time is Tmulti = (100 
× 109 instructions)(4.14 cycles / instruction)(375 × 10−12 s / cycle) = 155 seconds.

According to Example 7.4, the single-cycle processor had a total execution time 
of 75 seconds, so the multicycle processor is slower.
 

One of the original motivations for building a multicycle processor 
was to avoid making all instructions take as long as the slowest one. 
Unfortunately, this example shows that the multicycle processor is slower 
than the single-cycle processor, given the assumptions of CPI and circuit 
element delays. The fundamental problem is that even though the slow-
est instruction, lw, was broken into five steps, the multicycle processor 
cycle time was not nearly improved fivefold. This is partly because not 
all of the steps are exactly the same length and partly because the 90-ps 
sequencing overhead of the register clock-to-Q and setup time must now 
be paid on every step, not just once for the entire instruction. In general, 
engineers have learned that it is difficult to exploit the fact that some 
computations are faster than others unless the differences are large.

Compared with the single-cycle processor, the multicycle proces-
sor is likely to be less expensive because it shares a single memory for 
instructions and data and because it eliminates two adders. It does, how-
ever, require five nonarchitectural registers and additional multiplexers.
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7.5  PIPELINED PROCESSOR
Pipelining, introduced in Section 3.6, is a powerful way to improve the 
throughput of a digital system. We design a pipelined processor by subdi-
viding the single-cycle processor into five pipeline stages. Thus, five 
instructions can execute simultaneously, one in each stage. Because each 
stage has only one-fifth of the entire logic, the clock frequency is approxi-
mately five times faster. So, ideally, the latency of each instruction is 
unchanged, but the throughput is five times better. Microprocessors exe-
cute millions or billions of instructions per second, so throughput is more 
important than latency. Pipelining introduces some overhead, so the 
throughput will not be as high as we might ideally desire, but pipelining 
nevertheless gives such great advantage for so little cost that all modern 
high-performance microprocessors are pipelined.

Reading and writing the memory and register file and using the ALU 
typically constitute the biggest delays in the processor. We choose five 
pipeline stages so that each stage involves exactly one of these slow steps. 
Specifically, we call the five stages Fetch, Decode, Execute, Memory, and 
Writeback. They are similar to the five steps that the multicycle processor 
used to perform lw. In the Fetch stage, the processor reads the instruc-
tion from instruction memory. In the Decode stage, the processor reads 
the source operands from the register file and decodes the instruction to 
produce the control signals. In the Execute stage, the processor performs 
a computation with the ALU. In the Memory stage, the processor reads 
or writes data memory, if applicable. Finally, in the Writeback stage, the 
processor writes the result to the register file, if applicable.

Figure 7.47 shows a timing diagram comparing the single-cycle and 
pipelined processors. Time is on the horizontal axis and instructions are 
on the vertical axis. The diagram assumes component delays from Table 7.7 
(see page 415) but ignores multiplexers and registers for simplicity. In the 
single-cycle processor in Figure 7.47(a), the first instruction is read from 
memory at time 0. Next, the operands are read from the register file. Then, 
the ALU executes the necessary computation. Finally, the data memory 
may be accessed, and the result is written back to the register file at 680 ps. 
The second instruction begins when the first completes. Hence, in this  
diagram, the single-cycle processor has an instruction latency of 200 + 100 + 
120 + 200 + 60 = 680 ps (see Table 7.7 on page 415) and a throughput of 
1 instruction per 680 ps (1.47 billion instructions per second).

In the pipelined processor in Figure 7.47(b), the length of a pipe-
line stage is set at 200 ps by the slowest stage, the memory access in the 
Fetch or Memory stage. Each pipeline stage is indicated by solid or dashed 
vertical blue lines. At time 0, the first instruction is fetched from memory. 
At 200 ps, the first instruction enters the Decode stage, and a second 
instruction is fetched. At 400 ps, the first instruction executes, the second 
instruction enters the Decode stage, and a third instruction is fetched. 

Recall that throughput is the 
number of tasks (in this case, 
instructions) that complete 
per second. Latency is the 
time it takes for a given 
instruction to complete, from 

start to finish. (See Section 3.6) 

Remember that for this 
abstract comparison of 
single-cycle and pipelined 
processor performance, we 
are ignoring the overhead 
of decoder, multiplexer, and 
register delays. 
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And so forth, until all the instructions complete. The instruction latency is  
5 × 200 = 1000 ps. Because the stages are not perfectly balanced with equal 
amounts of logic, the latency is longer for the pipelined processor than 
for the single-cycle processor. The throughput is 1 instruction per 200 ps  
(5 billion instructions per second)—that is, one instruction completes 
every clock cycle. This throughput is 3.4 times as much as the single-cycle  
processor—not quite 5 times but, nonetheless, a substantial speedup.

Figure 7.48 shows an abstracted view of the pipeline in operation 
in which each stage is represented pictorially. Each pipeline stage is 
represented with its major component—instruction memory (IM), reg-
ister file (RF) read, ALU execution, data memory (DM), and register 
file writeback—to illustrate the flow of instructions through the pipe-
line. Reading across a row shows the clock cycle in which a particular 
instruction is in each stage. For example, the sub instruction is fetched 
in cycle 3 and executed in cycle 5. Reading down a column shows what 
the various pipeline stages are doing on a particular cycle. For example, 
in cycle 6, the register file is writing a sum to s3, the data memory is 
idle, the ALU is computing (s11 & t0), t4 is being read from the regis-
ter file, and the or instruction is being fetched from instruction memory. 
Stages are shaded to indicate when they are used. For example, the data 
memory is used by lw in cycle 4 and by sw in cycle 8. The instruction 
memory and ALU are used in every cycle. The register file is written by 
every instruction except sw. In the pipelined processor, the register file is 
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used twice in every cycle: it is written in the first part of a cycle and read 
in the second part, as suggested by the shading. This way, data can be 
written by one instruction and read by another within a single cycle.

A central challenge in pipelined systems is handling hazards that 
occur when one instruction’s result is needed by a subsequent instruction 
before the former instruction has completed. For example, if the add in 
Figure 7.48 used s2 as a source instead of s10, a hazard would occur 
because the s2 register has not yet been written by the lw instruction 
when it is read by add in cycle 3. After designing the pipelined datapath 
and control, this section explores forwarding, stalls, and flushes as meth-
ods to resolve hazards. Finally, this section revisits performance analysis 
considering sequencing overhead and the impact of hazards.

7 . 5 . 1   Pipelined Datapath

The pipelined datapath is formed by chopping the single-cycle datapath 
into five stages separated by pipeline registers. Figure 7.49(a) shows the 
single-cycle datapath stretched out to leave room for the pipeline registers. 
Figure 7.49(b) shows the pipelined datapath formed by inserting four 
pipeline registers to separate the datapath into five stages. The stages 
and their boundaries are indicated in blue. Signals are given a suffix  
(F, D, E, M, or W) to indicate the stage in which they reside.

The register file is peculiar because it is read in the Decode stage and 
written in the Writeback stage. So, although the register file is drawn in the 
Decode stage, its write address and write data come from the Writeback 
stage. This feedback will lead to pipeline hazards, which are discussed in 
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Section 7.5.3. The register file in the pipelined processor writes on the falling 
edge of CLK so that it can write a result in the first half of a cycle and read 
that result in the second half of the cycle for use in a subsequent instruction.

One of the subtle but critical issues in pipelining is that all signals 
associated with a particular instruction must advance through the pipeline 
in unison. Figure 7.49(b) has an error related to this issue. Can you find it?

The error is in the register file write logic, which should operate in 
the Writeback stage. The data value comes from ResultW, a Writeback 
stage signal. But the destination register comes from RdD (InstrD11:7), 
which is a Decode stage signal. In the pipeline diagram of Figure 7.48, 
during cycle 5, the result of the lw instruction would be incorrectly writ-
ten to s5 rather than s2.
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Figure 7.50 shows a corrected datapath, with the modification 
in blue. The Rd signal is now pipelined along through the Execution, 
Memory, and Writeback stages, so it remains in sync with the rest of the 
instruction. RdW and ResultW are fed back together to the register file 
in the Writeback stage.

The astute reader may note that the logic to produce PCF’ (the next 
PC) is also problematic because it could be updated with either a Fetch 
or an Execute stage signal (PCPlus4F or PCTargetE). This control hazard 
will be fixed in Section 7.5.3.

7 . 5 . 2   Pipelined Control

The pipelined processor uses the same control signals as the single-cycle  
processor and, therefore, has the same control unit. The control unit 
examines the op, funct3, and funct75 fields of the instruction in the Decode 
stage to produce the control signals, as was described in Section 7.3.3 
for the single-cycle processor. These control signals must be pipelined along 
with the data so that they remain synchronized with the instruction.

The entire pipelined processor with control is shown in Figure 7.51. 
RegWrite must be pipelined into the Writeback stage before it feeds back 
to the register file, just as Rd was pipelined in Figure 7.50. In addition to 
R-type ALU instructions, lw, sw, and beq, this pipelined processor also 
supports jal and I-type ALU instructions.

7 . 5 . 3   Hazards

In a pipelined system, multiple instructions are handled concurrently. 
When one instruction is dependent on the results of another that has 
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not yet completed, a hazard occurs. The register file is written during 
the first half of the cycle and read during the second half of the cycle, so 
a register can be written and read back in the same cycle without intro-
ducing a hazard.

Figure 7.52 illustrates hazards that occur when one instruction 
writes a register (s8) and subsequent instructions read this register. The 
blue arrows highlight when s8 is written to the register file (in cycle 
5) as compared to when it is needed by subsequent instructions. This 
is called a read after write (RAW) hazard. The add instruction writes a 
result into s8 in the first half of cycle 5. However, the sub instruction 
reads s8 on cycle 3, obtaining the wrong value. The or instruction reads 
s8 on cycle 4, again obtaining the wrong value. The and instruction 
reads s8 in the second half of cycle 5, obtaining the correct value, which 
was written in the first half of cycle 5. Subsequent instructions also read 
the correct value of s8. The diagram shows that hazards may occur in 
this pipeline when an instruction writes a register and either of the two 
subsequent instructions reads that register. Without special treatment, 
the pipeline will compute the wrong result.

A software solution would be to require the programmer or compiler 
to insert nop instructions between the add and sub instructions so that 
the dependent instruction does not read the result (s8) until it is available 
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in the register file, as shown in Figure 7.53. Such a software interlock 
complicates programming and degrades performance, so it is not ideal.

On closer inspection, observe from Figure 7.52 that the sum from 
the add instruction is computed by the ALU in cycle 3 and is not strictly 
needed by the and instruction until the ALU uses it in cycle 4. In princi-
ple, we should be able to forward the result from one instruction to the 
next to resolve the RAW hazard without waiting for the result to appear 
in the register file and without slowing down the pipeline. In other situ-
ations explored later in this section, we may have to stall the pipeline to 
give time for a result to be produced before the subsequent instruction 
uses the result. In any event, something must be done to solve hazards so 
that the program executes correctly despite the pipelining.
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Figure 7.53 Solving data hazard with nops
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Hazards are classified as data hazards or control hazards. A data 
hazard occurs when an instruction tries to read a register that has not 
yet been written back by a previous instruction. A control hazard occurs 
when the decision of what instruction to fetch next has not been made 
by the time the fetch takes place. In the remainder of this section, we 
enhance the pipelined processor with a Hazard Unit that detects hazards 
and handles them appropriately so that the processor executes the pro-
gram correctly.

Solving Data Hazards with Forwarding

Some data hazards can be solved by forwarding (also called bypassing) 
a result from the Memory or Writeback stage to a dependent instruc-
tion in the Execute stage. This requires adding multiplexers in front of 
the ALU to select its operands from the register file or the Memory or 
Writeback stage. Figure 7.54 illustrates this principle. This program 
computes s8 with the add instruction and then uses s8 in the three sub-
sequent instructions. In cycle 4, s8 is forwarded from the Memory stage 
of the add instruction to the Execute stage of the dependent sub instruc-
tion. In cycle 5, s8 is forwarded from the Writeback stage of the add 
instruction to the Execute stage of the dependent or instruction. Again, 
no forwarding is needed for the and instruction because s8 is written to 
the register file in the first half of cycle 5 and read in the second half.

Forwarding is necessary when an instruction in the Execute stage 
has a source register matching the destination register of an instruction 
in the Memory or Writeback stage. Figure 7.55 modifies the pipelined 
processor to support forwarding. It adds a Hazard Unit and two forwarding  
multiplexers. The hazard detection unit receives the two source registers  
from the instruction in the Execute stage, Rs1E and Rs2E, and the  
destination registers from the instructions in the Memory and Writeback 

Figure 7.54 Abstract pipeline diagram illustrating forwarding
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stages, RdM and RdW. It also receives the RegWrite signals from the 
Memory and Writeback stages (RegWriteM and RegWriteW) to know 
whether the destination register will actually be written (e.g., the sw and 
beq instructions do not write results to the register file and, hence, do 
not have their results forwarded).

The Hazard Unit computes control signals for the forwarding mul-
tiplexers to choose operands from the register file or from the results 
in the Memory or Writeback stage (ALUResultM or ResultW). The 
Hazard Unit should forward from a stage if that stage will write a des-
tination register and the destination register matches the source register. 
However, x0 is hardwired to 0 and should never be forwarded. If both 
the Memory and Writeback stages contain matching destination reg-
isters, then the Memory stage should have priority because it contains 
the more recently executed instruction. In summary, the function of the  
forwarding logic for SrcAE (ForwardAE) is given on the next page. 
The forwarding logic for SrcBE (ForwardBE) is identical except that it 
checks Rs2E instead of Rs1E.
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if     ((Rs1E == RdM) & RegWriteM) & (Rs1E != 0)  then  // Forward from Memory stage

    ForwardAE = 10

else if ((Rs1E == RdW) & RegWriteW) & (Rs1E != 0) then  // Forward from Writeback stage

     ForwardAE = 01
else  ForwardAE = 00                   // No forwarding (use RF output)

Solving Data Hazards with Stalls

Forwarding is sufficient to solve RAW data hazards when the result 
is computed in the Execute stage of an instruction because its result 
can then be forwarded to the Execute stage of the next instruction. 
Unfortunately, the lw instruction does not finish reading data until 
the end of the Memory stage, so its result cannot be forwarded to the 
Execute stage of the next instruction. We say that the lw instruction 
has a two-cycle latency because a dependent instruction cannot use its 
result until two cycles later. Figure 7.56 shows this problem. The lw 
instruction receives data from memory at the end of cycle 4, but the 
and instruction needs that data (the value in s7) as a source operand 
at the beginning of cycle 4. There is no way to solve this hazard with 
forwarding.

A solution is to stall the pipeline, holding up operation until the data 
is available. Figure 7.57 shows stalling the dependent instruction (and) 
in the Decode stage. and enters the Decode stage in cycle 3 and stalls 
there through cycle 4. The subsequent instruction (or) must remain in the 
Fetch stage during both cycles as well because the Decode stage is full.

In cycle 5, the result can be forwarded from the Writeback stage 
of lw to the Execute stage of and. Also, in cycle 5, source s7 of the 
or instruction is read directly from the register file, with no need for 
forwarding.

Note that the Execute stage is unused in cycle 4. Likewise, Memory 
is unused in cycle 5 and Writeback is unused in cycle 6. This unused 
stage propagating through the pipeline is called a bubble, which behaves 
like a nop instruction. The bubble is introduced by zeroing out the 
Execute stage control signals during a Decode stage stall so that the  
bubble performs no action and changes no architectural state.

In summary, stalling a stage is performed by disabling its pipeline 
register (i.e., the register to the left of a stage) so that the stage’s inputs 
do not change. When a stage is stalled, all previous stages must also be 
stalled so that no subsequent instructions are lost. The pipeline register 
directly after the stalled stage must be cleared (flushed) to prevent bogus 
information from propagating forward. Stalls degrade performance, so 
they should be used only when necessary.



7.5 Pipelined Processor 449

Figure 7.58 modifies the pipelined processor to add stalls for lw 
data dependencies. In order for the Hazard Unit to stall the pipeline, the 
following conditions must be met:

 1. A load word is in the Execute stage (indicated by ResultSrcE0 = 1) 
and

 2. The load’s destination register (RdE) matches Rs1D or Rs2D, the 
source operands of the instruction in the Decode stage

Stalls are supported by adding enable inputs (EN) to the Fetch and 
Decode pipeline registers and a synchronous reset/clear (CLR) input to 
the Execute pipeline register. When a load word (lw) stall occurs, StallD 
and StallF are asserted to force the Decode and Fetch stage pipeline reg-
isters to retain their existing values. FlushE is also asserted to clear the 
contents of the Execute stage pipeline register, introducing a bubble. The 
Hazard Unit lwStall (load word stall) signal indicates when the pipeline 
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should be stalled due to a load word dependency. Whenever lwStall is 
TRUE, all of the stall and flush signals are asserted. Hence, the logic to 
compute the stalls and flushes is:

lwStall = ResultSrcE0 & ((Rs1D = = RdE) | (Rs2D = = RdE))
StallF = StallD = FlushE = lwStall

Solving Control Hazards
The beq instruction presents a control hazard: the pipelined processor 
does not know what instruction to fetch next because the branch deci-
sion has not been made by the time the next instruction is fetched.

One mechanism for dealing with this control hazard is to stall the 
pipeline until the branch decision is made (i.e., PCSrcE is computed). 
Because the decision is made in the Execute stage, the pipeline would 
have to be stalled for two cycles at every branch. This would severely 
degrade the system performance if branches occur often, which is typi-
cally the case.

The lwStall logic 
described here could cause 
the processor to stall 
unnecessarily when the 
destination of the load is x0 
or when a false dependency 
exists—that is, when the 
instruction in the Decode 
stage is a J- or I-type 
instruction that randomly 
causes a false match between 
bits in their immediate fields 
and RdE. However, these 
cases are rare (and poor 
coding practice, in the case of 
x0 being the load destination) 
and they cause only a small 
performance loss. 
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An alternative to stalling the pipeline is to predict whether the branch 
will be taken and begin executing instructions based on the predic-
tion. Once the branch decision is available, the processor can throw out 
the instructions if the prediction was wrong. In the pipeline presented so 
far (Figure 7.58), the processor predicts that branches are not taken and  
simply continues executing the program in order until PCSrcE is asserted to  
select the next PC from PCTargetE instead. If the branch should have been 
taken, then the two instructions following the branch must be flushed 
(discarded) by clearing the pipeline registers for those instructions. These 
wasted instruction cycles are called the branch misprediction penalty.

Figure 7.59 shows such a scheme in which a branch from address 
0x20 to address 0x58 is taken. The PC is not written until cycle 3, by 
which point the sub and or instructions at addresses 0x24 and 0x28 
have already been fetched. These instructions must be flushed, and the 
add instruction is fetched from address 0x58 in cycle 4.

Finally, we must work out the stall and flush signals to handle 
branches and PC writes. When a branch is taken, the subsequent two 
instructions must be flushed from the pipeline registers of the Decode 
and Execute stages. Thus, we add a synchronous clear input (CLR) to 
the Decode pipeline register and add the FlushD output to the Hazard 
Unit. (When CLR = 1, the register contents are cleared, that is, become 
0.) When a branch is taken (indicated by PCSrcE being 1), FlushD and 
FlushE must be asserted to flush the Decode and Execute pipeline regis-
ters. Figure 7.60 shows the enhanced pipelined processor for handling 
control hazards. The flushes are now calculated as:

FlushD = PCSrcE
FlushE = lwStall | PCSrcE
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Hazard Summary
In summary, RAW data hazards occur when an instruction depends on 
a result (from another instruction) that has not yet been written into the 
register file. Data hazards can be resolved by forwarding if the result is 
computed soon enough; otherwise, they require stalling the pipeline until 
the result is available. Control hazards occur when the decision of what 
instruction to fetch has not been made by the time the next instruction 
must be fetched. Control hazards are solved by stalling the pipeline until 
the decision is made or by predicting which instruction should be fetched 
and flushing the pipeline if the prediction is later determined to be wrong. 
Moving the decision as early as possible minimizes the number of instruc-
tions that are flushed on a misprediction. You may have observed by now 
that one of the challenges of designing a pipelined processor is to under-
stand all possible interactions between instructions and to discover all 
of the hazards that may exist. Figure 7.61 shows the complete pipelined  
processor handling all of the hazards. The hazard logic is summarized on 
the next page.

ImmExtE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD
Data

Memory
WD

WE
PCF0

1
PCF' InstrD

19:15

24:20

31:7

SrcBE

19:15

11:7

ALUResultM ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCTargetE

PCPlus4F

ImmSrcD1:0

MemWriteD

ResultSrcD1:0

ALUControlD2:0

ALUSrcD

RegWriteD
Control

Unit

CLK CLK CLK

CLK CLK

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

ResultSrcE1:0 ResultSrcM1:0

MemWriteE MemWriteM

ALUSrcE

00
01
10

00
01
10

S
ta

llF

S
ta

llD

F
or

w
ar

dA
E

F
or

w
ar

dB
E

24:20

Rs1D

RdD

Rs2D

HazardUnit

F
lu

sh
E

Extend

ResultSrcW1:0

RdM RdW

+

PCPlus4M

ZeroE

BranchD

JumpD
F

lu
sh

D

PCSrcE

PCD

ImmExtD

BranchE

JumpE

00
01
10

Rs1E

RdE

Rs2E

RD1E

RD2E

PCE

ResultW

PCPlus4W

0

E
N

E
N

C
LR

C
LR

30

14:12 funct3

funct75

op6:0

Figure 7.60 Expanded Hazard Unit for handling branch control hazard



7.5 Pipelined Processor 453

Forward to solve data hazards when possible3:
if   ((Rs1E = = RdM) & RegWriteM) & (Rs1E != 0) then
             ForwardAE = 10
else if ((Rs1E = = RdW) & RegWriteW) & (Rs1E != 0) then
             ForwardAE = 01
else            ForwardAE = 00

Stall when a load hazard occurs:
lwStall = ResultSrcE0 & ((Rs1D = = RdE) | (Rs2D = = RdE))
StallF   = lwStall
StallD  = lwStall

Flush when a branch is taken or a load introduces a bubble:
FlushD = PCSrcE
FlushE  = lwStall | PCSrcE

3  Recall that the forwarding logic for SrcBE (ForwardBE) is identical except that it checks 
Rs2E instead of Rs1E.

Figure 7.61 Pipelined processor with full hazard handling
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7 . 5 . 4   Performance Analysis

The pipelined processor ideally would have a CPI of 1 because a new 
instruction is issued—that is, fetched—every cycle. However, a stall or a 
flush wastes 1 to 2 cycles, so the CPI is slightly higher and depends on 
the specific program being executed.

Example 7.9 PIPELINED PROCESSOR CPI

The SPECINT2000 benchmark considered in Example 7.4 consists of approxi-
mately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R- or I-type 
ALU instructions. Assume that 40% of the loads are immediately followed by an 
instruction that uses the result, requiring a stall, and that 50% of the branches 
are taken (mispredicted), requiring two instructions to be flushed. Ignore other 
hazards. Compute the average CPI of the pipelined processor.

Solution The average CPI is the weighted sum over each instruction of the CPI 
for that instruction multiplied by the fraction of time that instruction is used. 
Loads take one clock cycle when there is no dependency and two cycles when 
the processor must stall for a dependency, so they have a CPI of (0.6)(1) + (0.4)
(2) = 1.4. Branches take one clock cycle when they are predicted properly and 
three when they are not, so they have a CPI of (0.5)(1) + (0.5)(3) = 2. Jumps 
take three clock cycles (CPI = 3). All other instructions have a CPI of 1. Hence, 
for this benchmark, the average CPI = (0.25)(1.4) + (0.1)(1) + (0.11)(2) + (0.02)
(3) + (0.52)(1) = 1.25.
 

We can determine the cycle time by considering the critical path in each 
of the five pipeline stages shown in Figure 7.61. Recall that the register 
file is used twice in a single cycle: it is written in the first half of the 
Writeback cycle and read in the second half of the Decode cycle; so these 
stages can use only half of the cycle time for their critical path. Another 
way of saying it is this: twice the critical path for each of those stages 
must fit in a cycle. Figure 7.62 shows the critical path for the Execute 
stage. It occurs when a branch is in the Execute stage that requires for-
warding from the Writeback stage: the path goes from the Writeback 
pipeline register, through the Result, ForwardBE, and SrcB multiplexers, 
through the ALU and AND-OR logic to the PC multiplexer and, finally, 
to the PC register.
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(7.5)

The critical path analysis for 
the Execute stage assumes 
that the Hazard Unit delay 
for calculating ForwardAE 
and ForwardBE is less than 
or equal to the delay of the 
Result multiplexer. If the 
Hazard Unit delay is longer, 
it must be included in the 
critical path instead of the 
Result multiplexer delay. 
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Example 7.10 PIPELINED PROCESSOR PERFORMANCE COMPARISON

Ben Bitdiddle needs to compare the pipelined processor performance with that 
of the single-cycle and multicycle processors considered in Examples 7.4 and 
7.8. The logic delays were given in Table 7.7 (on page 415). Help Ben compare 
the execution time of 100 billion instructions from the SPECINT2000 bench-
mark for each processor.

Solution According to Equation 7.5, the cycle time of the pipelined processor is  
Tc_pipelined = max[40 + 200 + 50, 2(100 + 50), 40 + 4(30) + 120 + 20 + 50, 40 + 
200 + 50, 2(40 + 30 + 60)] = 350 ps. The Execute stage takes the longest. According 
to Equation 7.1, the total execution time is Tpipelined = (100 × 109 instructions) 
(1.25 cycles / instruction)(350 × 10−12 s / cycle) = 44 seconds. This compares with  
75 seconds for the single-cycle processor and 155 seconds for the multicycle processor.
 

The pipelined processor is substantially faster than the others. 
However, its advantage over the single-cycle processor is nowhere near 
the fivefold speedup one might hope to get from a five-stage pipeline. 

Our pipelined processor is 
unbalanced, with branch 
resolution in the Execute 
stage taking much longer 
than any other stage. The 
pipeline could be balanced 
better by pushing the Result 
multiplexer back into the 
Memory stage, reducing the 
cycle time to 320 ps. 
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The pipeline hazards introduce a small CPI penalty. More significantly, 
the sequencing overhead (clk-to-Q and setup times) of the registers 
applies to every pipeline stage, not just once to the overall datapath. 
Sequencing overhead limits the benefits one can hope to achieve from 
pipelining. Imbalanced delay in pipeline stages also decreases the bene-
fits of pipelining. The pipelined processor is similar in hardware require-
ments to the single-cycle processor, but it adds many 32-bit pipeline 
registers, along with multiplexers, smaller pipeline registers, and control 
logic to resolve hazards.

7.6  HDL REPRESENTATION*
This section presents HDL code for the single-cycle RISC-V processor that 
supports the instructions discussed in this chapter. The code illustrates 
good coding practices for a moderately complex system. HDL code for 
the multicycle processor and pipelined processor are left to Exercises 7.25  
to 7.27 and 7.42 to 7.44.

In this section, the instruction and data memories are separated from 
the datapath and connected by address and data busses. In practice, most 
processors pull instructions and data from separate caches. However, 
to handle smaller memory maps where data may be intermixed with 
instructions, a more complete processor must also be able to read data (in  
addition to instructions) from the instruction memory. Chapter 8 will revisit 
memory systems, including the interaction of caches with main memory.

Figure 7.63 shows a block diagram of the single-cycle RISC-V  
processor interfaced to external memories. The processor is composed of 
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the datapath from Figure 7.15 and the controller from Figure 7.16. The 
controller, in turn, is composed of the Main Decoder and the ALU Decoder.

The HDL code is partitioned into several sections. Section 7.6.1 
provides HDL for the single-cycle processor datapath and controller. 
Section 7.6.2 presents the generic building blocks, such as registers and 
multiplexers, which are used by any microarchitecture. Section 7.6.3 
introduces the test program, testbench, and external memories. The 
HDL and test program are available in electronic form on this book’s 
website (see the Preface).

7 . 6 . 1   Single-Cycle Processor 

The main modules of the single-cycle processor module are given in the 
following HDL examples.

SystemVerilog
module riscvsingle(input     logic               clk, reset,
                               output   logic   [31:0]   PC,

 input     logic   [31:0]   Instr,
 output  logic              MemWrite,
 output  logic  [31:0]  ALUResult, WriteData,
 input    logic  [31:0]  ReadData);

 logic           ALUSrc, RegWrite, Jump, Zero;
 logic [1:0] ResultSrc, ImmSrc;
 logic [2:0] ALUControl;

 controller c(Instr[6:0], Instr[14:12], Instr[30], Zero,
 ResultSrc, MemWrite, PCSrc,
 ALUSrc, RegWrite, Jump,
 ImmSrc, ALUControl);

 datapath dp(clk, reset, ResultSrc, PCSrc,
 ALUSrc, RegWrite,
 ImmSrc, ALUControl,
 Zero, PC, Instr,
 ALUResult, WriteData, ReadData);

endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity riscvsingle is
    port(clk, reset:                 in    STD_LOGIC;
            PC:                              out STD_LOGIC_VECTOR(31 downto 0);
            Instr:                        in    STD_LOGIC_VECTOR(31 downto 0);
            MemWrite:                     out STD_LOGIC;
            ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
            ReadData:                    in   STD_LOGIC_VECTOR(31 downto 0));
end;

architecture struct of riscvsingle is
    component controller
       port(op:                     in     STD_LOGIC_VECTOR(6 downto 0);
               funct3:              in     STD_LOGIC_VECTOR(2 downto 0);
               funct7b5, Zero: in     STD_LOGIC;
               ResultSrc:          out STD_LOGIC_VECTOR(1 downto 0);
               MemWrite:           out STD_LOGIC;
               PCSrc, ALUSrc:    out STD_LOGIC;
               RegWrite, Jump: out STD_LOGIC;
               ImmSrc:               out STD_LOGIC_VECTOR(1 downto 0);
               ALUControl:         out STD_LOGIC_VECTOR(2 downto 0));
    end component;
    component datapath
        port(clk, reset: in STD_LOGIC;
                ResultSrc:                in    STD_LOGIC_VECTOR(1   downto 0);
                PCSrc, ALUSrc:          in   STD_LOGIC;
                RegWrite:                  in    STD_LOGIC;
                ImmSrc:                      in   STD_LOGIC_VECTOR(1   downto 0);
                ALUControl:               in   STD_LOGIC_VECTOR(2   downto 0);
                Zero:                         out STD_LOGIC;
                PC:                            out STD_LOGIC_VECTOR(31 downto 0);
                Instr:                       in   STD_LOGIC_VECTOR(31 downto 0);
                ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
                ReadData:                  in   STD_LOGIC_VECTOR(31 downto 0));
    end component;

HDL Example 7.1 SINGLE-CYCLE PROCESSOR
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    signal ALUSrc, RegWrite, Jump, Zero, PCSrc: STD_LOGIC;
    signal ResultSrc, ImmSrc: STD_LOGIC_VECTOR(1 downto 0);
    signal ALUControl: STD_LOGIC_VECTOR(2 downto 0);
begin
    c: controller port map(Instr(6 downto 0), Instr(14 downto 12),
                                       Instr(30), Zero, ResultSrc, MemWrite,
                                       PCSrc, ALUSrc, RegWrite, Jump,
                                       ImmSrc, ALUControl);
    dp: datapath port map(clk, reset, ResultSrc, PCSrc, ALUSrc,
                                       RegWrite, ImmSrc, ALUControl, Zero,
                                        PC, Instr, ALUResult, WriteData,
                                        ReadData);

end; 

HDL Example 7.2 CONTROLLER

SystemVerilog
module controller(input    logic [6:0] op,

                      input    logic [2:0] funct3,
                      input    logic           funct7b5,
                      input    logic           Zero,
                      output logic [1:0] ResultSrc,
                      output logic           MemWrite,
                      output logic           PCSrc, ALUSrc,
                      output logic           RegWrite, Jump,
                      output logic [1:0] ImmSrc,
                      output logic [2:0] ALUControl);

 logic [1:0] ALUOp;
 logic           Branch;

 maindec md(op, ResultSrc, MemWrite, Branch,
                   ALUSrc, RegWrite, Jump, ImmSrc, ALUOp);
 aludec   ad(op[5], funct3, funct7b5, ALUOp, ALUControl);

 assign PCSrc = Branch & Zero | Jump;
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity controller is
    port(op:                     in         STD_LOGIC_VECTOR(6 downto 0);

 funct3:               in         STD_LOGIC_VECTOR(2 downto 0);
 funct7b5, Zero: in         STD_LOGIC;
 ResultSrc:          out       STD_LOGIC_VECTOR(1 downto 0);
 MemWrite:           out       STD_LOGIC;
 PCSrc, ALUSrc:    out       STD_LOGIC;
 RegWrite:             out       STD_LOGIC;
 Jump:                   buffer STD_LOGIC;
 ImmSrc:                out       STD_LOGIC_VECTOR(1 downto 0);
 ALUControl:         out       STD_LOGIC_VECTOR(2 downto 0));

end;

architecture struct of controller is
 component maindec
     port(op:                     in    STD_LOGIC_VECTOR(6 downto 0);
              ResultSrc:          out STD_LOGIC_VECTOR(1 downto 0);
              MemWrite:           out STD_LOGIC;
              Branch, ALUSrc: out STD_LOGIC;
              RegWrite, Jump: out STD_LOGIC;
              ImmSrc:               out STD_LOGIC_VECTOR(1 downto 0);
              ALUOp:                out STD_LOGIC_VECTOR(1 downto 0));
 end component;

    component aludec
        port(opb5:           in    STD_LOGIC;
                 funct3:        in     STD_LOGIC_VECTOR(2 downto 0);
                 funct7b5:     in    STD_LOGIC;
                 ALUOp:          in    STD_LOGIC_VECTOR(1 downto 0);
                 ALUControl: out STD_LOGIC_VECTOR(2 downto 0));
     end component;

     signal ALUOp:    STD_LOGIC_VECTOR(1 downto 0);
     signal Branch: STD_LOGIC;
begin
     md: maindec port map(op, ResultSrc, MemWrite, Branch,
                                      ALUSrc, RegWrite, Jump, ImmSrc, ALUOp);
     ad: aludec port map(op(5), funct3, funct7b5, ALUOp, ALUControl);
     PCSrc <= (Branch and Zero) or Jump;
end; 
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HDL Example 7.3 MAIN DECODER

SystemVerilog
module maindec(input    logic [6:0] op,
                           output logic [1:0] ResultSrc,
                           output logic           MemWrite,
                           output logic           Branch, ALUSrc,
                           output logic           RegWrite, Jump,
                           output logic [1:0] ImmSrc,
                           output logic [1:0] ALUOp);
    logic [10:0] controls;

    assign {RegWrite, ImmSrc, ALUSrc, MemWrite,
                  ResultSrc, Branch, ALUOp, Jump} = controls;

    always_comb
       case(op)
       // RegWrite_ImmSrc_ALUSrc_MemWrite_ResultSrc_Branch_ALUOp_Jump
            7'b0000011: controls = 11'b1_00_1_0_01_0_00_0; // lw
          7'b0100011: controls = 11'b0_01_1_1_00_0_00_0; // sw
          7'b0110011: controls = 11'b1_xx_0_0_00_0_10_0; // R–type
          7'b1100011: controls = 11'b0_10_0_0_00_1_01_0; // beq
          7'b0010011: controls = 11'b1_00_1_0_00_0_10_0; // I–type ALU
          7'b1101111: controls = 11'b1_11_0_0_10_0_00_1; // jal
           default:      controls = 11'bx_xx_x_x_xx_x_xx_x; // ??? 
        endcase
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity maindec is
    port(op:                     in     STD_LOGIC_VECTOR(6 downto 0);
            ResultSrc:          out STD_LOGIC_VECTOR(1 downto 0);
            MemWrite:           out STD_LOGIC;
            Branch, ALUSrc: out STD_LOGIC;
            RegWrite, Jump: out STD_LOGIC;
            ImmSrc:               out STD_LOGIC_VECTOR(1 downto 0);
            ALUOp:                out STD_LOGIC_VECTOR(1 downto 0));
end;

architecture behave of maindec is
    signal controls: STD_LOGIC_VECTOR(10 downto 0);
begin
    process(op) begin
       case op is
            when "0000011" => controls <= "10010010000"; –– lw

            when "0100011" => controls <= "00111000000"; –– sw

            when "0110011" => controls <= "1––00000100"; –– R–type

            when "1100011" => controls <= "01000001010"; –– beq

           when "0010011" => controls <= "10010000100"; –– I–type ALU

            when "1101111" => controls <= "11100100001"; –– jal

             when others       => controls <= "–––––––––––"; –– not valid

       end case;

    end process;

    (RegWrite, ImmSrc(1), ImmSrc(0), ALUSrc, MemWrite,

     ResultSrc(1), ResultSrc(0), Branch, ALUOp(1), ALUOp(0), 

Jump) <= controls;

end; 

HDL Example 7.4 ALU DECODER

SystemVerilog
module aludec(input    logic           opb5,
                        input    logic [2:0] funct3,
                        input    logic           funct7b5,
                        input    logic [1:0] ALUOp,
                        output logic [2:0] ALUControl);

    logic   RtypeSub;
    assign RtypeSub = funct7b5 & opb5;  // TRUE for R–type subtract

    always_comb
       case(ALUOp)
           2'b00:                        ALUControl = 3'b000; // addition
           2'b01:                        ALUControl = 3'b001; // subtraction
           default: case(funct3) // R–type or I–type ALU
                            3'b000:    if (RtypeSub)
                                                 ALUControl = 3'b001; // sub
                                            else

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity aludec is
    port(opb5:           in    STD_LOGIC;
            funct3:        in    STD_LOGIC_VECTOR(2 downto 0);
            funct7b5:     in    STD_LOGIC;
            ALUOp:          in    STD_LOGIC_VECTOR(1 downto 0);
            ALUControl: out STD_LOGIC_VECTOR(2 downto 0));
end;

architecture behave of aludec is
     signal RtypeSub: STD_LOGIC;
begin
     RtypeSub <= funct7b5 and opb5; –– TRUE for R–type subtract
     process(opb5, funct3, funct7b5, ALUOp, RtypeSub) begin
        case ALUOp is
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HDL Example 7.5 DATAPATH

SystemVerilog
module datapath(input    logic             clk, reset,
                            input    logic [1:0]    ResultSrc,

 input    logic              PCSrc, ALUSrc,
 input    logic             RegWrite,
 input    logic [1:0]    ImmSrc,
 input    logic [2:0]    ALUControl,
 output logic              Zero,
 output logic [31:0] PC,
 input    logic [31:0] Instr,
 output logic [31:0] ALUResult, WriteData,
 input    logic [31:0] ReadData);

    logic [31:0] PCNext, PCPlus4, PCTarget;
    logic [31:0] ImmExt;
    logic [31:0] SrcA, SrcB;
    logic [31:0] Result;

    // next PC logic
    flopr #(32) pcreg(clk, reset, PCNext, PC);
    adder           pcadd4(PC, 32'd4, PCPlus4);
    adder           pcaddbranch(PC, ImmExt, PCTarget);
    mux2 #(32)    pcmux(PCPlus4, PCTarget, PCSrc, PCNext);

    // register file logic
    regfile         rf(clk, RegWrite, Instr[19:15], Instr[24:20],
                            Instr[11:7], Result, SrcA, WriteData);
     extend         ext(Instr[31:7], ImmSrc, ImmExt);

    // ALU logic
    mux2 #(32)   srcbmux(WriteData, ImmExt, ALUSrc, SrcB);
    alu              alu(SrcA, SrcB, ALUControl, ALUResult, Zero);
     mux3 #(32)   resultmux( ALUResult, ReadData, PCPlus4, 

ResultSrc, Result);
endmodule

                                             ALUControl = 3'b000; // add, addi
                         3'b010:       ALUControl = 3'b101; // slt, slti
                         3'b110:       ALUControl = 3'b011; // or, ori
                         3'b111:       ALUControl = 3'b010; // and, andi
                         default:      ALUControl = 3'bxxx; // ???
                         endcase
         endcase
endmodule

            when "00" =>               ALUControl <= "000"; –– addition
              when "01" =>               ALUControl <= "001"; –– subtraction
            when others => case funct3 is      –– R–type or I–type ALU
                     when "000" = if RtypeSub = '1' then
                                             ALUControl <= "001"; –– sub
                                          else
                                            ALUControl <= "000"; –– add, addi
                                          end if;

 when "010"    =>    ALUControl <= "101"; –– slt, slti
 when "110"    =>    ALUControl <= "011"; –– or, ori
 when "111"    =>  ALUControl <= "010"; –– and, andi
 when others =>   ALUControl <= "–––"; –– unknown

 end case;
        end case;
    end process;
end; 

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

entity datapath is
    port(clk, reset:    in    STD_LOGIC;
             ResultSrc:    in    STD_LOGIC_VECTOR(1   downto 0);
              PCSrc, ALUSrc:    in    STD_LOGIC;
              RegWrite:    in    STD_LOGIC;
              ImmSrc:    in    STD_LOGIC_VECTOR(1  downto 0);
              ALUControl:    in    STD_LOGIC_VECTOR(2    downto 0);
              Zero:    out    STD_LOGIC;
              PC:   buffer STD_LOGIC_VECTOR(31 downto 0);
             Instr:   in   STD_LOGIC_VECTOR(31 downto 0);
              ALUResult, WriteData: buffer   STD_LOGIC_VECTOR(31 downto 0);
            ReadData:   in   STD_LOGIC_VECTOR(31  downto 0));
end;

architecture struct of datapath is
    component flopr generic(width: integer);
       port(clk, reset: in    STD_LOGIC;
                d:                in    STD_LOGIC_VECTOR(width−1 downto 0);
                q:                out STD_LOGIC_VECTOR(width−1 downto 0));
     end component;
     component adder
         port(a, b: in     STD_LOGIC_VECTOR(31 downto 0);
                y:       out STD_LOGIC_VECTOR(31 downto 0));
    end component;
    component mux2 generic(width: integer);
        port(d0, d1: in    STD_LOGIC_VECTOR(width−1 downto 0);
                 s:          in    STD_LOGIC;
                y:           out STD_LOGIC_VECTOR(width−1 downto 0));
    end component;
    component mux3 generic(width: integer);
        port(d0, d1, d2:  in     STD_LOGIC_VECTOR(width−1 downto 0);
                s:                in     STD_LOGIC_VECTOR(1 downto 0);
                y:                out  STD_LOGIC_VECTOR(width−1 downto 0));
    end component;
    component regfile
        port(clk:            in    STD_LOGIC;
                 we3:            in    STD_LOGIC;
                 a1, a2, a3: in    STD_LOGIC_VECTOR(4   downto 0);
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7 . 6 . 2   Generic Building Blocks

This section contains generic building blocks that may be useful in any 
digital system, including an adder, flip-flops, and a 2:1 multiplexer. The 
register file appeared in HDL Example 5.8. The HDL for the ALU is left 
to Exercises 5.11 through 5.14.

HDL Example 7.6 ADDER

SystemVerilog
module adder(input   [31:0] a, b,
                      output [31:0] y);

     assign y = a + b;
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is
    port(a, b: in    STD_LOGIC_VECTOR(31 downto 0);
             y:      out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of adder is
begin
    y <= a + b;
end; 

                 wd3:            in    STD_LOGIC_VECTOR(31 downto 0);
                 rd1, rd2:     out STD_LOGIC_VECTOR(31 downto 0));
    end component;
    component extend
        port(instr:    in    STD_LOGIC_VECTOR(31 downto 7);
                 immsrc: in    STD_LOGIC_VECTOR(1   downto 0);
                 immext: out STD_LOGIC_VECTOR(31 downto 0));
    end component;
    component alu
        port(a, b:            in           STD_LOGIC_VECTOR(31 downto 0);
                 ALUControl: in          STD_LOGIC_VECTOR(2    downto 0);
                 ALUResult:     buffer STD_LOGIC_VECTOR(31  downto 0);
                 Zero:            out        STD_LOGIC);
    end component;

    signal PCNext, PCPlus4, PCTarget: STD_LOGIC_VECTOR(31 downto 0);
    signal ImmExt:                             STD_LOGIC_VECTOR(31 downto 0);
    signal SrcA, SrcB:                       STD_LOGIC_VECTOR(31 downto 0);
    signal Result:                             STD_LOGIC_VECTOR(31 downto 0);
begin
     –– next PC logic
     pcreg: flopr generic map(32) port map(clk, reset, PCNext, PC);
     pcadd4: adder port map(PC, X"00000004", PCPlus4);
     pcaddbranch: adder port map(PC, ImmExt, PCTarget);
      pcmux: mux2 generic map(32) port map(PCPlus4, PCTarget, PCSrc, 

 PCNext);
     –– register file logic
      rf: regfile port map(clk, RegWrite, Instr(19 downto 15),  

 Instr(24 downto 20), Instr(11 downto 7),
                                   Result, SrcA, WriteData);
     ext: extend port map(Instr(31 downto 7), ImmSrc, ImmExt);
     –– ALU logic
      srcbmux: mux2 generic map(32) port map( WriteData, ImmExt, 

ALUSrc, SrcB);
     mainalu: alu port map(SrcA, SrcB, ALUControl, ALUResult, Zero);
      resultmux: mux3 generic map(32) port map(ALUResult, ReadData,  

 PCPlus4, ResultSrc,  
   Result);

end; 
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HDL Example 7.7 EXTEND UNIT

SystemVerilog
module extend(input   logic [31:7] instr,
                        input   logic [1:0]   immsrc,
                       output logic [31:0] immext);

    always_comb
       case(immsrc)
                         // I−type
           2'b00:     immext = {{20{instr[31]}}, instr[31:20]};
                         // S−type (stores)
            2'b01:     immext = {{20{instr[31]}}, instr[31:25],  
 instr[11:7]};
                         // B−type (branches)
           2'b10:      immext = {{20{instr[31]}}, instr[7],  
 instr[30:25], instr[11:8], 1’b0};                                        
                         // J−type (jal)
           2'b11:      immext = {{12{instr[31]}}, instr[19:12],  
 instr[20], instr[30:21], 1’b0};
           default: immext = 32'bx; // undefined
        endcase
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity extend is
    port(instr:    in    STD_LOGIC_VECTOR(31 downto 7);
             immsrc: in    STD_LOGIC_VECTOR(1    downto 0);
             immext: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of extend is
begin
    process(instr, immsrc) begin
        case immsrc is
           –– I–type
           when "00" =>
               immext <= (31 downto 12 => instr(31)) & instr(31 downto 20);
           –– S–types (stores)
           when "01" =>
               immext <=  (31 downto 12 => instr(31)) &  

instr(31 downto 25) & instr(11 downto 7);
           –– B–type (branches)
           when "10" =>
               immext <=  (31 downto 12 => instr(31)) & instr(7) & instr(30 

downto 25) & instr(11 downto 8) & '0';
           –– J–type (jal)
           when "11" =>
               immext <=  (31 downto 20 => instr(31)) &  

instr(19 downto 12) & instr(20) &  
instr(30 downto 21) & '0';

            when others =>
              immext <= (31 downto 0  => '–');
         end case;
     end process;
end;

HDL Example 7.8 RESETTABLE FLIP-FLOP

SystemVerilog
module flopr #(parameter WIDTH = 8)
                        (input    logic                     clk, reset,
                         input    logic [WIDTH−1:0] d,
                         output logic [WIDTH−1:0] q);

    always_ff @(posedge clk, posedge reset)
                       if (reset) q <= 0;
                       else           q <= d;
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

entity flopr is
    generic(width: integer);
    port(clk, reset:  in    STD_LOGIC;
             d:                 in    STD_LOGIC_VECTOR(width−1 downto 0);
             q:                 out STD_LOGIC_VECTOR(width−1 downto 0));
end;

architecture asynchronous of flopr is
begin
    process(clk, reset) begin
       if reset = '1' then                q <= (others => '0');
       elsif rising_edge(clk) then q <= d;
       end if;
     end process;
end; 



7.6 HDL Representation 463

HDL Example 7.9 RESETTABLE FLIP-FLOP WITH ENABLE

SystemVerilog
module flopenr #(parameter WIDTH = 8)
                          (input    logic                     clk, reset, en,
                             input    logic [WIDTH–1:0] d,
                             output logic [WIDTH–1:0] q);

 always_ff @(posedge clk, posedge reset)
     if (reset)     q <= 0;
     else if (en) q <= d;
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

entity flopenr is
    generic(width: integer);
    port(clk, reset, en: in    STD_LOGIC;
             d:                      in    STD_LOGIC_VECTOR(width–1 downto 0);
             q:                       out STD_LOGIC_VECTOR(width–1 downto 0));
end;

architecture asynchronous of flopenr is
begin
    process(clk, reset, en) begin
        if reset = '1' then                                    q <= (others => '0');
        elsif rising_edge(clk) and en = '1' then q <= d;
        end if;
     end process;
end;

HDL Example 7.10 2:1 MULTIPLEXER

SystemVerilog
module mux2 #(parameter WIDTH = 8)
                      (input    logic [WIDTH−1:0] d0, d1,
                       input    logic                     s,
                       output logic [WIDTH−1:0] y);

     assign y = s ? d1 : d0;
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity mux2 is
    generic(width: integer := 8);
    port(d0, d1: in    STD_LOGIC_VECTOR(width−1 downto 0);
             s:          in    STD_LOGIC;
             y:          out STD_LOGIC_VECTOR(width−1 downto 0));
end;

architecture behave of mux2 is
begin
    y <= d1 when s = '1' else d0;
end; 

HDL Example 7.11 3:1 MULTIPLEXER

SystemVerilog
module mux3 #(parameter WIDTH = 8)
                     (input    logic [WIDTH−1:0] d0, d1, d2,
                        input    logic [1:0]             s,
                        output logic [WIDTH−1:0] y);

     assign y = s[1] ? d2 : (s[0] ? d1 : d0);
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity mux3 is
    generic(width: integer := 8);
    port(d0, d1, d2: in    STD_LOGIC_VECTOR(width−1 downto 0);
             s:                in    STD_LOGIC_VECTOR(1 downto 0);
             y:                out STD_LOGIC_VECTOR(width−1 downto 0));
end;

architecture behave of mux3 is
begin
    process(d0, d1, d2, s) begin
        if        (s = "00") then y <= d0;
        elsif (s = "01") then y <= d1;
        elsif (s = "10") then y <= d2;
        end if;
     end process;
end; 
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# riscvtest.s
# Sarah.Harris@unlv.edu
# David_Harris@hmc.edu
# 27 Oct 2020
#
# Test the RISC-V processor:
#   add, sub, and, or, slt, addi, lw, sw, beq, jal
# If successful, it should write the value 25 to address 100
# RISC-V Assembly Description Address Machine Code
main: addi x2, x0, 5 # x2 = 5 0 00500113

addi x3, x0, 12 # x3 = 12 4 00C00193
addi x7, x3, -9 # x7 = (12 - 9) = 3 8 FF718393
or x4, x7, x2 # x4 = (3 OR 5) = 7 C 0023E233
and x5, x3, x4 # x5 = (12 AND 7) = 4 10 0041F2B3
add x5, x5, x4 # x5 = 4 + 7 = 11 14 004282B3
beq x5, x7, end # shouldn't be taken 18 02728863
slt x4, x3, x4 # x4 = (12 < 7) = 0 1C 0041A233
beq x4, x0, around # should be taken 20 00020463
addi x5, x0, 0 # shouldn't execute 24 00000293

around: slt x4, x7, x2 # x4 = (3 < 5) = 1 28 0023A233
add x7, x4, x5 # x7 = (1 + 11) = 12 2C 005203B3
sub x7, x7, x2 # x7 = (12 - 5) = 7 30 402383B3
sw x7, 84(x3) # [96] = 7 34 0471AA23
lw x2, 96(x0) # x2 = [96] = 7 38 06002103
add x9, x2, x5 # x9 = (7 + 11) = 18 3C 005104B3
jal x3, end # jump to end, x3 = 0x44 40 008001EF
addi x2, x0, 1 # shouldn't execute 44 00100113

end: add x2, x2, x9 # x2 = (7 + 18) = 25 48
4C

00910133
sw x2, 0x20(x3) # [100] = 25 0221A023

done: beq x2, x2, done # infinite loop 50 00210063

Figure 7.64 riscvtest.s

7 . 6 . 3   Testbench

The testbench loads a program into the memories. The program in 
Figure 7.64 exercises all of the instructions by performing a computa-
tion that should produce the correct result only if all of the instructions 
are functioning correctly. Specifically, the program will write the value 
25 to address 100 if it runs correctly, but it is unlikely to do so if the 
hardware is buggy. This is an example of ad hoc testing.

The machine code is stored in a text file called riscvtest.txt 
(Figure  7.65) which is loaded by the testbench during simulation. The 
file consists of the machine code for the instructions written in hexadeci-
mal, one instruction per line.

The testbench, top-level RISC-V module (that instantiates the 
RISC-V processor and memories), and external memory HDL code are 
given in the following examples. The testbench instantiates the top-level 
module being tested and generates a periodic clock and a reset at the 
start of the simulation. It checks for memory writes and reports success 
if the correct value (25) is written to address 100. The memories in this 
example hold 64 32-bit words each.

00500113
00C00193
FF718393
0023E233
0041F2B3
004282B3
02728863
0041A233
00020463
00000293
0023A233
005203B3
402383B3
0471AA23
06002103
005104B3
008001EF
00100113
00910133
0221A023
00210063

Figure 7.65 riscvtest.txt
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HDL Example 7.12 TESTBENCH

SystemVerilog
module testbench();

    logic              clk;
    logic              reset;
    logic [31:0] WriteData, DataAdr;
    logic              MemWrite;

    // instantiate device to be tested
    top dut(clk, reset, WriteData, DataAdr, MemWrite);

    // initialize test
    initial
     begin
         reset <= 1; # 22; reset <= 0;

     end

    // generate clock to sequence tests
    always

    begin
        clk <= 1; # 5; clk <= 0; # 5;

    end

    // check results
    always @(negedge clk)

   begin
        if(MemWrite) begin
           if(DataAdr = = = 100 & WriteData = = = 25) begin
              $display("Simulation succeeded");
              $stop;
           end else if (DataAdr != = 96) begin
              $display("Simulation failed");
              $stop;
           end
         end

        end
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is
end;

architecture test of testbench is
    component top
        port(clk, reset:               in   STD_LOGIC;
                WriteData, DataAdr: out STD_LOGIC_VECTOR(31 downto 0);
                MemWrite:                 out STD_LOGIC);
    end component;

    signal WriteData, DataAdr:     STD_LOGIC_VECTOR(31 downto 0);
    signal clk, reset, MemWrite: STD_LOGIC;
begin
    –– instantiate device to be tested
    dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

    –– Generate clock with 10 ns period
    process begin
         clk <= '1';
         wait for 5 ns;
         clk <= '0';
         wait for 5 ns;
    end process;

    –– Generate reset for first two clock cycles
    process begin
        reset <= '1';
        wait for 22 ns;
        reset <= '0';
        wait;
    end process;

    –– check that 25 gets written to address 100 at end of program
    process(clk) begin
         if(clk'event and clk = '0' and MemWrite = '1') then
           if( to_integer(DataAdr) = 100 and  

to_integer(writedata) = 25) then
                report "NO ERRORS: Simulation succeeded" severity 

failure;
           elsif (DataAdr /= 96) then
               report "Simulation failed" severity failure;
           end if;
       end if;
    end process;
end; 
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HDL Example 7.13 TOP-LEVEL MODULE

SystemVerilog
module top(input   logic              clk, reset,
                  output logic [31:0] WriteData, DataAdr,
                  output logic             MemWrite);

    logic [31:0] PC, Instr, ReadData;

    // instantiate processor and memories
     riscvsingle rvsingle( clk, reset, PC, Instr, MemWrite, 

DataAdr,  WriteData, ReadData);
    imem imem(PC, Instr);
    dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is
    port(clk, reset:              in        STD_LOGIC;
             WriteData, DataAdr: buffer STD_LOGIC_VECTOR(31 downto 0);
             MemWrite:                 buffer STD_LOGIC);
end;

architecture test of top is
    component riscvsingle
        port(clk, reset:            in     STD_LOGIC;
           PC:                               out STD_LOGIC_VECTOR(31 downto 0);
           Instr:                          in    STD_LOGIC_VECTOR(31 downto 0);
           MemWrite:                     out STD_LOGIC;
           ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
           ReadData:                    in     STD_LOGIC_VECTOR(31 downto 0));
     end component;
     component imem
     port(a:    in    STD_LOGIC_VECTOR(31 downto 0);
              rd: out STD_LOGIC_VECTOR(31 downto 0));
     end component;
     component dmem
     port(clk, we: in    STD_LOGIC;
        a, wd:           in    STD_LOGIC_VECTOR(31 downto 0);
        rd:              out STD_LOGIC_VECTOR(31 downto 0));
     end component;

     signal PC, Instr, ReadData: STD_LOGIC_VECTOR(31 downto 0);
begin
     –– instantiate processor and memories
     rvsingle: riscvsingle port map( clk, reset, PC, Instr, 

MemWrite, DataAdr,
                                                      WriteData, ReadData);
     imem1: imem port map(PC, Instr);
     dmem1: dmem port map( clk, MemWrite, DataAdr, WriteData, 

ReadData);
end; 

HDL Example 7.14 INSTRUCTION MEMORY

SystemVerilog
module imem(input    logic [31:0] a,
                    output logic [31:0] rd);

    logic [31:0] RAM[63:0];

    initial
       $readmemh("riscvtest.txt",RAM);

    assign rd = RAM[a[31:2]]; // word aligned
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
use ieee.std_logic_textio.all;

entity imem is
    port(a:    in    STD_LOGIC_VECTOR(31 downto 0);
             rd: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of imem is
 type ramtype is array (63 downto 0) of  

 STD_LOGIC_VECTOR(31 downto 0);
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    –– initialize memory from file
    impure function init_ram_hex return ramtype is
    file text_file : text open read_mode is "riscvtest.txt";
        variable text_line : line;
        variable ram_content : ramtype;
        variable i : integer := 0;
    begin
       for i in 0 to 63 loop –– set all contents low
          ram_content(i) := (others => '0');
       end loop;
        while not endfile(text_file) loop –– set contents from file
           readline(text_file, text_line);
           hread(text_line, ram_content(i));
           i := i + 1;
        end loop;

        return ram_content;
    end function;

    signal mem : ramtype := init_ram_hex;
    begin
    –– read memory
    process(a) begin
       rd <= mem(to_integer(a(31 downto 2)));
    end process;
end; 

HDL Example 7.15 DATA MEMORY

SystemVerilog
module dmem(input    logic              clk, we,
                    input    logic [31:0] a, wd,
                    output logic [31:0] rd);

    logic [31:0] RAM[63:0];

    assign rd = RAM[a[31:2]]; // word aligned

    always_ff @(posedge clk)
        if (we) RAM[a[31:2]] <= wd;
endmodule

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is
    port(clk, we: in    STD_LOGIC;
              a, wd:      in    STD_LOGIC_VECTOR(31 downto 0);
              rd:         out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of dmem is
begin
    process is
        type ramtype is  array (63 downto 0) of  

STD_LOGIC_VECTOR(31 downto 0);
        variable mem: ramtype;
    begin
        –– read or write memory
         loop
           if rising_edge(clk) then
               if (we = '1') then mem(to_integer(a(7 downto 2))) := wd;
                 end if;
            end if;
            rd <= mem(to_integer(a(7 downto 2)));
            wait on clk, a;
         end loop;
     end process;
end; 
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7.7  ADVANCED MICROARCHITECTURE*
High-performance microprocessors use a wide variety of techniques 
to run programs faster. Recall that the time required to run a program 
is proportional to the period of the clock and to the number of clock 
cycles per instruction (CPI). Thus, to increase performance, we would 
like to speed up the clock and/or reduce the CPI. This section surveys 
some existing speedup techniques. The implementation details become 
quite complex, so we focus on the concepts. Hennessy and Patterson’s 
Computer Architecture text is a definitive reference if you want to fully 
understand the details.

Advances in integrated circuit manufacturing have steadily reduced 
transistor sizes. Smaller transistors are faster and generally consume less 
power. Thus, even if the microarchitecture does not change, the clock 
frequency can increase because all the gates are faster. Moreover, smaller 
transistors enable placing more transistors on a chip. Microarchitects 
use the additional transistors to build more complicated processors or 
to put more processors on a chip. Unfortunately, power consumption 
increases with the number of transistors and the speed at which they 
operate (see Section 1.8). Power consumption has become an essen-
tial concern. Microprocessor designers have a challenging task juggling 
the trade-offs among speed, power, and cost for chips with billions of 
transistors in some of the most complex systems that humans have  
ever built.

7 . 7 . 1   Deep Pipelines

Aside from advances in manufacturing, the easiest way to speed up the 
clock is to chop the pipeline into more stages. Each stage contains less 
logic, so it can run faster. This chapter has considered a classic five-stage  
pipeline, but 8 to 20 stages are now commonly used. For example, 
the SweRV EH1 core, the open-source commercial RISC-V processor  
developed by Western Digital, has nine pipeline stages.

The maximum number of pipeline stages is limited by pipeline haz-
ards, sequencing overhead, and cost. Longer pipelines introduce more 
dependencies. Some of the dependencies can be solved by forwarding 
but others require stalls, which increase the CPI. The pipeline registers 
between each stage have sequencing overhead from their setup time and 
clk-to-Q delay (as well as clock skew). Due to this sequencing overhead, 
adding more pipeline stages gives diminishing returns. Finally, adding 
more stages increases the cost because of the extra pipeline registers and 
hardware required to handle hazards.

In the late 1990’s and early 
2000’s, microprocessors were 
marketed largely based on 
clock frequency (f = 1/Tc).  
This pushed microprocessors  
to use very deep pipelines  
(20–31 stages on the Pentium 4)  
to maximize the clock 
frequency, even if the benefits 
to overall performance 
were questionable. Power 
is proportional to clock 
frequency and increases 
with the number of pipeline 
registers, so now that power 
consumption is so important, 
pipeline depths are shorter. 



7.7 Advanced Microarchitecture 469

Example 7.11 DEEP PIPELINES

Consider building a pipelined processor by chopping up the single-cycle proces-
sor into N stages. The single-cycle processor has a propagation delay of 750 ps 
through the combinational logic. The sequencing overhead of a register is 90 ps. 
Assume that the combinational delay can be arbitrarily divided into any number 
of stages and that pipeline hazard logic does not increase the delay. The five-
stage pipeline in Example 7.9 has a CPI of 1.25. Assume that each additional 
stage increases the CPI by 0.1 because of branch mispredictions and other pipe-
line hazards. How many pipeline stages should be used to make the processor 
execute programs as fast as possible?

Solution The cycle time for an N-stage pipeline is Tc = [(750/N) + 90] ps. The 
CPI is 1.25 + 0.1(N – 5), where N ≥ 5. The time per instruction (i.e., instruction 
time) is the product of the cycle time Tc and the CPI. Figure 7.66 plots the cycle 
time and instruction time versus the number of stages. The instruction time has 
a minimum of 281 ps at N = 8 stages. This minimum is only slightly better than 
the 295 ps per instruction achieved with a five-stage pipeline, and the curve is 
almost flat between 7 to 10 stages.
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Figure 7.66 Cycle time and 
instruction time vs. the number of 
pipeline stages

 

7 . 7 . 2   Micro-Operations

Recall our design principles of “regularity supports simplicity” and 
“make the common case fast.” Pure reduced instruction set computer 
(RISC) architectures such as RISC-V contain only simple instructions, 
typically those that can be executed in a single cycle on a simple, fast 
datapath with a three-ported register file, single ALU, and single data 
memory access like the ones we have developed in this chapter. Complex 
instruction set computer (CISC) architectures generally include instruc-
tions requiring more registers, more additions, or more than one  
memory access per instruction. For example, the x86 instruction  
ADD [ESP],[EDX+80+EDI*2] involves reading the three registers (ESP, 
EDX, and EDI), adding the base (EDX), displacement (80), and scaled 



MicroarchitectureCHAPTER SEVEN470

index (EDI*2), reading two memory locations, summing their values, 
and writing the result back to memory. A microprocessor that could per-
form all of these functions at once would be unnecessarily slow when 
executing more common, simpler instructions.

Computer architects of CISC processors make the common case fast 
by defining a set of simple micro-operations (also known as micro-ops 
or μops) that can be executed on simple datapaths. Each CISC instruc-
tion is decoded into one or more micro-ops. For example, if we defined 
μops resembling RISC-V instructions, and used temporary registers 
t1 and t2 to hold intermediate results, then the x86 instruction above 
could become six μops:

slli t2, EDI, 1   # t2 = EDI*2
add   t1, EDX, t2  # t1 = EDX + EDI*2
lw    t1, 80(t1)   # t1 = MEM[EDX + EDI*2 + 80]
lw    t2, 0(ESP)   # t2 = MEM[ESP]
add   t1, t2, t1   # t1 = MEM[ESP] + MEM[EDX + EDI*2 + 80]
sw    t1, 0(ESP)   # MEM[ESP] = MEM[ESP] + MEM[EDX + EDI*2 + 80]

7 . 7 . 3   Branch Prediction

An ideal pipelined processor would have a CPI of 1. The branch mis-
prediction penalty is a major reason for increased CPI. As pipelines get 
deeper, branches are resolved later in the pipeline. Thus, the branch mis-
prediction penalty gets larger because all the instructions issued after 
the mispredicted branch must be flushed. To address this problem, most 
pipelined processors use a branch predictor to guess whether the branch 
should be taken. Recall that our pipeline from Section 7.5.3 simply pre-
dicted that branches are never taken.

Some branches occur at the beginning of a loop to check a condition  
and branch past the loop when the condition is no longer met (e.g., in for 
and while loops). Loops tend to execute many times, so these forward 
branches are usually not taken. Other branches occur when a program 
reaches the end of a loop and branches back to repeat the loop (e.g., in  
a do / while loop). Again, because loops tend to execute many times, 
these backward branches are usually taken. The simplest form of branch  
prediction checks the direction of the branch and predicts that backward 
branches are taken and forward branches are not. This is called static 
branch prediction, because it does not depend on the history of the program.

However, branches, especially forward branches, are difficult to 
predict without knowing more about the specific program. Therefore, 
most processors use dynamic branch predictors, which use the history  
of program execution to guess whether a branch should be taken. 
Dynamic branch predictors maintain a table of the last several hundred 

Microarchitects make the 
decision of whether to provide 
hardware to implement a 
complex operation directly 
or to break it into micro-op 
sequences. They make similar 
decisions about other options 
described later in this section. 
These choices lead to different 
points in the performance-
power-cost design space. 
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(or thousand) branch instructions that the processor has executed. 
The table, called a branch target buffer, includes the destination of the 
branch and a history of whether the branch was taken.

To see the operation of dynamic branch predictors, consider the fol-
lowing loop from Code Example 6.20. The loop repeats 10 times, and the 
branch out of the loop (bge s0, t0, done) is taken only on the last iteration.

 addi s1, zero, 0   # s1 = sum = 0
 addi s0, zero, 0   # s0 = i = 0
 addi t0, zero, 10  # t0 = 10

for:
 bge   s0, t0, done  # i >= 10?
 add   s1, s1, s0    # sum = sum + i
 addi s0, s0, 1     # i = i + 1
 j        for           # repeat loop

done:

A one-bit dynamic branch predictor remembers whether the branch 
was taken the last time and predicts that it will do the same thing the next 
time. While the loop is repeating, it remembers that the beq was not taken 
last time and predicts that it should not be taken next time. This is a cor-
rect prediction until the last branch of the loop, when the branch does get 
taken. Unfortunately, if the loop is run again, the branch predictor remem-
bers that the last branch was taken. Therefore, it incorrectly predicts that 
the branch should be taken when the loop is first run again. In summary, 
a 1-bit branch predictor mispredicts the first and last branches of a loop.

A two-bit dynamic branch predictor solves this problem by hav-
ing four states: Strongly Taken, Weakly Taken, Weakly Not Taken, and 
Strongly Not Taken, as shown in Figure 7.67. When the loop is repeat-
ing, it enters the Strongly Not Taken state and predicts that the branch 
should not be taken next time. This is correct until the last branch of the 
loop, which is taken and moves the predictor to the Weakly Not Taken 
state. When the loop is first run again, the branch predictor correctly 
predicts that the branch should not be taken and reenters the Strongly 
Not Taken state. In summary, a two-bit branch predictor mispredicts 
only the last branch of a loop. It is called a two-bit branch predictor 
because it requires two bits to encode the four states.

Strongly
Taken
predict
taken taken taken taken

takentakentaken

taken

taken
Weakly
Taken
predict
taken

Weakly 
Not Taken

predict
not taken

Strongly 
Not Taken

predict
not taken

Figure 7.67 Two-bit branch predictor state transition diagram
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The branch predictor operates in the Fetch stage of the pipeline so 
that it can determine which instruction to execute on the next cycle. 
When it predicts that the branch should be taken, the processor fetches 
the next instruction from the branch destination stored in the branch 
target buffer.

As one can imagine, branch predictors may be used to track even 
more history of the program to increase the accuracy of predictions. 
Good branch predictors achieve better than 90% accuracy on typical 
programs.

7 . 7 . 4   Superscalar Processors

A superscalar processor contains multiple copies of the datapath hard-
ware to execute multiple instructions simultaneously. Figure 7.68 shows 
a block diagram of a two-way superscalar processor that fetches and 
executes two instructions per cycle. The datapath fetches two instruc-
tions at a time from the instruction memory. It has a six-ported register 
file to read four source operands and write two results back in each 
cycle. It also contains two ALUs and a two-ported data memory to exe-
cute the two instructions at the same time.

Figure 7.69 is a pipeline diagram illustrating the two-way superscalar  
processor executing two instructions on each cycle. For this program,  
the processor has a CPI of 0.5. Designers commonly refer to the reciprocal  
of the CPI as the instructions per cycle, or IPC. This processor has an 
IPC of 2 on this program.

Executing many instructions simultaneously is difficult because of 
dependencies. For example, Figure 7.70 shows a pipeline diagram run-
ning a program with data dependencies. The dependencies in the code 
are indicated in blue. The add instruction is dependent on s8, which is 

Western Digital’s RISC-V 
SweRV EH1 is a two-way 
superscalar core. 
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Figure 7.68 Superscalar datapath

A scalar processor acts on one 
piece of data at a time. A vector 
processor acts on several pieces 
of data with a single instruction. 
A superscalar processor issues 
several instructions at a time, 
each of which operates on one 
piece of data.

Scalar processors are 
classified as single-instruction 
single-data (SISD) machines. 
Vector processors and graphics 
processors (GPUs: graphics 
processing units) are single-
instruction multiple-data (SIMD) 
machines. Multiprocessors, 
such as multicore processors, 
are classified as multiple-
instruction multiple-data 
(MIMD) machines. Typically, 
MIMD machines have a single 
program running that uses all 
or a subset of the cores. This 
style of programming is called 
single-program multiple-data 
(SPMD), but multiprocessors 
can be programmed in other 
ways as well.
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produced by the lw instruction, so it cannot be issued at the same time 
as lw. The add instruction stalls for yet another cycle so that lw can for-
ward s8 to add in cycle 5. The other dependencies (between sub and 
and based on s8, and between or and sw based on s11) are handled by 
forwarding results produced in one cycle to be consumed in the next. 
This program requires five cycles to issue six instructions, for an IPC of 
6/5 = 1.2.

Recall that parallelism comes in temporal and spatial forms. 
Pipelining is a case of temporal parallelism. Using multiple execution 
units is a case of spatial parallelism. Superscalar processors exploit both 
forms of parallelism to squeeze out performance far exceeding that of 
our single-cycle and multicycle processors.

Commercial processors may be three-, four-, or even six-way super-
scalar. They must handle control hazards such as branches as well as 
data hazards. Unfortunately, real programs have many dependencies, so 
wide superscalar processors rarely fully utilize all of the execution units. 
Moreover, the large number of execution units and complex forwarding 
networks consume vast amounts of circuitry and power.

7 . 7 . 5   Out-of-Order Processor

To cope with the problem of dependencies, an out-of-order processor 
looks ahead across many instructions to issue independent instructions 
as rapidly as possible. The instructions can issue in a different order than 
that written by the programmer as long as dependencies are honored so 
that the program produces the intended result.

Our RISC-V pipelined 
processor is a scalar processor. 
Vector processors were popular 
for supercomputers in the 
1980’s and 1990’s because 
they efficiently handled the 
long vectors of data common 
in scientific computations, and 
they are heavily used now in 
GPUs. Processing vectors, or 
SIMD in general, is an example 
of data-level parallelism, where 
multiple data can be operated 
on in parallel. Modern high-
performance microprocessors 
are superscalar, because issuing 
several independent instructions 
is more flexible than processing 
vectors. However, modern 
processors also include 
hardware, called SIMD units, 
to handle short vectors of data 
that are common in multimedia 
and graphics applications. 
RISC-V includes the vector (V) 
extension to support vector 
operations. 
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Figure 7.69 Abstract view of a superscalar pipeline in operation
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Consider running the same program from Figure 7.70 on a two-way 
superscalar out-of-order processor. The processor can issue up to two 
instructions per cycle from anywhere in the program, as long as depen-
dencies are observed. Figure 7.71 shows the data dependencies and the 
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operation of the processor. The classifications of dependencies as RAW and 
WAR will be discussed soon. The constraints on issuing instructions are:

Cycle 1
▸ The lw instruction issues.

▸ The add, sub, and and instructions are dependent on lw by way of 
s8, so they cannot issue yet. However, the or instruction is indepen-
dent, so it also issues.

Cycle 2
▸ Remember that a two-cycle latency exists between issuing lw and 

a dependent instruction, so add cannot issue yet because of the s8 
dependence. sub writes s8, so it cannot issue before add, lest add 
receive the wrong value of s8. and is dependent on sub.

▸ Only the sw instruction issues.

Cycle 3
▸ On cycle 3, s8 is available (or, rather, will be when add needs it), so 

the add issues. sub issues simultaneously, because it will not write 
s8 until after add consumes (i.e., reads) it.

Cycle 4
▸ The and instruction issues. s8 is forwarded from sub to and.

The out-of-order processor issues the six instructions in four cycles, 
for an IPC of 6/4 = 1.5. The dependence of add on lw by way of s8 is a 
read after write (RAW) hazard. add must not read s8 until after lw has 
written it. This is the type of dependency we are accustomed to handling 
in the pipelined processor. It inherently limits the speed at which the 
program can run, even if infinitely many execution units are available. 
Similarly, the dependence of sw on or by way of s11 and of and on sub 
by way of s8 are RAW dependencies.

The dependence between sub and add by way of s8 is called a write 
after read (WAR) hazard or an antidependence. sub must not write s8 
before add reads s8, so that add receives the correct value according to 
the original order of the program. WAR hazards could not occur in the 
simple pipeline, but they may happen in an out-of-order processor if the 
dependent instruction (in this case, sub) is moved too early.

A WAR hazard is not essential to the operation of the program. It 
is merely an artifact of the programmer’s choice to use the same reg-
ister for two unrelated instructions. If the sub instruction had written 
s3 instead of s8, then the dependency would disappear and sub could 
be issued before add. The RISC-V architecture has only 31 registers, so 
sometimes the programmer is forced to reuse a register and introduce a 
hazard just because all of the other registers are in use.
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A third type of hazard, not shown in the program, is called a write 
after write (WAW) hazard or an output dependence. A WAW hazard 
occurs if an instruction attempts to write a register after a subsequent 
instruction has already written it. The hazard would result in the wrong 
value being written to the register. For example, in the following code, 
lw and add both write s7. The final value in s7 should come from add 
according to the order of the program. If an out-of-order processor 
attempted to execute add first and then lw, a WAW hazard would occur.

lw   s7, 0(t3)
add s7, s1, t2

WAW hazards are not essential either; again, they are artifacts 
caused by the programmer using the same destination register for two 
unrelated instructions. If the add instruction were issued first, then the 
program could eliminate the WAW hazard by discarding the result of the 
lw instead of writing it to s7. This is called squashing the lw.4

Out-of-order processors use a table to keep track of instructions 
waiting to issue. The table, sometimes called a scoreboard, contains 
information about the dependencies. The size of the table determines 
how many instructions can be considered for issue. On each cycle, the 
processor examines the table and issues as many instructions as it can, 
limited by the dependencies and by the number of execution units (e.g., 
ALUs, memory ports) that are available.

The instruction-level parallelism (ILP) is the number of instruc-
tions that can be executed simultaneously for a particular program and 
microarchitecture. Theoretical studies have shown that the ILP can be 
quite large for out-of-order microarchitectures with perfect branch pre-
dictors and enormous numbers of execution units. However, practical 
processors seldom achieve an ILP greater than two or three, even with 
six-way superscalar datapaths with out-of-order execution.

7 . 7 . 6   Register Renaming

Out-of-order processors use a technique called register renaming to elimi-
nate WAR and WAW hazards. Register renaming adds some nonarchitec-
tural renaming registers to the processor. For example, a processor might 
add 20 renaming registers, called r0 to r19. The programmer cannot 

4  You might wonder why the lw needs to be issued at all. The reason is that out-of-order 
processors must guarantee that all of the same exceptions occur that would have occurred 
if the program had been executed in its original order. The lw potentially may produce a 
load address misaligned exception or load access fault, so it must be issued to check for the 
exception, even though the result can be discarded.
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use these registers directly, because they are not part of the architecture. 
However, the processor is free to use them to eliminate hazards.

For example, in the previous section, a WAR hazard occurred 
between the sub s8, t2, t3 and add s9, s8, t1 instructions based on 
reusing s8. The out-of-order processor could rename s8 to r0 for the 
sub instruction. Then, sub could be executed sooner, because r0 has 
no dependency on the add instruction. The processor keeps a table of 
which registers were renamed so that it can consistently rename regis-
ters in subsequent dependent instructions. In this example, s8 must also 
be renamed to r0 in the and instruction, because it refers to the result 
of sub. Figure 7.72 shows the same program from Figure 7.71 execut-
ing on an out-of-order processor with register renaming. s8 is renamed 
to r0 in sub and and to eliminate the WAR hazard. The constraints on 
issuing instructions are:

Cycle 1
▸ The lw instruction issues.

▸ The add instruction is dependent on lw by way of s8, so it cannot 
issue yet. However, the sub instruction is independent now that its 
destination has been renamed to r0, so sub also issues.

Cycle 2
▸ Remember that a two-cycle latency must exist between issuing lw 

and a dependent instruction, so add cannot issue yet because of the 
s8 dependence.
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▸ The and instruction is dependent on sub, so it can issue. r0 is  
forwarded from sub to and.

▸ The or instruction is independent, so it also issues.

Cycle 3
▸ On cycle 3, s8 is available, so the add issues.

▸ s11 is also available, so sw issues.

The out-of-order processor with register renaming issues the six 
instructions in three cycles, for an IPC of 2.

7 . 7 . 7   Multithreading

Because the instruction-level parallelism (ILP) of real programs tends to 
be fairly low, adding more execution units to a superscalar or out-of-order  
processor gives diminishing returns. Another problem, discussed in 
Chapter 8, is that memory is much slower than the processor. Most 
loads and stores access a smaller and faster memory, called a cache. 
However, when the instructions or data are not available in the cache, 
the processor may stall for 100 or more cycles while retrieving the infor-
mation from the main memory. Multithreading is a technique that helps 
keep a processor with many execution units busy even if the ILP of a 
program is low or the program is stalled waiting for memory.

To explain multithreading, we need to define a few new terms. A  
program running on a computer is called a process. Computers can run 
multiple processes simultaneously; for example, you can play music on a PC  
while surfing the web and running a virus checker. Each process con-
sists of one or more threads that also run simultaneously. For example, a 
word processor may have one thread handling the user typing, a second  
thread spell-checking the document while the user works, and a third 
thread printing the document. In this way, the user does not have to wait, 
for example, for a document to finish printing before being able to type 
again. The degree to which a process can be split into multiple threads that 
can run simultaneously defines its level of thread-level parallelism (TLP).

In a conventional processor, the threads only give the illusion of 
running simultaneously. The threads actually take turns being executed 
on the processor under control of the operating system (OS). When one 
thread’s turn ends, the OS saves its architectural state, loads the architec-
tural state of the next thread, and starts executing that next thread. This 
procedure is called context switching. As long as the processor switches 
through all threads fast enough, the user perceives all of the threads as 
running at the same time. RISC-V dedicates one of its 32 registers, the 
thread pointer register, tp (i.e., x4), to point to (hold the address of) a 
thread’s local memory.
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A hardware multithreaded processor contains more than one copy 
of its architectural state so that more than one thread can be active at 
a time. For example, if we extended a processor to have four program 
counters and 128 registers, four threads could be available at one time. If 
one thread stalls while waiting for data from main memory, then the pro-
cessor could context switch to another thread without any delay, because 
the program counter and registers are already available. Moreover, if 
one thread lacks sufficient parallelism to keep all execution units busy 
in a superscalar design, then another thread could issue instructions to 
the idle units. Switching between threads can either be fine-grained or 
coarse-grained. Fine-grained multithreading switches between threads 
on each instruction and must be supported by hardware multithreading. 
Coarse-grained multithreading switches out a thread only on expensive 
stalls, such as long memory accesses due to cache misses.

Multithreading does not improve the performance of an individual 
thread, because it does not increase the ILP. However, it does improve 
the overall throughput of the processor, because multiple threads can 
use processor resources that would have been idle when executing a single  
thread. Multithreading is also relatively inexpensive to implement 
because it replicates only the PC and register file, not the execution units 
and memories.

7 . 7 . 8   Multiprocessors

With contributions from Matthew Watkins
Modern processors have enormous numbers of transistors available. 

Using them to increase the pipeline depth or to add more execution units 
to a superscalar processor gives little performance benefit and wastes 
power. Around the year 2005, computer architects made a major shift to 
building multiple copies of the processor on the same chip; these copies 
are called cores.

A multiprocessor system consists of multiple processors and a 
method for communication between the processors. Three common 
classes of multiprocessors include symmetric (or homogeneous) multi-
processors, heterogeneous multiprocessors, and clusters.

Symmetric Multiprocessors
Symmetric multiprocessors include two or more identical processors 
sharing a single main memory. The multiple processors may be separate 
chips or multiple cores on the same chip.

Multiprocessors can be used to run more threads simultaneously 
or to run a particular thread faster. Running more threads simultane-
ously is easy; the threads are simply divided up among the processors. 
Unfortunately, typical PC users need to run only a small number of 
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threads at any given time. Running a particular thread faster is much 
more challenging. The programmer must divide the existing thread into 
multiple threads to execute on each processor. This becomes tricky when 
the processors need to communicate with each other. One of the major 
challenges for computer designers and programmers is to effectively use 
large numbers of processor cores.

Symmetric multiprocessors have a number of advantages. They 
are relatively simple to design because the processor can be designed 
once and then replicated multiple times to increase performance. 
Programming for and executing code on a symmetric multiprocessor is 
also relatively straightforward because any program can run on any pro-
cessor in the system and achieve approximately the same performance.

Heterogeneous Multiprocessors
Unfortunately, continuing to add more and more symmetric cores is not 
guaranteed to provide continued performance improvement. Most consumer 
applications use only a few threads at any given time, and consumers  
typically have only a couple of applications actually computing simul-
taneously. Although this is enough to keep dual-core and quad-core 
systems busy, unless programs start incorporating significantly more  
parallelism, continuing to add more cores beyond this point will provide  
diminishing benefits. As an added issue, because general-purpose pro-
cessors are designed to provide good average performance, they are 
generally not the most power-efficient option for performing a given 
operation. This energy inefficiency is especially important in highly  
power-constrained systems, such as mobile phones.

Heterogeneous multiprocessors aim to address these issues by  
incorporating different types of cores and/or specialized hardware in 
a single system. Each application uses those resources that provide the 
best performance, or power-performance ratio, for that application. 
Because transistors are fairly plentiful these days, the fact that not every 
application will make use of every piece of hardware is of lesser concern.

Heterogeneous systems can take a number of forms. A heterogeneous 
system can incorporate cores with the same architecture but different 
microarchitectures, each with different power, performance, and area 
trade-offs. The RISC-V architecture was specifically designed with the 
aim of supporting a range of processor implementations, from low-cost 
embedded processors to high-performance multiprocessors. Another  
heterogeneous strategy is accelerators, in which a system contains special- 
purpose hardware optimized for performance or energy efficiency on 
specific types of tasks. For example, a mobile system-on-chip (SoC)  
presently may contain dedicated accelerators for graphics processing, 
video, wireless communication, real-time tasks, and cryptography. These 
accelerators can be 10 to 100 times more efficient (in performance, cost, 
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and area) than general-purpose processors for the same tasks. Digital 
signal processors are another class of accelerators. These processors have 
a specialized instruction set optimized for math-intensive tasks.

Heterogeneous systems are not without their drawbacks. They add 
complexity in terms of both designing the different heterogeneous ele-
ments and the additional programming effort to decide when and how to 
make use of the varying resources. Symmetric and heterogeneous systems 
both have their places in modern systems. Symmetric multiprocessors  
are good for situations like large data centers that have lots of thread-
level parallelism available. Heterogeneous systems are good for systems 
that have more varying or special-purpose workloads, such as mobile 
devices.

Clusters
In contrast to the other multiprocessors, processors in clustered multi-
processor systems each have their own local memory system instead of 
sharing memory. One type of cluster is a group of personal computers 
connected on a network and running software to jointly solve a large 
problem. The computers communicate using message passing instead 
of via shared memory. A large-scale computer cluster that has become 
increasingly important is the data center, also called warehouse-scale 
computers (WSCs), in which racks of computers and disks are net-
worked and share power and cooling. Such systems typically include 
50,000 to 100,000 computers, or servers, and cost $150 million.5 Major 
Internet companies—including Google, Amazon, and Facebook—have 
driven the rapid development of data centers to support millions of users 
around the world. One major advantage of such clusters is that single 
computers can be swapped out as needed due to failures or upgrades.

In recent years, traditional servers owned by various companies are 
being replaced by cloud computing, where a smaller company rents a 
part of a WSC from such companies as Google and Amazon. Similarly, 
instead of an application running completely on a handheld device, 
such as a smartphone or tablet, generally called a personal mobile 
device (PMD), part of the application may run on the cloud to speed up 
computation and make data storage more efficient. This is called soft-
ware as a service (SaaS). A common example of SaaS is a web search, 
where the database is stored on a WSC. Companies that rent cloud 
or web services demand both privacy (protection from other software  
running on the cloud) and performance. Both are realized using a virtual  
machine, which emulates an entire computer, including its operating  
system, running on a physical machine that may itself be running a 

5  D. Patterson and J. Hennessy, Computer Organization and Design, The Hardware-
Software Interface: RISC-V Edition, Morgan Kaufmann, © 2018.
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different operating system. Several virtual machines may run on one 
physical machine at once, with resources such as memory and I/O either 
partitioned or shared in time. This allows providers such as Amazon 
Web Services (AWS) to efficiently use physical resources, provide pro-
tection between virtual machines, and migrate virtual machines off of 
nonworking or low-performing computers. The hypervisor, also called 
the virtual machine monitor (VMM), is the software that runs the vir-
tual machine and that maps virtual resources to physical resources. The 
hypervisor performs the functions typically performed by the operating 
system, such as managing I/O, CPU resources, and memory. The hyper-
visor runs between the host (the underlying physical hardware platform) 
and the operating system it is emulating. Instruction set architectures 
that allow the hypervisor to run directly on the hardware (as opposed to 
in software) are called virtualizable. This allows for more efficient, high-
er-performance virtual machines. Examples of virtualizable architectures 
include x86 (as of 2005), RISC-V, and IBM 370. ARMv7 and MIPS 
architectures are not virtualizable, but ARM did introduce virtualization 
extensions in 2013 with the introduction of ARMv8.

Cloud computing is also a critical part of Internet of Things (IoT) 
applications, where devices such as speakers, phones, and sensors connect  
through a network such as Bluetooth or Wi-Fi. Example IoT applica-
tions include connecting headphones to a smartphone using Bluetooth 
or connecting Alexa or Siri using a Wi-Fi connection. The low-cost 
devices (headphones, Google Home for Google Assistant, or Echo Dot 
for Alexa) connect through a network to higher-power servers that can 
stream music or, in the case of Siri and Alexa, perform speech recogni-
tion, query databases, and perform computations.

7.8  REAL-WORLD PERSPECTIVE: EVOLUTION OF RISC-V 
MICROARCHITECTURE*

This section traces the development of RISC-V microarchitectures since 
RISC-V’s inception in 2010. Because the base instruction set was fully 
described only recently, in 2017, many RISC-V chips are in development 
but only few are on the market as of 2021. But that is expected to 
change quickly as supporting tools and development cycles mature.

Most existing processor implementations are in low-level or embed-
ded processors, but high-performance chips are on the horizon. RISC-V 
International (riscv.org) provides an ever-growing list of cores and SoC plat-
forms. RISC-V commercial cores are found in SiFive’s HiFive development 
board, Western Digital hard drives, and NVIDIA GPUs, amongst others.

As of 2021, two notable commercial RISC-V processors are 
SiFive’s Freedom E310 core and Western Digital’s open-source SweRV 
core, which comes in three versions. The Freedom E310 is a low-cost 

Although RISC-V is an 
open-source architecture, 
not microarchitecture, many 
open-source hardware 
implementations are emerging, 
including Western Digital’s 
SweRV cores, the SweRVolf 
SoC, and the PULP (Parallel 
Ultra Low Power) Platform. 
The ever-increasing RISC-V 
hardware implementations and 
supporting tools are referred to 
as the RISC-V ecosystem. See 
the Preface for information on 
how to access and use some 
of these open-source tools and 
hardware. 
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embedded processor used in SiFive’s HiFive and Sparkfun’s RED-V devel-
opment boards. It runs RV32IMAC (RV32I with multiply/divide [M], 
atomic memory accesses [A], and compressed instructions [C] extensions) 
and has 8 KB of program memory, 8 KB of mask ROM for boot code, 
16 KB of data SRAM, and a 16-KB two-way set-associative instruction 
cache. It also includes JTAG, SPI, I2C, and UART interfaces as well as 
a QSPI flash memory interface. The processor runs at 320 MHz and is 
a single-issue, in-order core with a 5-stage pipeline that has the same 
stages described in this chapter. Figure 7.73 shows a block diagram of the 
FE310-G002 processor found on the HiFive 1 Rev B board.
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The Western Digital SweRV core comes in three open-source  
versions: EH1, EH2, and EL2. The EH1 is a 32-bit, two-way superscalar 
core with a nine-stage pipeline and some support for out-of-order  
execution. These cores implement the RV32IMC instruction set, which 
includes the 32-bit base instruction set and compressed (C) and  
multiply/divide (M) extensions. It has a target frequency of 1 GHz 
using a 28-nm chip manufacturing process. The HDL can also be  
synthesized onto an FPGA. The EH2 core adds dual threading to the 
EH1. The EL2 core is a lower-performance processor targeted to 
embedded systems. Figure 7.74 shows the nine EH1 pipeline stages, 
which start with two fetch, one align, and one decode stage. The 
decode stage decodes up to two instructions. After this, the pipeline 
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Figure 7.74 SweRV EH1 9-stage pipeline  
(Courtesy of Western Digital Corporation, RISC-V SweRVTM EH1 Programmer’s Reference Manual, ©2020)

splits into five parallel paths: a load/store path, two paths for integer 
instructions (such as add, sub, and xor), one path for multiply, and 
one path for divide—that is out of the pipeline because of its 34-cycle 
delay. The last two pipeline stages are the commit and writeback 
stages. The commit stage is required because of out-of-order execution 
and store buffers. The final stage, the writeback stage, writes results 
back to the register file, if needed.

Figure 7.75 shows a block diagram of the SweRV EH1 Core 
Complex. It includes the processor (labeled SweRV EH1 Core in the figure), 
instruction cache (I-Cache), data and instruction memories (DCCM and 
ICCM—data and instruction closely coupled memories), programmable 
interrupt controller (PIC), JTAG debugger interface, and memory/debug 
interfaces that can be configured as AXI4 or AHB-Lite busses. The processor 
consists of instruction fetch (IFU), decode (DEC), execute (EXU), and 
load/store (LSU) units. The IFU encompasses both pipeline fetch stages; 
DEC includes the align and decode stages; and EXU encompasses all 
other stages except the load/store pipeline, which is in the load/store unit 
(LSU). The system includes a 4-way set-associative instruction cache that 
can be configured as 16 to 256 KiB. The DCCM and ICCM are called 
closely coupled memories because they are low-latency on-chip memories, 
and they can be configured as 4 to 512 KiB.

The source code (SystemVerilog)  
for Western Digital’s open-source  
cores is available for download 
at https://github.com/
chipsalliance/Cores-SweRV 

The RISC-V FPGA (RVfpga) 
course from Imagination 
Technologies shows how to 
target the SweRV EH1 core to an  
FPGA and how to compile and 
run programs on the RISC-V 
core. This free course also 
provides labs and exercises that  
show how to expand the core 
to add peripherals, how to 
understand and modify the 
pipeline, superscalar execution, 
branch predictor, and memory 
hierarchy, and how to use features  
such as timers, interrupts, and 
performance counters. These labs  
and materials are freely available  
from the Imagination Technologies  
University Program at https://
university.imgtec.com/rvfpga/. 
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splits into five parallel paths: a load/store path, two paths for integer 
instructions (such as add, sub, and xor), one path for multiply, and 
one path for divide—that is out of the pipeline because of its 34-cycle 
delay. The last two pipeline stages are the commit and writeback 
stages. The commit stage is required because of out-of-order execution 
and store buffers. The final stage, the writeback stage, writes results 
back to the register file, if needed.

Figure 7.75 shows a block diagram of the SweRV EH1 Core 
Complex. It includes the processor (labeled SweRV EH1 Core in the figure), 
instruction cache (I-Cache), data and instruction memories (DCCM and 
ICCM—data and instruction closely coupled memories), programmable 
interrupt controller (PIC), JTAG debugger interface, and memory/debug 
interfaces that can be configured as AXI4 or AHB-Lite busses. The processor 
consists of instruction fetch (IFU), decode (DEC), execute (EXU), and 
load/store (LSU) units. The IFU encompasses both pipeline fetch stages; 
DEC includes the align and decode stages; and EXU encompasses all 
other stages except the load/store pipeline, which is in the load/store unit 
(LSU). The system includes a 4-way set-associative instruction cache that 
can be configured as 16 to 256 KiB. The DCCM and ICCM are called 
closely coupled memories because they are low-latency on-chip memories, 
and they can be configured as 4 to 512 KiB.

The source code (SystemVerilog)  
for Western Digital’s open-source  
cores is available for download 
at https://github.com/
chipsalliance/Cores-SweRV 

The RISC-V FPGA (RVfpga) 
course from Imagination 
Technologies shows how to 
target the SweRV EH1 core to an  
FPGA and how to compile and 
run programs on the RISC-V 
core. This free course also 
provides labs and exercises that  
show how to expand the core 
to add peripherals, how to 
understand and modify the 
pipeline, superscalar execution, 
branch predictor, and memory 
hierarchy, and how to use features  
such as timers, interrupts, and 
performance counters. These labs  
and materials are freely available  
from the Imagination Technologies  
University Program at https://
university.imgtec.com/rvfpga/. 

Robert Golla is a Senior Fellow 
at Western Digital and was 
responsible for the architecture 
of Western Digital’s EH1, EL2, 
and EH2 RISC-V open-source 
embedded processor cores. He 
also architected Oracle’s T4, 
M7, M8, and M9 out-of-order 
cores, Sun’s N2 multithreaded 
core, and Motorola’s embedded 
e500 core and contributed to 
Cyrix’s next generation x86 
M3, NXP’s low-power 603 and 
603e, and IBM’s POWER1 and 
POWER2 microprocessors. He 
has over 50 patents related to 
microprocessor design. 
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Figure 7.75 SweRV EH1 Core Complex (Courtesy of Western Digital Corporation, RISC-V 
SweRVTM EH1 Programmer’s Reference Manual, ©2020)
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7.9  SUMMARY
This chapter has described three ways to build processors, each with dif-
ferent performance, area, and cost trade-offs. We find this topic almost 
magical: how can such a seemingly complicated device as a microproces-
sor actually be simple enough to fit in a half-page schematic? Moreover, 
the inner workings, so mysterious to the uninitiated, are actually reasonably 
straightforward.

The microarchitectures have drawn together almost every topic 
covered in the text so far. Piecing together the microarchitecture puzzle 
illustrates the principles introduced in previous chapters, including the 
design of combinational and sequential circuits (covered in Chapters 1 
through 3), the application of many of the building blocks (described 
in Chapter 5), and the implementation of the RISC-V architecture  
(introduced in Chapter 6). The microarchitectures can be described in a 
few pages of HDL using the techniques from Chapter 4.

Building the microarchitectures has also heavily relied on our tech-
niques for managing complexity. The microarchitectural abstraction 
forms the link between the logic and architecture abstractions, forming  
the crux of this book on digital design and computer architecture. We 
also use the abstractions of block diagrams and HDL to succinctly 
describe the arrangement of components. The microarchitectures exploit 
regularity and modularity, reusing a library of common building blocks 
such as ALUs, memories, multiplexers, and registers. Hierarchy is used 
in numerous ways. The microarchitectures are partitioned into the datapath 
and control units, which themselves are partitioned into smaller units. 
Each of these units is built from logic blocks, which can be built from 
gates, which, in turn, can be built from transistors—all of which use the 
techniques developed in the first five chapters.

This chapter has compared single-cycle, multicycle, and pipelined 
microarchitectures for the RISC-V processor. All three microarchi-
tectures implement the same subset of the RISC-V instruction set and 
have the same architectural state. The single-cycle processor is the most 
straightforward and has a CPI of 1.

The multicycle processor uses a variable number of shorter steps to 
execute instructions. It thus can reuse the ALU, rather than requiring 
several adders, and includes a unified memory. However, it does require 
several nonarchitectural registers to store results between steps. The 
multicycle design, in principle, could be faster because not all instruc-
tions must be equally long. In practice, it is generally slower, because it is 
limited by the slowest steps and by the sequencing overhead in each step.

The pipelined processor divides the single-cycle processor into 
five relatively fast pipeline stages. It adds pipeline registers between 
the stages to separate the five instructions that are simultaneously 
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executing. It nominally has a CPI of 1, but hazards force stalls or flushes 
that increase the CPI slightly. Hazard resolution also costs some extra  
hardware and design complexity. The clock period ideally could be five 
times shorter than that of the single-cycle processor. In practice, it is not 
that short because it is limited by the slowest stage and by the sequencing  
overhead in each stage. Nevertheless, pipelining provides substantial  
performance benefits. All modern high-performance microprocessors use 
pipelining today.

Although the microarchitectures in this chapter implement only a 
subset of the RISC-V architecture, we have seen that supporting more 
instructions involves straightforward enhancements of the datapath and 
controller.

A major limitation of this chapter is that we have assumed an ideal 
memory system that is fast and large enough to store the entire program 
and data. In reality, large fast memories are prohibitively expensive. 
The next chapter shows how to get most of the benefits of a large fast  
memory by using a small fast memory that holds the most commonly 
used information and one or more larger but slower memories holding 
the rest of the information.



MicroarchitectureCHAPTER SEVEN488

Exercises

Exercise 7.1 Suppose that one of the following control signals in the single-cycle 
RISC-V processor has a stuck-at-0 fault, meaning that the signal is always 0 
regardless of its intended value. What instructions would malfunction? Why? Use 
the extended version of the single-cycle processor shown in Figures 7.15 and 7.16.

 (a) RegWrite

 (b) ALUOp1

 (c) ALUOp0

 (d) MemWrite

 (e) ImmSrc1

 (f) ImmSrc0

 (g) ResultSrc1

 (h) ResultSrc0

 (i) PCSrc

 (j) ALUSrc

Exercise 7.2 Repeat Exercise 7.1, assuming that the signal has a stuck-at-1 fault.

Exercise 7.3 Modify the single-cycle RISC-V processor to implement one of the 
following instructions. See Appendix B for a definition of the instructions. Mark 
up a copy of Figure 7.15 to indicate the changes to the datapath. Name any new 
control signals. Mark up a copy of Tables 7.3 and 7.6 to show the changes to the 
ALU Decoder and Main Decoder. Also, mark up any changes to the ALU, ALU 
Decoder, and Main Decoder diagrams (see Figure 7.16) as needed. Describe any 
other changes that are required.

 (a) xor

 (b) sll

 (c) srl

 (d) bne

Exercise 7.4 Repeat Exercise 7.3 for the following RISC-V instructions.

 (a) lui

 (b) sra

 (c) lbu
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 (d) blt

 (e) bltu

 (f) bge

 (g) bgeu

 (h) jalr

 (i) auipc

 (j) sb

 (k) slli

 (l) srai

Exercise 7.5 Extend the RISC-V instruction set to include lwpostinc, which 
performs postindexing. lwpostinc rd, imm(rs) is equivalent to the following 
two instructions:

lw    rd, 0(rs)
addi rs, rs, imm

Repeat Exercise 7.3 for lwpostinc with post-indexing.

Exercise 7.6 Extend the RISC-V instruction set to include lwpreinc, which 
performs preindexing. lwpreinc rd, imm(rs) is equivalent to the following 
two instructions:

lw    rd, imm(rs)
addi rs, rs, imm

Repeat Exercise 7.3 for lwpreinc.

Exercise 7.7 Your friend is a crack circuit designer. She has offered to redesign 
one of the units in the single-cycle RISC-V processor to have half the delay. 
Using the delays from Table 7.7 on page 415, which unit should she work on to 
obtain the greatest speedup of the overall processor, and what would the cycle 
time of the improved machine be? Explain why.

Exercise 7.8 Consider the delays given in Table 7.7 on page 415. Ben Bitdiddle 
builds a prefix adder that reduces the ALU delay by 20 ps. If the other element 
delays stay the same, find the new cycle time of the single-cycle RISC-V 
processor and determine how long it takes to execute a benchmark with 100 
billion instructions.

Exercise 7.9 Modify the HDL code for the single-cycle RISC-V processor given 
in Section 7.6 to handle one of the new instructions from Exercise 7.3. Enhance 
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the testbench and test program (riscvtest.s and riscvtest.txt) given in Section 7.6.3 
to test the new instruction. Add comments to indicate any changes.

Exercise 7.10 Repeat Exercise 7.9 for the new instructions from Exercise 7.4.

Exercise 7.11 Suppose one of the following control signals in the multicycle 
RISC-V processor has a stuck-at-0 fault, meaning that the signal is always 0 
regardless of its intended value. What instructions would malfunction? Why? 
Refer to the multicycle datapath and control shown in Figures 7.27 and 7.45.

 (a) ResultSrc1

 (b) ResultSrc0

 (c) ALUSrcB1

 (d) ALUSrcB0

 (e) ALUSrcA1

 (f) ALUSrcA0

 (g) ImmSrc1

 (h) ImmSrc0

 (i) RegWrite

 (j) PCUpdate

 (k) Branch

 (l) AdrSrc

 (m) MemWrite

 (n) IRWrite

Exercise 7.12 Repeat Exercise 7.11, assuming that each signal has a stuck-at-1 
fault.

Exercise 7.13 Modify the multicycle RISC-V processor to implement one of 
the following instructions. See Appendix B for a definition of the instructions. 
Name any new control signals. Mark up copies of Figure 7.27 for changes to the 
datapath and Figure 7.45 for changes to the controller FSM. Describe any other 
changes that are required.

 (a) xor

 (b) sll

 (c) srl

 (d) bne
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Exercise 7.14 Repeat Exercise 7.13 for the following RISC-V instructions.

 (a) lui

 (b) sra

 (c) lbu

 (d) blt

 (e) bltu

 (f) bge

 (g) bgeu

 (h) jalr

 (i) auipc

 (j) sb

 (k) slli

 (l) srai

Exercise 7.15 Repeat Exercise 7.5 for the multicycle RISC-V processor. Show 
the changes to the multicycle datapath and control FSM. Is it possible to add the 
instruction without modifying the register file? If so, show how.

Exercise 7.16 Repeat Exercise 7.6 for the multicycle RISC-V processor. Show 
the changes to the multicycle datapath and control FSM. Is it possible to add the 
instruction without modifying the register file? If so, show how.

Exercise 7.17 Repeat Exercise 7.7 for the multicycle RISC-V processor.

Exercise 7.18 Repeat Exercise 7.8 for the multicycle RISC-V processor. Use the 
instruction mix from Example 7.7.

Exercise 7.19 Your friend, the crack circuit designer, has offered to redesign 
one of the units in the multicycle RISC-V processor to be much faster. Using the 
delays from Table 7.7 on page 415, which unit should she work on to obtain 
the greatest speedup of the overall processor? How fast should it be? (Making it 
faster than necessary is a waste of your friend’s effort.) What is the cycle time of 
the improved processor? Explain and show your work.

Exercise 7.20 Goliath Corp claims to have a patent on a three-ported register 
file. Rather than fighting Goliath in court, Ben Bitdiddle designs a new register 
file that has only a single read/write port (like the combined instruction and data 
memory). Redesign the RISC-V multicycle datapath and controller to use his 
new register file.
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Exercise 7.21 Suppose the multicycle RISC-V processor has the component 
delays given in Table 7.7 on page 415. Alyssa P. Hacker designs a new register file 
that has 40% less power but twice as much delay. Should she switch to the slower 
but lower power register file for her multicycle processor design? Explain why.

Exercise 7.22 What is the CPI of the redesigned multicycle RISC-V processor 
from Exercise 7.20? Use the instruction mix from Example 7.7.

Exercise 7.23 How many cycles are required to run the following program on 
the multicycle RISC-V processor? What is the CPI of this program?

    addi s0, zero, 5     # result = 5
L1:
    bge   zero, s0, Done  # if result <= 0, exit loop
    addi s0, s0, –1      # result = result – 1
    j     L1
Done:

Exercise 7.24 Repeat Exercise 7.23 for the following program.

    addi s0, zero, 0    # i = 0
    addi s1, zero, 0    # sum = 0
    addi t3, zero, 10   # t3 = 10
Loop:
    beq   s0, t3, L2     # if i = = 10, goto L2
    add   s1, s1, s0     # sum = sum + i
    addi s0, s0, 1      # i = i + 1
    j    Loop
L2:

Exercise 7.25 Write HDL code for the multicycle RISC-V processor, and name the 
module riscvmulti. It should support the instructions described in this chapter: 
lw, sw, add, sub, and, or, slt, addi, andi, ori, slti, beq, and jal. The processor 
should be compatible with the top-level module below. The mem module is used to 
hold both instructions and data. Remember that you can use the building blocks 
from the single-cycle processor HDL in Section 7.6. Test your processor using the 
testbench and test program (riscvtest.s and riscvtest.txt) from Section 7.6.3. Add 
comments to indicate any changes.

module top(input   logic         clk, reset,
            output logic [31:0] WriteData, DataAdr,
            output logic         MemWrite);
    logic [31:0] ReadData;

    // instantiate processor and memories
    riscvmulti rvmulti(clk, reset, MemWrite, DataAdr,
                       WriteData, ReadData);
    mem mem(clk, MemWrite, DataAdr, WriteData, ReadData);
endmodule
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Exercise 7.26 Extend your HDL code for the multicycle RISC-V processor from 
Exercise 7.25 to handle one of the new instructions from Exercise 7.14. Enhance 
the testbench and test program (riscvtest.s and riscvtest.txt) from Section 7.6.3 
to test the new instruction. Add comments to indicate any changes.

Exercise 7.27 Repeat Exercise 7.26 for one of the new instructions from  
Exercise 7.13.

Exercise 7.28 The pipelined RISC-V processor is running the following code 
snippet. Which registers are being written and which are being read on the fifth 
cycle? Recall that the pipelined RISC-V processor has a Hazard Unit. You may 
assume a memory system that returns the result within one cycle.

 addi s1, zero, 11  # s1 = 11
 lw    s2, 25(s0)    # s2 = memory[s0+25]
 add   s3, s3, s4    # s3 = s3 + s4
 or    s4, s1, s2    # s4 = s1 | s2
 lw    s5, 16(s2)    # s5 = memory[s2+16]

Exercise 7.29 Repeat Exercise 7.28 for the following RISC-V code snippet.

 xor   s1, s2, s3    # s1 = s2 ^ s3
 addi s0, s3, −4    # s0 = s3 − 4
 lw    s3, 16(s7)    # s3 = memory[s7+16]
 sw    s4, 20(s1)    # memory[s1+20] = s4
 or    t2, s0, s1    # t2 = s0 | s1

Exercise 7.30 Repeat Exercise 7.28 for the following RISC-V code snippet.

 addi s1, zero, 11  # s1 = 11
 lw    s2, 25(s1)    # s2 = memory[36]
 lw    s5, 16(s2)    # s5 = memory[s2+16]
 add   s3, s2, s5    # s3 = s2 + s5
 or    s4, s3, t4    # s4 = s3 | t4
 and   s2, s3, s4    # s2 = s3 & s4

Exercise 7.31 Repeat Exercise 7.28 for the following RISC-V code snippet.

 addi s1, zero, 52   # s1 = 52
 addi s0, s1, −4     # s0 = s1 − 4 = 48
 lw    s3, 16(s0)     # s3 = memory[64]
 sw    s3, 20(s0)     # memory[68] = s3
 xor   s2, s0, s3    # s2 = s0 ^ s3
 or    s2, s2, s3    # s2 = s2 | s3

Exercise 7.32 Using a diagram similar to Figure 7.57, show the forwarding and 
stalls needed to execute the instructions from Exercise 7.30 on the pipelined 
RISC-V processor.
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Exercise 7.33 Repeat Exercise 7.32 for the instructions from Exercise 7.31.

Exercise 7.34 How many cycles are required for the pipelined RISC-V processor 
to issue all of the instructions for the program in Exercise 7.30? What is the CPI 
of the processor on this program?

Exercise 7.35 Repeat Exercise 7.34 for the instructions of the program in 
Exercise 7.31.

Exercise 7.36 Explain how to extend the pipelined RISC-V processor to handle 
the load upper immediate instruction, lui. Name any new control signals. Mark 
up copies of Figure 7.61 for changes to the datapath and Tables 7.3 and 7.6 for 
changes to the ALU Decoder and Main Decoder. Describe any other changes 
that are required.

Exercise 7.37 Repeat Exercise 7.36 for the xor instruction.

Exercise 7.38 The pipelined processor’s performance might be better if branches 
take place during the Decode stage rather than the Execute stage. Show how 
to modify the pipelined processor from Figure 7.61 to move the branch logic 
to the Decode stage. How do the stall, flush, and forwarding signals change? 
Redo Examples 7.9 and 7.10 to find the new CPI, cycle time, and overall time to 
execute the program.

Exercise 7.39 Your friend, the crack circuit designer, has offered to redesign 
one of the units in the pipelined RISC-V processor to be much faster. Using the 
delays from Table 7.7 on page 415, which unit should she work on to obtain 
the greatest speedup of the overall processor? How fast should it be? (Making it 
faster than necessary is a waste of your friend’s effort.) What is the cycle time of 
the improved processor? Explain your answers and show your work.

Exercise 7.40 Consider the delays from Table 7.7 on page 415. Now, suppose 
that the ALU were 20% faster. Would the cycle time of the pipelined RISC-V 
processor change? What if the ALU were 20% slower? Explain your answers 
and show your work.

Exercise 7.41 Suppose the RISC-V pipelined processor is divided into 10 stages 
of 400 ps each, including sequencing overhead. Assume the instruction mix of 
Example 7.7. Also, assume that 50% of the loads are immediately followed 
by an instruction that uses the result, requiring six stalls, and that 30% of the 
branches are mispredicted. The target address of a branch instruction is not 
computed until the end of the second stage. Calculate the average CPI and 
execution time of processing 100 billion instructions from the SPECINT2000 
benchmark for this 10-stage pipelined processor.
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Exercise 7.42 Write HDL code for the pipelined RISC-V processor, and call the 
module riscv. The processor should be compatible with the top-level module 
below. It should support the instructions described in this chapter: lw, sw, add, 
sub, and, or, slt, addi, andi, ori, slti, beq, and jal. Remember that you 
can use the building blocks from the single-cycle processor HDL in Section 7.6. 
Modify the testbench from Section 7.6.3 to test your processor using the test 
program (riscvtest.s and riscvtest.txt) from that section.

module top(input   logic         clk, reset,
            output logic [31:0] WriteDataM, DataAdrM,
            output logic         MemWriteM);

   logic [31:0] PCF, InstrF, ReadDataM;

   // instantiate processor and memories
   riscv riscv(clk, reset, PCF, InstrF, MemWriteM, DataAdrM,
               WriteDataM, ReadDataM);
   imem imem(PCF, InstrF);
   dmem dmem(clk, MemWriteM, DataAdrM, WriteDataM, ReadDataM);
endmodule

Exercise 7.43 Extend the HDL for the pipelined RISC-V processor from Exercise 
7.42 to handle the xor instruction from Exercise 7.37. Modify the testbench 
and test program (riscvtest.s and riscvtest.txt) from Section 7.6.3 to test your 
enhanced processor.

Exercise 7.44 Extend the HDL for the pipelined RISC-V processor from Exercise 
7.42 to handle the lui instruction from Exercise 7.36. Modify the testbench 
and test program (riscvtest.s and riscvtest.txt) from Section 7.6.3 to test your 
enhanced processor.

Exercise 7.45 Design the Hazard Unit shown in Figure 7.61 for the pipelined 
RISC-V processor. Use an HDL to implement your design. Sketch the hardware 
that a synthesis tool might generate from your HDL.

Exercise 7.46 Show how to modify the RISC-V multicycle processor to take an 
exception if an undefined instruction is encountered. Exceptions are described in 
Section 6.6.2. The cause code for an undefined instruction is 2 (see Table 6.6 on 
page 357). Modify both the datapath (Figure 7.27) and control unit, including 
the Main FSM (Figure 7.45), as needed. You may assume that mtvec has already 
been written with the exception handler address.

Exercise 7.47 Repeat Exercise 7.46 for the misaligned load exception, whose 
cause code is 4 (see Table 6.6).

Exercise 7.48 Show how to modify the RISC-V multicycle processor to 
implement the privileged instruction csrrw (CSR read/write). Figure 7.76 shows 
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the assembly and machine code for csrrw x9, mscratch, x8 that simultaneously 
copies mscratch into x9 and x8 into mscratch. The CSR number is encoded in 
the 12-bit immediate field of the I-type instruction. mscratch is CSR number 
0x340. Any 12-bit CSR number should be able to be read/written. See Table B.8 
in Appendix B for more information on privileged instruction formats. Modify 
both the datapath (Figure 7.27) and control unit, including the Main FSM 
(Figure 7.45), as needed to accommodate the cssrw instruction.

Exercise 7.49 Repeat Exercise 7.48 for the privileged instruction csrrs  
(CSR read and set). Figure 7.77 shows the assembly and machine code for  
csrrs x7, mcause, x3 that simultaneously copies mcause into x7 and puts 
(mcause | x3) into mcause. mcause is CSR number 0x342. Any 12-bit CSR 
number should be able to be read/set.

Figure 7.76 Privileged instruction cssrw (CSR read/write)

cssrw x9, mscratch, x8

Field ValuesAssembly
imm11:0 rs1 rd opfunct3
0x340 8 9 1151

12 bits 5 bits 3 bits 5 bits 7 bits 12 bits 5 bits 3 bits 5 bits 7 bits

Machine Code

(0x340414F3)

imm11:0 rs1 rd opfunct3
0011 0100 0000 01000 01001 111 0011001

Figure 7.77 Privileged instruction csrrs (CSR read/set)

csrrs x7, mcause, x3

Field ValuesAssembly
imm11:0 rs1 rd opfunct3
0x342 3 7 1152

12 bits 5 bits 3 bits 5 bits 7 bits 12 bits 5 bits 3 bits 5 bits 7 bits

Machine Code

(0x3421A3F3)

imm11:0 rs1 rd opfunct3
0011 0100 0010 00011 00111 111 0011010
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Interview Questions

The following exercises present questions that have been asked at interviews for 
digital design jobs.

Question 7.1 Explain the advantages of pipelined microprocessors.

Question 7.2 If additional pipeline stages allow a processor to go faster, why 
don’t processors have 100 pipeline stages?

Question 7.3 Describe what a hazard is in a microprocessor and explain ways in 
which it can be resolved. What are the pros and cons of each way?

Question 7.4 Describe the concept of a superscalar processor and its pros and 
cons.
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8Memory Systems

8.1  INTRODUCTION
Computer system performance depends on the memory system as well as 
the processor microarchitecture. Chapter 7 assumed an ideal memory sys-
tem that could be accessed in a single clock cycle. However, this would 
be true only for a very small memory—or a very slow processor! Early 
processors were relatively slow, so memory was able to keep up. But pro-
cessor speed has increased at a faster rate than memory speeds. DRAM 
memories are currently 10 to 100 times slower than processors. The 
increasing gap between processor and DRAM memory speeds demands 
increasingly ingenious memory systems to try to approximate a memory 
that is as fast as the processor. The first half of this chapter investigates 
memory systems and considers trade-offs of speed, capacity, and cost.

The processor communicates with the memory system over a memory  
interface. Figure 8.1 shows the simple memory interface used in our 
multicycle RISC-V processor. The processor sends an address over the 
Address bus to the memory system. For a read, MemWrite is 0 and the 
memory returns the data on the ReadData bus. For a write, MemWrite 
is 1 and the processor sends data to memory on the WriteData bus.

The major issues in memory system design can be broadly explained 
using a metaphor of books in a library. A library contains many books on 
the shelves. If you were writing a term paper on the meaning of dreams, 
you might go to the library1 and pull Freud’s The Interpretation of Dreams 
off the shelf and bring it to your cubicle. After skimming it, you might put 
it back and pull out Jung’s The Psychology of the Unconscious. You might 
then go back for another quote from Interpretation of Dreams, followed by 
yet another trip to the stacks for Freud’s The Ego and the Id. Pretty soon, 

1  We realize that library usage is plummeting among college students because of the Internet.  
But we also believe that libraries contain vast troves of hard-won human knowledge  
that are not electronically available. We hope that Web searching does not completely  
displace the art of library research.
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you would get tired of walking from your cubicle to the stacks. If you are 
clever, you would save time by keeping the books in your cubicle rather 
than schlepping them back and forth. Furthermore, when you pull a book 
by Freud, you could also pull several of his other books from the same shelf.

This metaphor emphasizes the principle, introduced in Section 6.2.1, 
of making the common case fast. By keeping books that you have recently 
used or might likely use in the future at your cubicle, you reduce the number 
of time-consuming trips to the stacks. In particular, you use the principles  
of temporal and spatial locality. Temporal locality means that if you have 
used a book recently, you are likely to use it again soon. Spatial locality 
means that when you use one particular book, you are likely to be interested 
in other books on the same shelf.

The library itself makes the common case fast by using these prin-
ciples of locality. The library has neither the shelf space nor the budget 
to accommodate all of the books in the world. Instead, it keeps some of 
the lesser-used books in deep storage in the basement. Also, it may have 
an interlibrary loan agreement with nearby libraries so that it can offer 
more books than it physically carries.

In summary, you obtain the benefits of both a large collection and 
quick access to the most commonly used books through a hierarchy of 
storage. The most commonly used books are in your cubicle. A larger col-
lection is on the shelves. And an even larger collection is available, with 
advanced notice, from the basement and other libraries. Similarly, memory 
systems use a hierarchy of storage to quickly access the most commonly 
used data while still having the capacity to store large amounts of data.

Memory subsystems used to build this hierarchy were introduced 
in Section 5.5. Computer memories are primarily built from dynamic 
RAM (DRAM) and static RAM (SRAM). Ideally, the computer mem-
ory system is fast, large, and cheap. In practice, a single memory has 
only two of these three attributes; it is either slow, small, or expen-
sive. But computer systems can approximate the ideal by combining a 
fast, small, cheap memory and a slow, large, cheap memory. The fast 
memory stores the most commonly used data and instructions; so, on 
average, the memory system appears fast. The large memory stores the 
remainder of the data and instructions; so, the overall capacity is large. 
The combination of two cheap memories is much less expensive than 
a single large fast memory. These principles extend to using an entire  
hierarchy of memories of increasing capacity and decreasing speed.

Address

MemWrite

WriteData

ReadData

Processor Memory
WE

CLK

Figure 8.1 The memory interface
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Remember that speed is characterized by both latency and through-
put. Memory latency is the time to access the first byte of information. 
Throughput is the number of bytes per second that can be delivered. 
Many memories have good throughput but long latency.

Computer memory is generally built from DRAM chips. In 2021, a 
typical PC had a main memory consisting of 8 to 32 GiB of DRAM, and 
DRAM cost about $3 per gibibyte (GiB). DRAM prices have declined at 
15% to 25% per year for the last three decades and memory capacity 
has grown at the same rate, so the total cost of the memory in a PC has 
remained roughly constant. Unfortunately, DRAM speed has improved by 
only about 7% per year, whereas processor performance has improved at 
a rate of 25% to 50% per year, as shown in Figure 8.2. The plot shows 
memory (DRAM) and processor speeds with the 1980 speeds as a baseline. 
In about 1980, processor and memory speeds were the same. However, 
performance has diverged since then, with memories badly lagging.2

DRAM could keep up with processors in the 1970’s and early 
1980’s, but it is now woefully too slow. The DRAM access time is one 
to two orders of magnitude longer than the processor cycle time (tens of 
nanoseconds, compared to less than one nanosecond). DRAM through-
put is good, on the order of 30 GB/s.

To counteract this trend, computers store the most commonly used 
instructions and data in a faster but smaller memory, called a cache. The 
cache is usually built out of SRAM on the same chip as the processor. 
The cache speed is comparable to the processor speed because SRAM 
is inherently faster than DRAM and because the on-chip memory elim-
inates lengthy delays caused by traveling to and from a separate chip.  

2  Although recent single-processor performance has remained approximately constant, as 
shown in Figure 8.2 for the years 2005 to 2010, the increase in multicore systems (not 
depicted on the graph) only worsens the gap between processor and memory performance.
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Figure 8.2 Diverging processor 
and memory performance. 
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In 2021, on-chip SRAM costs were on the order of $100/GiB, but the 
cache is relatively small (kibibytes to several mebibytes), so the overall 
cost is low. Caches can store both instructions and data, but we will 
refer to their contents generically as “data.” SRAM latency ranges from 
a few tenths of a nanosecond for a 16 KiB cache to several nanoseconds 
for a 4 MiB cache. Throughput can reach hundreds of GB/s.

If the processor requests data that is available in the cache, it is 
returned quickly. This is called a cache hit. Otherwise, the processor 
retrieves the data from main memory (DRAM). This is called a cache 
miss. If the cache hits most of the time, then the processor seldom has to 
wait for the slow main memory, and the average access time is low.

The third level in the memory hierarchy is the hard drive. In the 
same way that a library uses the basement to store books that do not fit 
in the stacks, computer systems use the hard drive to store data that does 
not fit in main memory. In 2021, a hard disk drive (HDD), built using 
magnetic storage, cost less than $0.03/GB and had an access time of 
about 5 to 10 ms. Throughput is on the order of 100 MB/s for large files 
down to 1 MB/s for random accesses to small (4 KiB) files. Hard disk 
costs have decreased at 60% per year but access times scarcely improved. 
Solid state drives (SSDs), built using flash memory technology, are an 
increasingly common alternative to HDDs. SSDs have been used by niche 
markets for over two decades, and they were introduced into the main-
stream market in 2007. SSDs overcome some of the mechanical failures 
of HDDs, but they cost 3 to 4 times as much at $0.10/GB. Since SSDs 
hit the market, the price difference between them and HDDs has shrunk, 
and the popularity of SSDs over HDDs has increased accordingly. SSDs 
have access times of less than 0.1 ms. Throughput can be 500 to 3,000 
MB/s for large files down to 50 to 250 MB/s for 4 KiB files.

The hard drive provides an illusion of more capacity than actually 
exists in the main memory. It is thus called virtual memory. Like books 
in the basement, data in virtual memory takes a long time to access. 
Main memory, also called physical memory, holds a subset of the virtual 
memory. Hence, the main memory can be viewed as a cache for the most 
commonly used data from the hard drive.

Figure 8.3 summarizes the memory hierarchy of the computer sys-
tem discussed in the rest of this chapter. The processor first seeks data 
in a small but fast cache that is usually located on the same chip. If the 

CPU Cache 
Main 

Memory 

Processor Chip CLK 

Hard
Drive

Figure 8.3 A typical memory 
hierarchy



8.2 Memory System Performance Analysis 503

data is not available in the cache, the processor then looks in main mem-
ory. If the data is not there either, the processor fetches the data from 
virtual memory on the large but slow hard disk. Figure 8.4 illustrates 
this capacity and speed trade-off in the memory hierarchy and lists typ-
ical costs, access times, and bandwidth in 2021 technology. As access 
time decreases, speed increases.

Section 8.2 introduces memory system performance analysis. 
Section 8.3 explores several cache organizations, and Section 8.4 delves 
into virtual memory systems.

8.2  MEMORY SYSTEM PERFORMANCE ANALYSIS
Designers (and computer buyers) need quantitative ways to measure the 
performance of memory systems to evaluate the cost-benefit trade-offs 
of various alternatives. Memory system performance metrics are miss 
rate or hit rate and average memory access time. Miss and hit rates are 
calculated as:

MissRate
Number of misses

Number of total memory accesses
Hit Ra= = −1 tte

Hit Rate
Number of hits

Number of total memory accesses
MissR= = −1 aate

 

(8.1)

Example 8.1 CALCULATING CACHE PERFORMANCE

Suppose a program has 2,000 data access instructions (loads or stores) and 
1,250 of these requested data values are found in the cache. The other 750 data 
values are supplied to the processor by main memory or disk memory. What are 
the miss and hit rates for the cache?

Solution The miss rate is 750/2000 = 0.375 = 37.5%. The hit rate is 1250/2000 =  
0.625 = 1 − 0.375 = 62.5%.
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0.001–0.1HDD $0.03 5,000,000

Figure 8.4 Memory hierarchy 
components, with typical 
characteristics in 2021
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Average memory access time (AMAT) is the average time a proces-
sor must wait for memory per load or store instruction. In the typical 
computer system from Figure 8.3, the processor first looks for the data 
in the cache. If the cache misses, the processor then looks in main mem-
ory. If the main memory misses, the processor accesses virtual memory 
on the hard disk. Thus, AMAT is calculated as:

 AMAT t MR t MR tMM MM VM= + +cache cache( )  (8.2)

where tcache, tMM, and tVM are the access times of the cache, main mem-
ory, and virtual memory, and MRcache and MRMM are the cache and main 
memory miss rates, respectively. 

Example 8.2 CALCULATING AVERAGE MEMORY ACCESS TIME

Suppose a computer system has a memory organization with only two levels of 
hierarchy, a cache and main memory. What is the average memory access time 
given the access times and miss rates in Table 8.1?

Solution The average memory access time is 1 + 0.1(100) = 11 cycles.
 

Table 8.1 Access times and miss rates

Memory  
Level

Access Time 
(Cycles)

Miss 
Rate

Cache 1 10%

Main Memory 100 0%

Example 8.3 IMPROVING ACCESS TIME

An 11-cycle average memory access time means that the processor spends ten 
cycles waiting for data for every one cycle actually using that data. What cache 
miss rate is needed to reduce the average memory access time to 1.5 cycles given 
the access times in Table 8.1?

Solution If the miss rate is m, the average access time is 1 + 100m. Setting this 
time to 1.5 and solving for m requires a cache miss rate of 0.5%.

As a word of caution, performance improvements might not always 
be as good as they sound. For example, making the memory system 
ten times faster will not necessarily make a computer program run ten 
times as fast. If 50% of a program’s instructions are loads and stores, a  
tenfold memory system improvement means only a 1.82-fold improve-
ment in program performance. This general principle is called Amdahl’s 

Gene Amdahl, 1922–2015
Most famous for Amdahl’s 
Law, an observation he made 
in 1965. While in graduate 
school, he began designing 
computers in his free time. 
This side work earned him 
his Ph.D. in theoretical 
physics in 1952. He joined 
IBM immediately after 
graduation and later went on 
to found three companies, 
including one called Amdahl 
Corporation in 1970. 
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Law, which says that the effort spent on increasing the performance of a 
subsystem is worthwhile only if the subsystem affects a large percentage 
of the overall performance. 

8.3  CACHES
A cache holds commonly used memory data. The number of data words 
that it can hold is called the capacity, C. Because the capacity of the 
cache is smaller than that of main memory, the computer system designer 
must choose what subset of the main memory is kept in the cache.

When the processor attempts to access data, it first checks the cache 
for the data. If the cache hits, the data is available immediately. If the 
cache misses, the processor fetches the data from main memory and 
places it in the cache for future use. To accommodate the new data, the 
cache must replace old data. This section investigates these issues in 
cache design by answering the following questions: (1) What data is held 
in the cache? (2) How is data found? and (3) What data is replaced to 
make room for new data when the cache is full?

When reading the next sections, keep in mind that the driving force 
in answering these questions is the inherent spatial and temporal locality 
of data accesses in most applications. Caches use spatial and temporal 
locality to predict what data will be needed next. If a program accesses 
data in a random order, it would not benefit from a cache.

As we explain in the following sections, caches are specified by their 
capacity (C), number of sets (S), block size (b), number of blocks (B), 
and degree of associativity (N).

Although we focus on data cache loads, the same principles apply 
for fetches from an instruction cache. Data cache store operations are 
similar and are discussed further in Section 8.3.4.

8 . 3 . 1   What Data is Held in the Cache?

An ideal cache would anticipate all of the data needed by the processor 
and fetch it from main memory ahead of time so that the cache has a zero 
miss rate. Because it is impossible to predict the future with perfect accu-
racy, the cache must guess what data will be needed based on the past 
pattern of memory accesses. In particular, the cache exploits temporal  
and spatial locality to achieve a low miss rate.

Recall that temporal locality means that the processor is likely to 
access a piece of data again soon if it has accessed that data recently. 
Therefore, when the processor loads or stores data that is not in the 
cache, the data is copied from main memory into the cache. Subsequent 
requests for that data hit in the cache.

Recall that spatial locality means that, when the processor accesses a 
piece of data, it is also likely to access data in nearby memory locations. 

Cache: a hiding place 
especially for concealing 
and preserving provisions or 
implements.

—Merriam Webster  
Online Dictionary. 2021. 
www.merriam-webster.com 

http://www.merriam-webster.com
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Therefore, when the cache fetches one word from memory, it may also 
fetch several adjacent words. This group of words is called a cache block 
or cache line. The number of words in the cache block, b, is called the 
block size. A cache of capacity C contains B = C / b blocks.

The principles of temporal and spatial locality have been experimen-
tally verified in real programs. If a variable is used in a program, the 
same variable is likely to be used again, creating temporal locality. If an 
element in an array is used, other elements in the same array are also 
likely to be used, creating spatial locality.

8 . 3 . 2   How is Data Found?

A cache is organized into S sets, each of which holds one or more blocks 
of data. The relationship between the address of data in main memory and 
the location of that data in the cache is called the mapping. Each memory 
address maps to exactly one set in the cache. Some of the address bits are 
used to determine which cache set contains the data. If the set contains 
more than one block, the data may be kept in any of the blocks in the set.

Caches are categorized based on the number of blocks in a set. 
In a direct mapped cache, each set contains exactly one block, so the 
cache has S = B sets. Thus, a particular main memory address maps to 
a unique block in the cache. In an N-way set associative cache, each set 
contains N blocks. The address still maps to a unique set, with S = B/N 
sets. But the data from that address can go in any of the N blocks in that 
set. A fully associative cache has only S = 1 set. Data can go in any of 
the B blocks in the set. Hence, a fully associative cache is another name 
for a B-way set associative cache.

To illustrate these cache organizations, we will consider a RISC-V 
memory system with 32-bit addresses and 32-bit words. The memory is 
byte-addressable, and each word is four bytes, so the memory consists of 
230 words aligned on word boundaries. We analyze caches with an eight-
word capacity (C) for the sake of simplicity. We begin with a one-word 
block size (b), then generalize later to larger blocks.

Direct Mapped Cache
A direct mapped cache has one block in each set, so it is organized into 
S = B sets. To understand the mapping of memory addresses onto cache 
blocks, imagine main memory as being mapped into b-word blocks, just 
as the cache is. An address in block 0 of main memory maps to set 0 
of the cache. An address in block 1 of main memory maps to set 1 of 
the cache, and so forth until an address in block B − 1 of main mem-
ory maps to block B − 1 of the cache. There are no more blocks of the 
cache, so the mapping wraps around, such that block B of main memory 
maps to block 0 of the cache.

This mapping is illustrated in Figure 8.5 for a direct mapped cache 
with a capacity of eight words and a block size of one word. The cache 
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has eight sets, each of which contains a one-word block. The bottom 
two bits of the address are always 00, because they are word aligned. 
The next log28 = 3 bits indicate the set onto which the memory address 
maps. Thus, the data at addresses 0x00000004, 0x00000024, …,  
0xFFFFFFE4 all map to set 1, as shown in blue. Likewise, data at 
addresses 0x00000010, …, 0xFFFFFFF0 all map to set 4, and so forth. 
Each main memory address maps to exactly one set in the cache.

Example 8.4 CACHE FIELDS

To what cache set in Figure 8.5 does the word at address 0x00000014 map? 
Name another address that maps to the same set.

Solution The two least significant bits of the address are 00, because the address 
is word aligned. The next three bits are 101, so the word maps to set 5. Words at 
addresses 0x34, 0x54, 0x74, …, 0xFFFFFFF4 all map to this same set.

Because many addresses map to a single set, the cache must also 
keep track of the address of the data actually contained in each set. 
The least significant bits of the address specify which set holds the data.  
The remaining most significant bits are called the tag and indicate which 
of the many possible addresses is held in that set.

In our previous examples, the two least significant bits of the 32-bit 
address are called the byte offset because they indicate the byte within 
the word. The next three bits are called the set bits because they indicate 
the set to which the address maps. (In general, the number of set bits 
is log2S.) The remaining 27 tag bits indicate the memory address of the 
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Figure 8.5 Mapping of main 
memory to a direct mapped cache
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data stored in a given cache set. Figure 8.6 shows the cache fields for 
address 0xFFFFFFE4. It maps to set 1 and its tag is all l’s. 

Example 8.5 CACHE FIELDS

Find the number of set and tag bits for a direct mapped cache with 1024 (210) 
sets and a one-word block size. The address size is 32 bits.

Solution A cache with 210 sets requires log2(2
10) = 10 set bits. The two least signif-

icant bits of the address are the byte offset, and the remaining 32 − 10 − 2 = 20 
bits form the tag.

Sometimes, such as when the computer first starts up, the cache sets 
contain no data at all. The cache uses a valid bit for each set to indicate 
whether the set holds meaningful data. If the valid bit is 0, the contents 
are meaningless.

Figure 8.7 shows the hardware for the direct mapped cache of 
Figure 8.5. The cache is constructed as an eight-entry SRAM. Each entry, 
or set, contains one line consisting of 32 bits of data, 27 bits of tag, 
and 1 valid bit. The cache is accessed using the 32-bit address. The two 
least significant bits, the byte offset bits, are ignored for word accesses. 
The next three bits, the set bits, specify the entry or set in the cache.  
A load instruction reads the specified entry from the cache and checks 

00
Tag  Set

Byte
OffsetMemory 

Address
001111    ...   111

FFFFFF          E          4

Figure 8.6 Cache fields for 
address 0xFFFFFFE4 when 
mapping to the cache in Figure 8.5
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Figure 8.7 Direct mapped cache 
with 8 sets
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the tag and valid bits. If the tag matches the most significant 27 bits of 
the requested address and the valid bit is 1, the cache hits and the data is 
returned to the processor. Otherwise, the cache misses and the memory 
system must fetch the data from main memory. 

Example 8.6 TEMPORAL LOCALITY WITH A DIRECT MAPPED CACHE

Loops are a common source of temporal and spatial locality in applications. Using 
the eight-entry cache of Figure 8.7, show the contents of the cache after executing 
the following silly loop in RISC-V assembly code. Assume that the cache is initially 
empty. What is the miss rate?

 addi s0, zero, 5

 addi s1, zero, 0

LOOP: beq s0, zero, DONE

 lw s2, 4(s1)

 lw s3, 12(s1)

 lw s4, 8(s1)

 addi s0, s0, −1

 j LOOP

DONE:

Solution The program contains a loop that repeats for five iterations. Each 
iteration involves three memory accesses (loads), resulting in 15 total memory 
accesses. The first time the loop executes, the cache is empty and the data must 
be fetched from main memory locations 0x4, 0xC, and 0x8 into cache sets 1, 3, 
and 2, respectively. However, the next four times the loop executes, the data is 
found in the cache. Figure 8.8 shows the contents of the cache during the last 
request to memory address 0x4. The tags are all 0 because the upper 27 bits of 
the addresses are 0. The miss rate is 3/15 = 20%.

When two recently accessed addresses map to the same cache block, a 
conflict occurs, and the most recently accessed address evicts the previous 
one from the block. Direct mapped caches have only one block in each 
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set, so two addresses that map to the same set always cause a conflict. 
Example 8.7 illustrates conflicts. 

Example 8.7 CACHE BLOCK CONFLICT

What is the miss rate when the following loop is executed on the eight-word direct 
mapped cache from Figure 8.7? Assume that the cache is initially empty.

 addi s0, zero, 5
 addi s1, zero, 0
LOOP: beq  s0, zero, DONE
 lw  s2, 0x4(s1)
 lw  s4, 0x24(s1)
 addi s0, s0, −1
 j  LOOP

DONE:

Solution Memory addresses 0x4 and 0x24 both map to set 1. During the ini-
tial execution of the loop, data at address 0x4 is loaded into set 1 of the cache. 
Then, data at address 0x24 is loaded into set 1, evicting the data from address 
0x4. Upon the second execution of the loop, the pattern repeats and the cache 
must refetch data at address 0x4, evicting data from address 0x24. The two 
addresses conflict and the miss rate is 100%.
 

Multiway Set Associative Cache
An N-way set associative cache reduces conflicts by providing N blocks 
in each set where data mapping to that set might be found. Each memory 
address still maps to a specific set, but it can map to any one of the N blocks 
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in the set. Hence, a direct mapped cache is another name for a one-way set 
associative cache. N is also called the degree of associativity of the cache.

Figure 8.9 shows the hardware for a C = 8-word, N = 2-way set 
associative cache. The cache now has only S = 4 sets rather than 8. Thus, 
only log24 = 2 set bits rather than 3 are used to select the set. The tag 
increases from 27 to 28 bits. Each set contains two ways or degrees of 
associativity. Each way consists of a data block and the valid and tag 
bits. The cache reads blocks from both ways in the selected set and 
checks the tags and valid bits for a hit. If a hit occurs in one of the ways, 
a multiplexer selects data from that way.

Set associative caches generally have lower miss rates than direct 
mapped caches of the same capacity because they have fewer conflicts. 
However, set associative caches are usually slower and somewhat more 
expensive to build because of the output multiplexer and additional 
comparators. They also raise the question of which way to replace when 
both ways are full; this is addressed further in Section 8.3.3. Most com-
mercial systems use set associative caches.

Example 8.8 SET ASSOCIATIVE CACHE MISS RATE

Repeat Example 8.7 using the eight-word two-way set associative cache from 
Figure 8.9.

Solution Both memory accesses, to addresses 0x4 and 0x24, map to set 1. However, 
the cache has two ways, so it can accommodate data from both addresses. During 
the first loop iteration, the empty cache misses both addresses and loads both 
words of data into the two ways of set 1, as shown in Figure 8.10. On the next 
four iterations, the cache hits. Hence, the miss rate is 2/10 = 20%. Recall that the 
direct mapped cache of the same size from Example 8.7 had a miss rate of 100%.
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Figure 8.10 Two-way set 
associative cache contents

Fully Associative Cache
A fully associative cache contains a single set with B ways, where B is the 
number of blocks. A memory address can map to a block in any of these 
ways. A fully associative cache is another name for a B-way set associa-
tive cache with one set.

Figure 8.11 shows the SRAM array of a fully associative cache with 
eight blocks. Upon a data request, eight tag comparisons (not shown) 
must be made because the data could be in any block. Similarly, an 8:1 
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multiplexer chooses the proper data if a hit occurs. Fully associative 
caches tend to have the fewest conflict misses for a given cache capacity, 
but they require more hardware for additional tag comparisons. They 
are best suited to relatively small caches because of the large number of 
comparators.

Block Size
The previous examples were able to take advantage only of temporal 
locality because the block size was one word. To exploit spatial locality, 
a cache uses larger blocks to hold several consecutive words.

The advantage of a block size greater than one is that when a miss 
occurs and the word is fetched into the cache, the adjacent words in the 
block are also fetched. Therefore, subsequent accesses are more likely to 
hit because of spatial locality. However, a large block size means that a 
fixed-size cache will have fewer blocks. This may lead to more conflicts, 
increasing the miss rate. Moreover, it takes more time to fetch the miss-
ing cache block after a miss because more than one data word is fetched 
from main memory. The time required to load the missing block into 
the cache is called the miss penalty. If the adjacent words in the block 
are not accessed later, the effort of fetching them is wasted. Nevertheless, 
most real programs benefit from larger block sizes.

Figure 8.12 shows the hardware for a C = 8-word direct mapped 
cache with a b = 4-word block size. The cache now has only B = C/b = 
2 blocks. A direct mapped cache has one block in each set, so this cache 
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Figure 8.11 Eight-block fully associative cache
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Figure 8.12 Direct mapped cache with two sets and a four-word block size
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is organized as two sets. Thus, only log22 = 1 bit is used to select the 
set. A multiplexer is now needed to select the word within the block. 
The multiplexer is controlled by the log24 = 2 block offset bits of the 
address. The most significant 27 address bits form the tag. Only one tag 
is needed for the entire block, because the words in the block are at con-
secutive addresses.

Figure 8.13 shows the cache fields for address 0x8000009C when it 
maps to the direct mapped cache of Figure 8.12. The byte offset bits are 
always 0 for word accesses. The next log2b = 2 block offset bits indicate 
the word within the block and the next bit indicates the set. The remain-
ing 27 bits are the tag. Therefore, word 0x8000009C maps to set 1, 
word 3 in the cache. The principle of using larger block sizes to exploit 
spatial locality also applies to associative caches.

Example 8.9 SPATIAL LOCALITY WITH A DIRECT MAPPED CACHE

Repeat Example 8.6 for the eight-word direct mapped cache with a four-word 
block size.

Solution Figure 8.14 shows the contents of the cache after the first memory access. 
On the first loop iteration, the cache misses on the access to memory address 0x4. 
This access loads data at addresses 0x0 through 0xC into the cache block. All 
subsequent accesses (as shown for address 0xC) hit in the cache. Hence, the miss 
rate is 1/15 = 6.67%.
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Putting it All Together
Caches are organized as two-dimensional arrays. The rows are 
called sets, and the columns are called ways. Each entry in the array 
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consists of a data block and its associated valid and tag bits. Caches are  
characterized by

▸ capacity C

▸ block size b (and number of blocks, B = C/b)

▸ number of blocks in a set (N)

Table 8.2 summarizes the various cache organizations. Each address in 
memory maps to only one set but can be stored in any of the ways.

Cache capacity, associativity, set size, and block size are typically 
powers of two. This makes the cache fields (tag, set, and block offset 
bits) subsets of the address bits.

Increasing the associativity N usually reduces the miss rate caused 
by conflicts. But higher associativity requires more tag comparators. 
Increasing the block size b takes advantage of spatial locality to reduce 
the miss rate. However, it decreases the number of sets in a fixed sized 
cache and, therefore, could lead to more conflicts. It also increases the 
miss penalty.

8 . 3 . 3   What Data is Replaced?

In a direct mapped cache, each address maps to a unique block and 
set. If a set is full when new data must be loaded, the block in that set 
is replaced with the new data. In set associative and fully associative 
caches, the cache must choose which block to evict when a cache set is 
full. The principle of temporal locality suggests that the best choice is 
to evict the least recently used block because it is least likely to be used 
again soon. Hence, most associative caches have a least recently used 
(LRU) replacement policy.

In a two-way set associative cache, a use bit, U, indicates which  
way within a set was least recently used. Each time one of the ways 
is used, U is adjusted to indicate the other way. For set associative 
caches with more than two ways, tracking the least recently used way 
becomes complicated. To simplify the problem, the ways are often 
divided into two groups and U indicates which group of ways was least  
recently used. Upon replacement, the new block replaces a random 

Table 8.2 Cache organizations

Organization Number of Ways  
(N)

Number of Sets  
(S)

Direct Mapped 1 B

Set Associative 1 < N < B B/N

Fully Associative B 1



8.3 Caches 515

block within the least recently used group. Such a policy is called  
pseudo-LRU and is good enough in practice.

Example 8.10 LRU REPLACEMENT

Show the contents of an eight-word two-way set associative cache after executing 
the following code. Assume LRU replacement, a block size of one word, and an 
initially empty cache.

addi t0, zero, 0
lw s1, 0x4(t0)
lw s2, 0x24(t0)
lw s3, 0x54(t0)

Solution The first two instructions load data from memory addresses 0x4 and 
0x24 into set 1 of the cache, shown in Figure 8.15(a). U = 0 indicates that data 
in way 0 was the least recently used. The next memory access, to address 0x54, 
also maps to set 1 and replaces the least recently used data in way 0, as shown 
in Figure 8.15(b). The use bit U is set to 1 to indicate that data in way 1 was  
the least recently used.
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Figure 8.15 Two-way associative 
cache with LRU replacement

8 . 3 . 4   Advanced Cache Design*

Modern systems use multiple levels of caches to decrease memory access 
time. This section explores the performance of a two-level caching sys-
tem and examines how block size, associativity, and cache capacity 
affect miss rate. The section also describes how caches handle stores, or 
writes, by using a write-through or write-back policy.
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Multiple-Level Caches
Large caches are beneficial because they are more likely to hold data 
of interest and, therefore, have lower miss rates. However, large caches 
tend to be slower than small ones. Modern systems often use at least 
two levels of caches, as shown in Figure 8.16. The first-level (L1) cache is 
small enough to provide a one- or two-cycle access time. The second-level 
(L2) cache is also built from SRAM but is larger—and, therefore, 
slower—than the L1 cache. The processor first looks for the data in the 
L1 cache. If the L1 cache misses, the processor looks in the L2 cache. 
If the L2 cache misses, the processor fetches the data from main mem-
ory. Many modern systems add even more levels of cache to the memory 
hierarchy because accessing main memory is so slow.

Example 8.11 SYSTEM WITH AN L2 CACHE

Use the system of Figure 8.16 with access times of 1, 10, and 100 cycles for the 
L1 cache, L2 cache, and main memory, respectively. Assume that the L1 and L2 
caches have miss rates of 5% and 20%, respectively. Specifically, of the 5% of 
accesses that miss the L1 cache, 20% of those also miss the L2 cache. What is 
the average memory access time (AMAT)?

Solution Each memory access checks the L1 cache. When the L1 cache misses 
(5% of the time), the processor checks the L2 cache. When the L2 cache misses 
(20% of the time), the processor fetches the data from main memory. Using 
Equation 8.2, we calculate the average memory access time as follows: 1 cycle + 
0.05[10 cycles + 0.2(100 cycles)] = 2.5 cycles.

The L2 miss rate is high because it receives only the “hard” memory accesses, those 
that miss in the L1 cache. If all accesses went directly to the L2 cache, the L2 miss 
rate would be about 1%.
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Reducing Miss Rate

Cache misses can be reduced by changing capacity, block size, and/or 
associativity. The first step to reducing the miss rate is to understand the 
causes of the misses. The misses can be classified as compulsory, capacity,  
and conflict. The first request to a cache block is called a compulsory 
miss, because the block must be read from memory regardless of the 
cache design. Capacity misses occur when the cache is too small to hold 
all concurrently used data. Conflict misses are caused when several 
addresses map to the same set and evict blocks that are still needed.

Changing cache parameters can affect one or more types of cache 
miss. For example, increasing cache capacity can reduce conflict and 
capacity misses, but it does not affect compulsory misses. On the other 
hand, increasing block size could reduce compulsory misses (due to spa-
tial locality) but might actually increase conflict misses (because more 
addresses would map to the same set and could conflict).

Memory systems are complicated enough that the best way to eval-
uate their performance is by running benchmarks while varying cache 
parameters. Figure 8.17 plots miss rate versus cache size and degree of 
associativity for the SPEC2000 benchmark. This benchmark has a small 
number of compulsory misses, shown by the dark region near the x-axis. 
As expected, when cache size increases, capacity misses decrease. Increased 
associativity, especially for small caches, decreases the number of conflict 
misses shown along the top of the curve. Increasing associativity beyond 
four or eight ways provides only small decreases in miss rate.
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on SPEC2000 benchmark  
Adapted with permission 
from Hennessy and Patterson, 
Computer Architecture: A 
Quantitative Approach, 5th ed., 
Morgan Kaufmann, 2012
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As mentioned, miss rate can also be decreased by using larger block 
sizes that take advantage of spatial locality. But as block size increases, 
the number of sets in a fixed-size cache decreases, increasing the probabil-
ity of conflicts. Figure 8.18 plots miss rate versus block size (in number of 
bytes) for caches of varying capacity. For small caches, such as the 4 KiB 
cache, increasing the block size beyond 64 bytes increases the miss rate 
because of conflicts. For larger caches, increasing the block size beyond 
64 bytes does not change the miss rate. However, large block sizes might 
still increase execution time because of the larger miss penalty, the time 
required to fetch the missing cache block from main memory.

Write Policy
The previous sections focused on memory loads. Memory stores, or 
writes, follow a similar procedure as loads. Upon a memory store, the 
processor checks the cache. If the cache misses, the cache block is fetched 
from main memory into the cache, and then the appropriate word in the 
cache block is written. If the cache hits, the word is simply written to the 
cache block.

Caches are classified as either write-through or write-back. In a write-
through cache, the data written to a cache block is simultaneously written  
to main memory. In a write-back cache, a dirty bit (D) is associated with 
each cache block. D is 1 when the cache block has been written and 0 
otherwise. Dirty cache blocks are written back to main memory only 
when they are evicted from the cache. A write-through cache requires 
no dirty bit but usually requires more main memory writes than a 
write-back cache. Modern caches are usually write-back because main  
memory access time is so large.
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Figure 8.18 Miss rate versus block size and cache size on SPEC92 benchmark  
Adapted with permission from Hennessy and Patterson, Computer Architecture:  

A Quantitative Approach, 5th ed., Morgan Kaufmann, 2012
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Example 8.12 WRITE-THROUGH VERSUS WRITE-BACK

Suppose a cache has a block size of four words. How many main memory accesses 
are required by the following code when using each write policy: write-through or 
write-back?

addi t5, zero, 0
sw t1, 0(t5)
sw t2, 12(t5)
sw t3, 8(t5)
sw t4, 4(t5)

Solution All four store instructions write to the same cache block. With a write-
through cache, each store instruction writes a word to main memory, requiring 
four main memory writes. A write-back policy requires only one main memory 
access, when the dirty cache block is evicted.
 

8.4  VIRTUAL MEMORY
Most modern computer systems use a hard drive made of magnetic 
or solid-state storage as the lowest level in the memory hierarchy (see 
Figure 8.4). Compared with the ideal large, fast, cheap memory, a hard 
drive is large and cheap but terribly slow. It provides a much larger 
capacity than is possible with a cost-effective main memory (DRAM). 
However, if a significant fraction of memory accesses involve the hard 
drive, performance is dismal. You may have encountered this on a PC 
when running too many programs at once.

Figure 8.19 shows a hard drive made of magnetic storage, also 
called a hard disk, with the lid of its case removed. As the name implies, 
the hard disk contains one or more rigid disks or platters, each of 
which has a read/write head on the end of a long triangular arm. The 
head moves to the correct location on the disk and reads or writes 
data magnetically as the disk rotates beneath it. The head takes several  
milliseconds to seek the correct location on the disk, which is fast from 
a human perspective but millions of times slower than the processor.  
Hard disk drives are increasingly being replaced by solid-state drives 
because reading is orders of magnitude faster (see Figure 8.4) and they 
are not as susceptible to mechanical failures.

The objective of adding a hard drive to the memory hierarchy is to 
inexpensively give the illusion of a very large memory while still provid-
ing the speed of faster memory for most accesses. A computer with only 
16 GiB of DRAM, for example, could effectively provide 128 GiB of 
memory using the hard drive. This larger 128 GiB memory is called vir-
tual memory, and the smaller 16 GiB main memory is called physical 
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memory. We will use the term physical memory to refer to main memory 
throughout this section.

Programs can access data anywhere in virtual memory, so they must 
use virtual addresses that specify the location in virtual memory. The 
physical memory holds a subset of most recently accessed virtual mem-
ory. In this way, physical memory acts as a cache for virtual memory. 
Thus, most accesses hit in physical memory at the speed of DRAM, yet 
the program enjoys the capacity of the larger virtual memory.

Virtual memory systems use different terminologies for the same 
caching principles discussed in Section 8.3. Table 8.3 summarizes the 
analogous terms. Virtual memory is divided into virtual pages, typically 
4 KiB in size. Physical memory is likewise divided into physical pages 
of the same size. A virtual page may be located in physical memory 
(DRAM) or on the hard drive. For example, Figure 8.20 shows a virtual  
memory that is larger than physical memory. The rectangles indicate 
pages. Some virtual pages are present in physical memory, and some 
are located on the hard drive. The process of determining the physical 

A computer with 32-bit 
addresses can access a 
maximum of 232 bytes = 4 GiB 
of memory. This is one of the 
motivations for moving to 
64-bit computers, which can 
access far more memory. 

Figure 8.19 Hard disk
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address from the virtual address is called address translation. If the  
processor attempts to access a virtual address that is not in physical 
memory, a page fault occurs and the operating system (OS) loads the 
page from the hard drive into physical memory.

To avoid page faults caused by conflicts, any virtual page can map 
to any physical page. In other words, physical memory behaves as a fully 
associative cache for virtual memory. In a conventional fully associative 
cache, every cache block has a comparator that checks the most signif-
icant address bits against a tag to determine whether the request hits in 
the block. In an analogous virtual memory system, each physical page 
would need a comparator to check the most significant virtual address 
bits against a tag to determine whether the virtual page maps to that 
physical page.

A realistic virtual memory system has so many physical pages that 
providing a comparator for each page would be excessively expensive. 
Instead, the virtual memory system uses a page table to perform address 
translation. A page table contains an entry for each virtual page, indicat-
ing its location in physical memory or that it is on the hard drive. Each 
load or store instruction requires a page table access followed by a phys-
ical memory access. The page table access translates the virtual address 

Table 8.3 Analogous cache and virtual memory terms

Cache Virtual Memory

Block Page

Block size Page size

Block offset Page offset

Miss Page fault

Tag Virtual page number

Physical Memory 

Physical Addresses 
Virtual Addresses 

Hard Drive

Address Translation 

Figure 8.20 Virtual and physical 
pages
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used by the program to a physical address. The physical address is then 
used to actually read or write the data.

The page table is usually so large that it is located in physical mem-
ory. Hence, each load or store involves two physical memory accesses: a 
page table access and a data access. To speed up address translation, a 
translation lookaside buffer (TLB) caches the most commonly used page 
table entries.

The remainder of this section elaborates on address translation, 
page tables, and TLBs.

8 . 4 . 1   Address Translation

In a system with virtual memory, programs use virtual addresses so that 
they can access a large memory. The computer must translate these vir-
tual addresses to either find the address in physical memory or take a 
page fault and fetch the data from the hard drive.

Recall that virtual memory and physical memory are divided into 
pages. The most significant bits of the virtual or physical address specify 
the virtual or physical page number. The least significant bits specify the 
word within the page and are called the page offset.

Figure 8.21 illustrates the page organization of a virtual memory 
system with 2 GiB of virtual memory and 128 MiB of physical memory 
divided into 4 KiB pages. MIPS accommodates 32-bit addresses. With a 
2 GiB = 231-byte virtual memory, only the least significant 31 virtual 
address bits are used; the 32nd bit is always 0. Similarly, with a 128 MiB =  
227-byte physical memory, only the least significant 27 physical address 
bits are used; the upper 5 bits are always 0.
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pages
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Because the page size is 4 KiB = 212 bytes, there are 231/212 = 219 virtual 
pages and 227/212 = 215 physical pages. Thus, the virtual and physical 
page numbers are 19 and 15 bits, respectively. Physical memory can only 
hold up to 1/16th of the virtual pages at any given time. The rest of the 
virtual pages are kept on the hard drive.

Figure 8.21 shows virtual page 5 mapping to physical page 1, virtual 
page 0x7FFFC mapping to physical page 0x7FFE, and so forth. For exam-
ple, virtual address 0x53F8 (an offset of 0x3F8 within virtual page 5)  
maps to physical address 0x13F8 (an offset of 0x3F8 within physical 
page 1). The least significant 12 bits of the virtual and physical addresses 
are the same (0x3F8) and specify the page offset within the virtual and 
physical pages. Only the page number needs to be translated to obtain 
the physical address from the virtual address.

Figure 8.22 illustrates the translation of a virtual address to a phys-
ical address. The least significant 12 bits indicate the page offset and 
require no translation. The upper 19 bits of the virtual address specify 
the virtual page number (VPN) and are translated to a 15-bit physical 
page number (PPN). The next two sections describe how page tables 
and TLBs are used to perform this address translation.

Page OffsetPPN

11  10  9  ...  2  1  0
Page OffsetVPN

Virtual Address

Physical Address

30  29  28   ...  14  13  12

11  10  9  ...  2  1  026  25  24   ...  13  12

19

15

12Translation

Figure 8.22 Translation from 
virtual address to physical 
address

Example 8.13 VIRTUAL ADDRESS TO PHYSICAL ADDRESS TRANSLATION

Find the physical address of virtual address 0x247C using the virtual memory 
system shown in Figure 8.21.

Solution The 12-bit page offset (0x47C) requires no translation. The remaining 
19 bits of the virtual address give the virtual page number, so virtual address 
0x247C is found in virtual page 0x2. In Figure 8.21, virtual page 0x2 maps to 
physical page 0x7FFF. Thus, virtual address 0x247C maps to physical address 
0x7FFF47C.
 

8 . 4 . 2   The Page Table

The processor uses a page table to translate virtual addresses to physical 
addresses. The page table contains an entry for each virtual page. This 
entry contains a physical page number and a valid bit. If the valid bit 
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is 1, the virtual page maps to the physical page specified in the entry. 
Otherwise, the virtual page is found on the hard drive.

Because the page table is so large, it is stored in physical memory. 
Let us assume for now that it is stored as a contiguous array, as shown in 
Figure 8.23. This page table contains the mapping of the memory system  
of Figure 8.21. The page table is indexed with the virtual page number 
(VPN). For example, entry 5 specifies that virtual page 5 maps to physical  
page 1. Entry 6 is invalid (V = 0), so virtual page 6 is located on the 
hard drive.

Example 8.14  USING THE PAGE TABLE TO PERFORM ADDRESS 
TRANSLATION

Find the physical address of virtual address 0x247C using the page table shown 
in Figure 8.23.

Solution Figure 8.24 shows the virtual address to physical address translation for 
virtual address 0x247C. The 12-bit page offset requires no translation. The remain-
ing 19 bits of the virtual address are the virtual page number, 0x2, and give the 
index into the page table. The page table maps virtual page 0x2 to physical page 
0x7FFF. So, virtual address 0x247C maps to physical address 0x7FFF47C. The 
least significant 12 bits are the same in both the physical and the virtual address.Page Table
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The page table can be stored anywhere in physical memory at the 
discretion of the OS. The processor typically uses a dedicated register, 
called the page table register, to store the base address of the page table 
in physical memory.

To perform a load or store, the processor must first translate the  
virtual address to a physical address and then access the data at that 
physical address. The processor extracts the virtual page number from 
the virtual address and adds it to the page table register to find the  
physical address of the page table entry. The processor then reads this 
page table entry from physical memory to obtain the physical page 
number. If the entry is valid, it merges this physical page number with 
the page offset to create the physical address. Finally, it reads or writes 
data at this physical address. Because the page table is stored in physical 
memory, each load or store involves two physical memory accesses. 

8 . 4 . 3   The Translation Lookaside Buffer

Virtual memory would have a severe performance impact if it required 
a page table read on every load or store, doubling the delay of loads 
and stores. Fortunately, page table accesses have great temporal local-
ity. The temporal and spatial locality of data accesses and the large page 
size mean that many consecutive loads or stores are likely to reference 
the same page. Therefore, if the processor remembers the last page 
table entry that it read, it can probably reuse this translation without 
rereading the page table. In general, the processor can keep the last sev-
eral page table entries in a small cache called a translation lookaside 
buffer (TLB). The processor “looks aside” to find the translation in 
the TLB before having to access the page table in physical memory. In 
real programs, the vast majority of accesses hit in the TLB, avoiding the 
time-consuming page table reads from physical memory.

A TLB is organized as a fully associative cache and typically holds 
16 to 512 entries. Each TLB entry holds a virtual page number and its 
corresponding physical page number. The TLB is accessed using the virtual 
page number. If the TLB hits, it returns the corresponding physical page 
number. Otherwise, the processor must read the page table in physical 
memory. The TLB is designed to be small enough that it can be accessed 
in less than one cycle. Even so, TLBs typically have a hit rate of greater 
than 99%. The TLB decreases the number of memory accesses required 
for most load or store instructions from two to one.

Example 8.15 USING THE TLB TO PERFORM ADDRESS TRANSLATION

Consider the virtual memory system of Figure 8.21. Use a two-entry TLB or 
explain why a page table access is necessary to translate virtual addresses 
0x247C and 0x5FB0 to physical addresses. Suppose that the TLB currently 
holds valid translations of virtual pages 0x2 and 0x7FFFD.
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Solution Figure 8.25 shows the two-entry TLB with the request for virtual 
address 0x247C. The TLB receives the virtual page number of the incoming 
address, 0x2, and compares it to the virtual page number of each entry. Entry 
0 matches and is valid, so the request hits. The translated physical address is the 
physical page number of the matching entry, 0x7FFF, concatenated with the page 
offset of the virtual address. As always, the page offset requires no translation.

The request for virtual address 0x5FB0 misses in the TLB. So, the request is  
forwarded to the page table for translation.
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8 . 4 . 4   Memory Protection

So far, this section has focused on using virtual memory to provide a 
fast, inexpensive, large memory. An equally important reason to use 
virtual memory is to provide protection between concurrently running 
programs.

As you probably know, modern computers typically run several  
programs or processes at the same time. All of the programs are  
simultaneously present in physical memory. In a well-designed computer 
system, the programs should be protected from each other so that no 
program can crash or hijack another program. Specifically, no program 
should be able to access another program’s memory without permission. 
This is called memory protection.

Virtual memory systems provide memory protection by giving each 
program its own virtual address space. Each program can use as much 
memory as it wants in that virtual address space, but only a portion of 
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the virtual address space is in physical memory at any given time. Each 
program can use its entire virtual address space without having to worry 
about where other programs are physically located. However, a program 
can access only those physical pages that are mapped in its page table. 
In this way, a program cannot accidentally or maliciously access another 
program’s physical pages because they are not mapped in its page table. 
In some cases, multiple programs access common instructions or data. 
The OS adds control bits to each page table entry to determine which 
programs, if any, can write to the shared physical pages.

8 . 4 . 5   Replacement Policies*

Virtual memory systems use write-back and an approximate least 
recently used (LRU) replacement policy. A write-through policy, where 
each write to physical memory initiates a write to the hard drive, would 
be impractical. Store instructions would operate at the speed of the hard 
drive instead of the speed of the processor (milliseconds instead of nano-
seconds). Under the writeback policy, the physical page is written back 
to the hard drive only when it is evicted from physical memory. Writing 
the physical page back to the hard drive and reloading it with a different 
virtual page is called paging, and the hard drive in a virtual memory sys-
tem is sometimes called swap space. The processor pages out one of the 
least recently used physical pages when a page fault occurs, then replaces 
that page with the missing virtual page. To support these replacement 
policies, each page table entry contains two additional status bits: a dirty 
bit D and a use bit U.

The dirty bit is 1 if any store instructions have changed the physical 
page since it was read from the hard drive. When a physical page is paged 
out, it needs to be written back to the hard drive only if its dirty bit is 1; 
otherwise, the hard drive already holds an exact copy of the page.

The use bit is 1 if the physical page has been accessed recently. As 
in a cache system, exact LRU replacement would be impractically com-
plicated. Instead, the OS approximates LRU replacement by periodically 
resetting all of the use bits in the page table. When a page is accessed, its 
use bit is set to 1. Upon a page fault, the OS finds a page with U = 0 to 
page out of physical memory. Thus, it does not necessarily replace the 
least recently used page, just one of the least recently used pages.

8 . 4 . 6   Multilevel Page Tables*

Page tables can occupy a large amount of physical memory. For exam-
ple, the page table from the previous sections for a 2 GiB virtual mem-
ory with 4 KiB pages would need 219 entries. If each entry is 4 bytes, the 
page table is 219 × 22 bytes = 221 bytes = 2 MiB.
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To conserve physical memory, page tables can be broken up into 
multiple (usually two) levels. The first-level page table is always kept in 
physical memory. It indicates where small second-level page tables are 
stored in virtual memory. The second-level page tables each contain the 
actual translations for a range of virtual pages. If a particular range of 
translations is not actively used, the corresponding second-level page 
table can be paged out to the hard drive so it does not waste physical 
memory.

In a two-level page table, the virtual page number is split into two 
parts: the page table number and the page table offset, as shown in 
Figure 8.26. The page table number indexes the first-level page table, 
which must reside in physical memory. The first-level page table entry 
gives the base address of the second-level page table or indicates that it 
must be fetched from the hard drive when V is 0. The page table offset 
indexes the second-level page table. The remaining 12 bits of the virtual 
address are the page offset, as before, for a page size of 212 = 4 KiB.

In Figure 8.26, the 19-bit virtual page number is broken into 9 
and 10 bits to indicate the page table number and the page table offset, 
respectively. Thus, the first-level page table has 29 = 512 entries. Each 
of these 512 second-level page tables has 210 = 1 Ki entries. If each of 
the first- and second-level page table entries is 32 bits (4 bytes) and only 
two second-level page tables are present in physical memory at once, the 
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hierarchical page table uses only (512 × 4 bytes) + 2 × (1 Ki × 4 bytes) =  
10 KiB of physical memory. The two-level page table requires a fraction 
of the physical memory needed to store the entire page table (2 MiB). 
The drawback of a two-level page table is that it adds yet another  
memory access for translation when the TLB misses.

Example 8.16  USING A MULTILEVEL PAGE TABLE FOR ADDRESS 
TRANSLATION

Figure 8.27 shows the possible contents of the two-level page table from  
Figure  8.26. The contents of only one second-level page table are shown. Using 
this two-level page table, describe what happens on an access to virtual address 
0x003FEFB0.

Solution As always, only the virtual page number requires translation. The most 
significant nine bits of the virtual address, 0x0, give the page table number, the 
index into the first-level page table. The first-level page table at entry 0x0 indicates 
that the second-level page table is resident in memory (V = 1) and its physical 
address is 0x2375000.
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The next ten bits of the virtual address, 0x3FE, are the page table offset, which 
gives the index into the second-level page table. Entry 0 is at the bottom of the  
second-level page table, and entry 0x3FF is at the top. Entry 0x3FE in the  
second-level page table indicates that the virtual page is resident in physical memory  
(V = 1) and that the physical page number is 0x23F1. The physical page number is 
concatenated with the page offset to form the physical address, 0x23F1FB0.
 

8.5  SUMMARY
Memory system organization is a major factor in determining computer 
performance. Different memory technologies—such as DRAM, SRAM, 
and hard drives—offer trade-offs in capacity, speed, and cost. This 
chapter introduced cache and virtual memory organizations that use a 
hierarchy of memories to approximate an ideal large, fast, inexpensive  
memory. Main memory is typically built from DRAM, which is  
significantly slower than the processor. A cache reduces access time by 
keeping commonly used data in fast SRAM. Virtual memory increases 
the memory capacity by using a hard drive to store data that does not 
fit in the main memory. Caches and virtual memory add complexity and 
hardware to a computer system, but the benefits usually outweigh the 
costs. All modern personal computers use caches and virtual memory. 
Most processors also use the memory interface to communicate with 
input/output (I/O) devices. This is called memory-mapped I/O. Programs 
use load and store operations to access I/O devices, which are discussed 
in Chapter 9, an online supplemental chapter available on this book’s 
companion website (see the Preface).

EPILOGUE
This chapter brings us to the end of our journey together into the realm 
of digital systems. We hope this book has conveyed the beauty and thrill  
of the art as well as the engineering knowledge. You have learned to 
design combinational and sequential logic using schematics and hardware  
description languages. You are familiar with larger building blocks such 
as multiplexers, ALUs, and memories. Computers are one of the most 
fascinating applications of digital systems. You have learned how to  
program a RISC-V processor in its native assembly language and how 
to build the processor and memory system using digital building blocks. 
Throughout, you have seen the application of abstraction, discipline,  
hierarchy, modularity, and regularity. With these techniques, we have 
pieced together the puzzle of a microprocessor’s inner workings. From 
cell phones to digital television to Mars rovers to medical imaging  
systems, our world is an increasingly digital place.
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Imagine what Faustian bargain Charles Babbage would have made 
to take a similar journey a century and a half ago. He merely aspired to 
calculate mathematical tables with mechanical precision. Today’s digital 
systems are yesterday’s science fiction. Might Dick Tracy have listened 
to iTunes on his cell phone? Would Jules Verne have launched a con-
stellation of global positioning satellites into space? Could Hippocrates 
have cured illness using high-resolution digital images of the brain? But, 
at the same time, George Orwell’s nightmare of ubiquitous government 
surveillance becomes closer to reality each day. Hackers and govern-
ments wage undeclared cyberwarfare, attacking industrial infrastructure 
and financial networks. And rogue states develop nuclear weapons using 
laptop computers more powerful than the room-sized supercomputers 
that simulated Cold War bombs. The microprocessor revolution contin-
ues to accelerate. The changes in the coming decades will surpass those 
of the past. You now have the tools to design and build these new sys-
tems that will shape our future. With your newfound power comes pro-
found responsibility. We hope that you will use it, not just for fun and 
riches, but also for the benefit of humanity.
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Exercises

Exercise 8.1  In less than one page, describe four everyday activities that exhibit 
temporal or spatial locality. List two activities for each type of locality and be 
specific.

Exercise 8.2 In one paragraph, describe two short computer applications that 
exhibit temporal and/or spatial locality. Describe how. Be specific.

Exercise 8.3 Come up with a sequence of addresses for which a direct mapped 
cache with a size (capacity) of 16 words and block size of 4 words outperforms 
a fully associative cache with least recently used (LRU) replacement that has the 
same capacity and block size.

Exercise 8.4 Repeat Exercise 8.3 for the case when the fully associative cache 
outperforms the direct mapped cache.

Exercise 8.5 Describe the trade-offs of increasing each of the following cache 
parameters while keeping the others the same:

 (a) block size

 (b) associativity

 (c) cache size

Exercise 8.6 Is the miss rate of a two-way set associative cache always, usually, 
occasionally, or never better than that of a direct mapped cache of the same 
capacity and block size? Explain.

Exercise 8.7 Each of the following statements pertains to the miss rate of caches. 
Mark each statement as true or false. Briefly explain your reasoning; present a 
counterexample if the statement is false.

 (a) A two-way set associative cache always has a lower miss rate than a direct 
mapped cache with the same block size and total capacity.

 (b) A 16 KiB direct mapped cache always has a lower miss rate than an 8 KiB 
direct mapped cache with the same block size.

 (c) An instruction cache with a 32-byte block size usually has a lower miss rate 
than an instruction cache with an 8-byte block size, given the same degree 
of associativity and total capacity.
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Exercise 8.8 A cache has the following parameters: b, block size given in numbers 
of words; S, number of sets; N, number of ways; and A, number of address bits.

 (a) In terms of the parameters described, what is the cache capacity, C?

 (b) In terms of the parameters described, what is the total number of bits 
required to store the tags?

 (c) What are S and N for a fully associative cache of capacity C words with 
block size b?

 (d) What is S for a direct mapped cache of size C words and block size b?

Exercise 8.9 A 16-word cache has the parameters given in Exercise 8.8. Consider 
the following repeating sequence of lw addresses (given in hexadecimal):

 40 44 48 4 70 74 78 7 80 84 888 90 94 98 9 0 48 10 14 181 20C C C C C C

Assuming least recently used (LRU) replacement for associative caches, determine 
the effective miss rate if the sequence is input to the following caches, ignoring 
start-up effects (i.e., compulsory misses).

 (a) direct mapped cache, b = 1 word

 (b) fully associative cache, b = 1 word

 (c) two-way set associative cache, b = 1 word

 (d) direct mapped cache, b = 2 words

Exercise 8.10 Repeat Exercise 8.9 for the following repeating sequence of lw 
addresses (given in hexadecimal) and cache configurations. The cache capacity is 
still 16 words.

 74 0 78 38 84 888 7 34 3813 38818A C AC C C C C

 (a) direct mapped cache, b = 1 word

 (b) fully associative cache, b = 2 words

 (c) two-way set associative cache, b = 2 words

 (d) direct mapped cache, b = 4 words

Exercise 8.11 Suppose you are running a program with the following data access 
pattern (given in hexadecimal). The pattern is executed only once.

 0 810 18 20 28
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 (a) If you use a direct mapped cache with a cache size of 1 KiB and a block size 
of 8 bytes (2 words), how many sets are in the cache?

 (b) With the same cache and block size as in part (a), what is the miss rate of the 
direct mapped cache for the given memory access pattern?

(c) For the given memory access pattern, which of the following would decrease 
the miss rate the most? (Cache capacity is kept constant.) Circle one.

 (i) Increasing the degree of associativity to 2.

 (ii) Increasing the block size to 16 bytes.

 (iii) Either (i) or (ii).

 (iv) Neither (i) nor (ii).

Exercise 8.12 You are building an instruction cache for a RISC-V processor. It 
has a total capacity of 4C = 2c+2 bytes. It is N = 2n-way set associative (N ≥ 8), 
with a block size of b = 2b′ bytes (b ≥ 8). Give your answers to the following 
questions in terms of these parameters.

 (a) Which bits of the address are used to select a word within a block?

 (b) Which bits of the address are used to select the set within the cache?

 (c) How many bits are in each tag?

 (d) How many tag bits are in the entire cache?

Exercise 8.13 Consider a cache with the following parameters:
N (associativity) = 2, b (block size) = 2 words, W (word size) = 32 bits,  
C (cache size) = 32 Ki words, A (address size) = 32 bits. You need consider  
only word addresses.

 (a) Show the tag, set, block offset, and byte offset bits of the address. State how 
many bits are needed for each field.

 (b) What is the size of all the cache tags in bits?

 (c) Suppose that each cache block also has a valid bit (V) and a dirty bit (D). 
What is the size of each cache set, including data, tag, and status bits?

 (d) Design the cache using the building blocks in Figure 8.28 and a small number 
of two-input logic gates. The cache design must include tag storage, data 
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storage, address comparison, data output selection, and any other parts  
you feel are relevant. Note that the multiplexer and comparator blocks may 
be any size (n or p bits wide, respectively), but the SRAM blocks must be 
16Ki × 4 bits. Be sure to include a neatly labeled block diagram. You need  
only design the cache for reads.

Exercise 8.14  You’ve joined a hot new Internet start-up to build wristwatches 
with a built-in pager and Web browser. It uses an embedded processor with a 
multilevel cache scheme depicted in Figure 8.29. The processor includes a small 
on-chip cache in addition to a large off-chip second-level cache. (Yes, the watch 
weighs 3 pounds, but you should see it surf!) 
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Assume that the processor uses 32-bit physical addresses but accesses data only 
on word boundaries. The caches have the characteristics given in Table 8.4. The 
DRAM has an access time of tm and a size of 512 MiB.

Table 8.4 Memory characteristics

Characteristic On-chip Cache Off-chip Cache

Organization Four-way set associative Direct mapped

Hit rate A B

Access time ta tb

Block size 16 bytes 16 bytes

Number of blocks 512 256 Ki
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 (a) For a given word in memory, what is the total number of locations in which 
it might be found in the on-chip cache and in the second-level cache?

 (b) What is the size, in bits, of each tag for the on-chip cache and the 
second-level cache?

 (c) Give an expression for the average memory read access time. The caches are 
accessed in sequence.

 (d) Measurements show that, for a particular problem of interest, the on-chip 
cache hit rate is 85% and the second-level cache hit rate is 90%. However, 
when the on-chip cache is disabled, the second-level cache hit rate shoots up 
to 98.5%. Give a brief explanation of this behavior.

Exercise 8.15  This chapter described the least recently used (LRU) replacement 
policy for multiway associative caches. Other less common replacement policies 
include first-in-first-out (FIFO) and random policies. FIFO replacement evicts 
the block that has been there the longest, regardless of how recently it was 
accessed. Random replacement randomly picks a block to evict.

 (a) Discuss the advantages and disadvantages of each of these replacement 
policies.

 (b) Describe a data access pattern for which FIFO would perform better than 
LRU.

Exercise 8.16  You are building a computer with a hierarchical memory system that 
consists of separate instruction and data caches followed by main memory. You are 
using the RISC-V multicycle processor from Figure 7.44 running at 1 GHz.

 (a) Suppose the instruction cache is perfect (i.e., always hits) but the data cache 
has a 5% miss rate. On a cache miss, the processor stalls for 60 ns to access 
main memory, then resumes normal operation. Taking cache misses into 
account, what is the average memory access time?

 (b) How many clock cycles per instruction (CPI) on average are required for 
load and store word instructions considering the nonideal memory system?

 (c) Consider the benchmark application of Example 7.7 that has 25% loads, 
10% stores, 11% branches, 2% jumps, and 52% R-type instructions3. 
Taking the non-ideal memory system into account, what is the average CPI 
for this benchmark?

 (d) Now suppose that the instruction cache is also non-ideal and has a 7% 
miss rate. What is the average CPI for the benchmark in part (c)? Take into 
account both instruction and data cache misses.

3  Data from Patterson and Hennessy, Computer Organization and Design, 4th Edition,  
Morgan Kaufmann, 2011. Used with permission.
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Exercise 8.17 Repeat Exercise 8.16 with the following parameters.

 (a) The instruction cache is perfect (i.e., always hits) but the data cache has a 
15% miss rate. On a cache miss, the processor stalls for 200 ns to access 
main memory, then resumes normal operation. Taking cache misses into 
account, what is the average memory access time?

 (b) How many clock cycles per instruction (CPI) on average are required for 
load and store word instructions considering the non-ideal memory system?

(c) Consider the benchmark application of Example 7.7 that has 25% loads, 
10% stores, 11% branches, 2% jumps, and 52% R-type instructions. Taking 
the nonideal memory system into account, what is the average CPI for this 
benchmark?

 (d) Now, suppose that the instruction cache is also nonideal and has a 10% 
miss rate. What is the average CPI for the benchmark in part (c)? Take into 
account both instruction and data cache misses.

Exercise 8.18  If a computer uses 64-bit virtual addresses, how much virtual 
memory can it access? Note that 240 bytes = 1 terabyte (tebibyte), 250 bytes = 1 
petabyte (pebibyte), and 260 bytes = 1 exabyte (exbibyte).

Exercise 8.19  A supercomputer designer chooses to spend $1 million on DRAM 
and the same amount on hard disks for virtual memory. Using the prices from 
Figure 8.4, how much physical and virtual memory will the computer have? 
How many bits of physical and virtual addresses are necessary to access this 
memory?

Exercise 8.20  Consider a virtual memory system that can address a total of 
232 bytes. You have unlimited hard drive space but are limited to only 8 MiB of 
semiconductor (physical) memory. Assume that virtual and physical pages are each 
4 KiB in size.

 (a) How many bits is the physical address?

 (b) What is the maximum number of virtual pages in the system?

 (c) How many physical pages are in the system?

 (d) How many bits are the virtual and physical page numbers?

 (e) Suppose that you come up with a direct mapped scheme that maps virtual 
pages to physical pages. The mapping uses the least significant bits of 
the virtual page number to determine the physical page number. How 
many virtual pages are mapped to each physical page? Why is this “direct 
mapping” a bad plan?
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 (f) Clearly, a more flexible and dynamic scheme for translating virtual 
addresses into physical addresses is required than the one described in 
part (e). Suppose that you use a page table to store mappings (translations 
from virtual page number to physical page number). How many page table 
entries will the page table contain?

 (g) Assume that, in addition to the physical page number, each page table entry 
also contains some status information in the form of a valid bit (V) and a 
dirty bit (D). How many bytes long is each page table entry? (Round up to 
an integer number of bytes.)

 (h) Sketch the layout of the page table. What is the total size of the page table in 
bytes?

Exercise 8.21 Consider a virtual memory system that can address a total of 250 bytes. 
You have unlimited hard drive space but are limited to 2 GiB of semiconductor 
(physical) memory. Assume that virtual and physical pages are each 4 KiB in size.

 (a) How many bits is the physical address?

 (b) What is the maximum number of virtual pages in the system?

 (c) How many physical pages are in the system?

 (d) How many bits are the virtual and physical page numbers?

 (e) How many page table entries will the page table contain?

 (f) Assume that, in addition to the physical page number, each page table entry 
also contains some status information in the form of a valid bit (V) and a 
dirty bit (D). How many bytes long is each page table entry? (Round up to 
an integer number of bytes.)

 (g) Sketch the layout of the page table. What is the total size of the page table in 
bytes?

Exercise 8.22  You decide to speed up the virtual memory system of Exercise 8.20 
by using a translation lookaside buffer (TLB). Suppose that your memory system has 
the characteristics shown in Table 8.5. The TLB and cache miss rates indicate how 

Table 8.5 Memory characteristics

Memory Unit Access Time (Cycles) Miss Rate

TLB 1 0.05%

Cache 1 2%

Main memory 100 0.0003%

Hard drive 1,000,000 0%
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often the requested entry is not found. The main memory miss rate indicates how 
often page faults occur.

 (a) What is the average memory access time of the virtual memory system 
before and after adding the TLB? Assume that the page table is always 
resident in physical memory and is never held in the data cache.

 (b) If the TLB has 64 entries, how big (in bits) is the TLB? Give numbers for 
data (physical page number), tag (virtual page number), and valid bits of 
each entry. Show your work clearly.

 (c) Sketch the TLB. Clearly label all fields and dimensions.

 (d) What size SRAM would you need to build the TLB described in part (c)? 
Give your answer in terms of depth × width.

Exercise 8.23 You decide to speed up the virtual memory system of Exercise 
8.21 by using a translation lookaside buffer (TLB) with 128 entries.

 (a) How big (in bits) is the TLB? Give numbers for data (physical page number), 
tag (virtual page number), and valid bits of each entry. Show your work 
clearly.

 (b) Sketch the TLB. Clearly label all fields and dimensions.

 (c) What size SRAM would you need to build the TLB described in part (b)? 
Give your answer in terms of depth × width.

Exercise 8.24 Suppose that the RISC-V multicycle processor described in Section 7.4 
uses a virtual memory system.

 (a) Sketch the location of the TLB in the multicycle processor schematic.

 (b) Describe how adding a TLB affects processor performance.

Exercise 8.25  The virtual memory system you are designing uses a single-level 
page table built from dedicated hardware (SRAM and associated logic). It 
supports 25-bit virtual addresses, 22-bit physical addresses, and 216-byte (64 KiB) 
pages. Each page table entry contains a physical page number, a valid bit (V), 
and a dirty bit (D).

 (a) What is the total size of the page table, in bits?

 (b) The operating system team proposes reducing the page size from 64 to 
16 KiB, but the hardware engineers on your team object on the grounds of 
added hardware cost. Explain their objection.
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 (c) The page table is to be integrated on the processor chip, along with the 
on-chip cache. The on-chip cache deals only with physical (not virtual) 
addresses. Is it possible to access the appropriate set of the on-chip cache 
concurrently with the page table access for a given memory access? Explain 
briefly the relationship that is necessary for concurrent access to the cache 
set and page table entry.

 (d) Is it possible to perform the tag comparison in the on-chip cache 
concurrently with the page table access for a given memory access? Explain 
briefly.

Exercise 8.26 Describe a scenario in which the virtual memory system might 
affect how an application is written. Be sure to include a discussion of how the 
page size and physical memory size affect the performance of the application.

Exercise 8.27 Suppose that you own a personal computer (PC) that uses 32-bit 
virtual addresses.

 (a) What is the maximum amount of virtual memory space each program  
can use?

 (b) How does the size of your PC’s hard drive affect performance?

 (c) How does the size of your PC’s physical memory affect performance?
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Interview Questions

The following exercises present questions that have been asked on interviews.

Question 8.1 Explain the difference between direct mapped, set associative, and 
fully associative caches. For each cache type, describe an application for which 
that cache type will perform better than the other two.

Question 8.2 Explain how virtual memory systems work.

Question 8.3 Explain the advantages and disadvantages of using a virtual 
memory system.

Question 8.4 Explain how cache performance might be affected by the virtual 
page size of a memory system.
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9.1  INTRODUCTION
Input/Output (I/O) systems are used to connect a computer with external 
devices called peripherals. In a personal computer, the devices typically 
include keyboards, monitors, printers, and wireless networks. In embedded 
systems, devices could include a toaster’s heating element, a doll’s speech 
synthesizer, an engine’s fuel injector, a satellite’s solar panel positioning 
motors, and so forth. A processor accesses an I/O device using the address 
and data busses in the same way that it accesses memory.

This chapter provides concrete examples of I/O devices.  
Section 9.2 shows the basic principles of interfacing an I/O device to a 
processor and accessing it from a program. Section 9.3 examines I/O 
in the context of embedded systems. It shows how to use SparkFun’s 
RED-V RedBoard, which has a RISC-V microcontroller, to access 
on-board peripherals including general-purpose, serial, and analog I/O 
as well as timers and pulse-width modulation (PWM). Section 9.4 gives 
examples of interfacing with other common devices, such as character 
LCDs, VGA monitors, Bluetooth radios, and motors.

9.2  MEMORY-MAPPED I/O
Recall from Section 6.5.1 that a portion of the address space is dedi-
cated to I/O devices rather than memory. For example, suppose that 
physical addresses in the range 0x20000000 to 0x20FFFFFF are used 
for I/O. Each I/O device is assigned one or more memory addresses in 
this range. A store to the specified address sends data to the device. A 
load receives data from the device. This method of communicating with 
I/O devices is called memory-mapped I/O.

In a system with memory-mapped I/O, a load or store may access 
either memory or an I/O device. Figure e9.1 shows the hardware needed 
to support two memory-mapped I/O devices. An address decoder 
determines which device communicates with the processor. It uses the 
Address and MemWrite signals to generate control signals for the rest of 
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the hardware. The ReadData multiplexer selects between memory and 
the various I/O devices. Write-enabled registers hold the values written 
to the I/O devices. 

Example e9.1 COMMUNICATING WITH I/O DEVICES

Suppose that I/O Device 1 in Figure e9.1 is assigned the memory address 
0x20001000. Show the RISC-V assembly code for writing the value 7 to I/O 
Device 1 and for reading the output value from I/O Device 1.

Solution The following RISC-V assembly code writes the value 7 to I/O Device 
1. The .equ assembler directive replaces the named symbol with the given value. 
So, the li s1, ioadr instruction becomes li s1, 0x20001000.

.equ ioadr   0x20001000

  li  s0,  7
  li  s1,  ioadr
  sw  s0,  0(s1)

The address decoder detects address 0x20001000 and MemWrite = 1, so it 
asserts WE1, the write enable for Device 1’s register. At the next clock edge, the 
value on the WriteData bus, 7, is written into the register, whose output con-
nects to the input pins of I/O Device 1.

To read from I/O Device 1, the processor executes the following RISC-V  
assembly code.

 lw s0, 0(s1)

Embedded processors are so  
named because they are typically  
embedded within a larger 
system (such as a toy or an 
automobile) and have a limited  
user interface. In contrast, 
processors found in PCs have 
interfaces such as keyboards 
and screens that make them 
accessible to program or run 
applications. But all types  
of processors are essentially  
the same—they all execute 
instructions. Only the interfaces 
and peripheral devices used 
by embedded and traditional 
processors differ. 
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Figure e9.1 Support hardware for memory-mapped I/O
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The address decoder detects the address 0x20001000, so it sets RDsel1:0 to 01. 
The multiplexer thus selects RData1, the read data from Device 1, and connects 
it to the ReadData bus, the value of which is then loaded into s0 in the processor.

The addresses associated with I/O devices are often called I/O registers because 
they may correspond with physical registers in the I/O device like those shown 
in Figure e9.1.
 

Software that communicates with an I/O device is called a device 
driver. You have probably downloaded or installed device drivers for 
your printer or other I/O device. Writing a device driver requires detailed 
knowledge about the I/O device hardware, including the addresses and 
behavior of the memory-mapped I/O registers. Other programs call 
functions in the device driver to access the device without having to 
understand the low-level device hardware.

9.3  EMBEDDED I/O SYSTEMS
Embedded systems use a processor to control interactions with the physical 
environment. They are typically built around microcontroller units 
(MCUs) which combine a microprocessor with a set of easy-to-use  
peripherals such as general-purpose digital and analog I/O pins, serial ports,  
timers, etc. Microcontrollers are generally inexpensive and are designed to 
minimize system cost and size by integrating most of the necessary compo-
nents onto a single chip. Most are smaller and lighter than a dime, consume 
milliwatts of power, and range in cost from a few dimes up to several dol-
lars. Microcontrollers are classified by the size of data that they operate on. 
8-bit microcontrollers are the smallest and least expensive, while 32-bit 
microcontrollers provide more memory and higher performance.

9 . 3 . 1   RED-V Board

For the sake of concreteness, this section will illustrate embedded system 
I/O in the context of a real system. Specifically, we will focus on the 
FE310-G002 system-on-chip (SoC) from SiFive, which contains a 320 MHz 
32-bit RISC-V processor that implements the RV32IMAC architecture—
that is, the base 32-bit integer instruction set (RV32I) plus the  
multiply/divide (M), atomic memory accesses (A), and compressed 
16-bit instructions (C) extensions. This MCU is available on the HiFive 
development board from SiFive as well as on a set of third-party devel-
opment boards such as the RED-V series from SparkFun (available in 
both Arduino and Thing Plus footprints). The I/O interfaces described in 
each subsection will be followed by specific examples that run on the 
FE310. All of the examples have been tested on SparkFun’s RED-V 

According to IC Insights, 
approximately 24 billion 
microcontrollers were sold in 
2020, and the market is forecast 
to grow at 10% per year 
through 2029. The average price 
of a standalone microcontroller 
is about 60 cents, and an 
8-bit microcontroller can be 
integrated on a system-on-chip 
(SoC) for less than a tenth of a 
penny. Microcontrollers have 
become ubiquitous and nearly 
invisible, with an estimated 100 
or more microcontrollers in an 
average new car in 2021.

Automobiles are the largest 
and fastest-growing market for 
microcontrollers, followed by 
consumer electronics, industrial 
systems, medical devices, and 
military applications. 16-bit 
microcontrollers account for 
the most revenue in 2020, 
but 32-bit microcontrollers 
are increasing in market 
share because of their greater 
capabilities.

Leading microcontroller 
manufacturers are Infineon, 
Microchip, NXP, Renesas, 
STMicroelectronics, and 
Texas Instruments. Leading 
architectures include the 8051, 
AVR, PIC, and ARM. ARM 
holds a near-monopoly as the 
application processor for 90% 
of mobile devices. However, 
RISC-V is gaining great interest 
as a new and open-source 
architecture. 
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RedBoard and could be readily run on the HiFive development board or 
adapted to the RED-V Thing Plus Board.

Figure e9.2(a) shows SparkFun’s RED-V RedBoard, which is avail-
able for less than $40 and is 2.7” × 2.1”. The figure also shows each 
pin’s signal names, which we describe throughout this section. The 
development board can be powered from a 5  V USB power supply or 
from a 7 to 15  V DC source via the barrel jack. The FE310-G002 on 
board is powered by 3.3  V and 1.8  V on-board regulators. The 
FE310-G002 has a 16-KiB L1 Instruction Cache and a 16-KiB Data 
SRAM Scratchpad. The SparkFun development board also has 32 MiB 
of off-chip flash storage accessible via a serial peripheral interface (SPI) 
that can be used to store programs and data. 

Figure e9.2(b) shows the RED-V Thing Plus, which has capabilities 
similar to the RED-V RedBoard but in a smaller form factor (2.3” × 
0.9”) that fits on a breadboard for easy interfacing. The I/O pins are 
numbered differently than on the RedBoard and are difficult to read on 
the silk screen, but they are labeled in Figure e9.2(b).

The RED-V RedBoard form factor is designed around an Arduino 
R3 footprint in an effort to preserve as much compatibility as possible 
with the many Arduino shields available in this footprint. All 19 config-
urable I/O signals are accessible via header pins and operate at 3.3 V. 
The header also provides 3.3 V, 5 V, and ground to conveniently power 
small devices attached to the RedBoard, but the maximum total current 
is 50 mA from the 3.3 V supply and ~300 mA from the 5 V supply.

Maintaining compatibility with the Arduino R3 footprint results in 
multiple names for each pin: the silkscreen (text printed on the board) 
lists the standard Arduino pin numbers, but the RED-V pinout doc-
umented in Figure e9.2 shows both the Arduino pin numbers and the 
corresponding FE310 GPIO (general-purpose I/O) pin numbers. For 

The RED-V RedBoard is 
called simply the RED-V 
throughout this chapter. 

This book’s companion 
materials (see the Preface) 
include laboratory exercises 
that use the RED-V board. 

Caution: Connecting 5 V to one 
of the 3.3 V I/Os may damage 
the I/O and possibly the entire 
FE310. If you probe the I/O 
pins with a voltmeter, beware 
that you do not accidentally 
make contact between VUSB or 
VBAT and a nearby pin! 

Figure e9.2 (a) RED-V RedBoard; (b) RED-V Thing Plus Board  
(Photos courtesy of SparkFun used under CC BY 2.0)
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example, as shown in Figure e9.2, GPIO5 (FE310 pin 5) corresponds to 
D13 (Arduino pin 13). The RED-V Thing Plus board lacks the Arduino-
compatible pin naming but, thus, also avoids having multiple pin num-
bers for a single pin. Also notice in Figure e9.2 that some GPIO pins 
have multiple purposes. For example, GPIO18 (D2) can also act as the 
transmit line for UART 1 (UART1_TX), as will be described later.

On both boards, GPIO5 is connected to a blue LED. This pin is 
labeled 13 (i.e., D13) on the RedBoard and 5 on the Thing Plus board.

This section begins by describing the FE310-G002 SoC and describ-
ing a general device driver for memory-mapped I/O. The remainder of 
this section illustrates how embedded systems perform general-purpose 
digital, analog, and serial I/O.

9 . 3 . 2   FE310-G002 System-on-Chip

The FE310-G002 SoC is a powerful yet inexpensive microcontroller 
chip designed by SiFive. It includes a RISC-V microprocessor with a 
5-stage pipeline similar to the one described in Chapter 7 and many I/O 
peripherals. The FE310 is packaged in a 48-lead, quad flat no-leads 
package. SiFive publishes a datasheet that describes many features and 
I/O registers; this chapter discusses only a subset of those features.

Table e9.1 shows the FE310 memory map. Upon start-up, the pro-
cessor begins executing code from external flash memory at address 
0x20000000. The memory map has room for up to 512 MiB of exter-
nal flash, although current RED-V boards have much less: the RED-V 
RedBoard has 32 MiB of external flash, and the RED-V Thing Plus has  
4 MiB. The chip also has 16 KiB of RAM, called a data tightly integrated 
memory (DTIM), at address 0x80000000. This RAM has a 2-cycle load 
latency and is used to hold variables. Various peripherals are memory- 
mapped between addresses 0x02000000 and 0x1FFFFFFF and will be 
described in detail in later sections. These peripherals include general- 
purpose I/O, three pulse-width modulation (PWM) blocks for generating 
output waveforms, and many serial ports to connect to external devices, 
including three serial peripheral interfaces (SPIs), two universal asyn-
chronous receiver/transmitters (UARTs), and one inter-integrated circuit 
(I2C) interface.

Figure e9.3 shows a simplified schematic of the RED-V RedBoard. 
The board receives 5 V power from a USB power supply and regulators 
produce 3.3 V and 1.8 V for I/O, powering the low-power always-on 
core and miscellaneous functions.

9 . 3 . 3   General-Purpose Digital I/O

General-purpose I/O (GPIO) pins are used to read or write digital sig-
nals. At a minimum, GPIO pins require memory-mapped I/O registers 

SiFive was founded in 2015 
by three researchers from 
the University of California, 
Berkeley: Krste Asanović, 
Yunsup Lee, and Andrew 
Waterman. SiFive’s vision 
is to make custom silicon 
development faster and 
more affordable than ever 
before. Focused around the 
open RISC-V instruction 
set architecture (ISA), they 
have developed a platform 
that enables system-level 
design of custom chips. More 
information, including the 
FE310-G002 datasheet, can 
be found at sifive.com. 

The RISC-V microcontrollers 
from SiFive continue to advance. 
By the time you read this, a  
newer model might be available  
with a more advanced processor 
and a different set of embedded 
I/O. Nevertheless, the same 
principles discussed here apply 
to that microcontroller as well 
as other microcontrollers. You 
can expect to find the same  
types of I/O and peripherals. You  
will need to consult the datasheet 
to look up the mapping between 
the peripheral, the pin on the  
chip, and the pin on the board,  
as well as the memory-mapped  
I/O addresses (registers) associated 
with each peripheral. But, as 
described here, you will still 
write to configuration registers 
to initialize the peripheral and 
read and write data registers 
to communicate with the 
peripheral. 
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Table e9.1 FE310 Memory Map

Memory attributes: R: Read, W: Write, X: Execute, C: Cacheable, A: Atomics.
Reprinted with permission from Table 4 of the FE310-G0002 Manual, © 2019 SiFive, Inc. 

to read input pin values, write output pin values, and set the direction 
of the pin. In many embedded systems, the GPIO pins can be shared 
with one or more special-purpose peripherals, so additional configura-
tion registers are necessary to determine whether the pin is general- or 
special-purpose. Furthermore, the processor may generate interrupts 
when an event such as a rising or falling edge occurs on an input pin, 
and configuration registers may be used to specify the conditions for 
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an interrupt. Recall that the FE310 has 19 GPIO pins. This section will 
start with a basic example of controlling these pins and then will look at 
some of the special purposes for these pins.

Figure e9.4 shows three light-emitting diodes (LEDs) and three 
switches connected to six GPIO pins. The LEDs are wired to glow 
when driven to 1 and to turn off when driven to 0. The current-limiting  
(typically around 300 Ω) resistors are placed in series with the LEDs to 
set the brightness and to avoid overloading the current capability of the 
GPIO. The switches are wired to produce a 1 when closed and a 0 when 
open. As shown, the 1 kΩ pull-down resistors pull the pins down to 0 
when the switches are open. Figure e9.4 indicates the (Arduino) pin 
numbers that are labeled on the board as well as the GPIO pin numbers.

Table e9.2 lists the GPIO registers and their address offsets rela-
tive to the GPIO base address, 0x10012000, as shown in Table 51 of 
the FE310-G002 Manual. Let’s first focus on the top four registers 
(i.e., memory-mapped I/O addresses). Each GPIO pin is mapped to one 
bit of the registers. Reading from the input_val (input value) regis-
ter reads the values of the GPIO pins, and writing to the output_val 
(output value) register writes to the GPIO pins. Before reading or writ-
ing to the pins, the input and output enable registers (input_en and  
output_en) must be set to configure the pins as inputs or outputs and 
the hardware-driven function enable register (iof_en) must be cleared 
to configure the pins as GPIO controlled.

GPIO Memory-Mapped I/O
We illustrate how to use the GPIO pins by writing a program that 
reads the state of a switch and controls an LED using the GPIOs. The 
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five most important registers for interacting with the GPIO pins are, 
as described above, input_val, input_en, output_en, output_val, 
and iof_en at offsets of 0x0, 0x4, 0x8, 0xC, and 0x38 from the base 
address. Each register is 32 bits wide and could control up to 32 GPIOs, 
but only 19 GPIOs are physically present on this chip.

To read GPIO n, a program sets bit n of the input_en (input 
enable) register and then reads the input_val (input value) register and 
looks at bit n. Similarly, to drive GPIO n, a program sets bit n of the 
output_en (output enable) register and then writes the desired value to 
bit n of the output_val (output value) register. In both cases, bit n of 

Table e9.2 GPIO register offsets

Offset Name Description

0x00 input_val Pin value

0x04 input_en Pin input enable*

0x08 output_en Pin output enable*

0x0C output_val Output value

0x10 pue Internal pull-up enable*

0x14 ds Pin drive strength

0x18 rise_ie Rise interrupt enable

0x1C rise_ip Rise interrupt pending

0x20 fall_ie Fall interrupt enable

0x24 fall_ip Fall interrupt pending

0x28 high_ie High interrupt enable

0x2C high_ip High interrupt pending

0x30 low_ie Low interrupt enable

0x34 low_ip Low interrupt pending

0x38 iof_en HW-driven functions enable

0x3C iof_sel HW-driven functions selection

0x40 out_xor Output XOR (invert)

Registers with * are asynchronously reset to 0 at start-up so that GPIO pins are inactive.
Reprinted with permission from Table 52 of the SiFive FE310-G0002 Manual, © 2019 
SiFive, Inc.
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the iof_en register must be cleared to ensure that the pin is driven by 
the GPIO controller instead of other hardware on the chip.

Code Example e9.1 illustrates a simple program that reads the value 
of the switch connected to GPIO19 and accordingly turns ON or OFF 
the on-board LED connected to GPIO5. The hardware setup is shown in 
Figure e9.5.  To access the memory-mapped I/O, it first declares pointers 
to the five registers at the addresses mentioned above. Each pointer is 
of type uint32_t* because the registers contain unsigned 32-bit values. 
The program writes a 1 to bit 19 of the input_en register and a 1 to 
bit 5 of the output_en register to configure GPIO pin 19 as an input 
and GPIO pin 5 as an output. Notice how we use the shift operation  
(1 << 19) to set a 1 in bit 19 and OR it with the existing contents of the 
enable register to turn on that bit without affecting other bits that might 
already be turned on. Then, we write a 0 to bits 5 and 19 in the iof_
en register to ensure that the pins are driven by the GPIO controller. To 
write a 0 to a bit, we AND iof_en with 1’s in every position except 
that bit so that the desired bit is forced low and the other bits are not 
affected. Next, the program repeatedly reads the input pin and writes 
the output pin. To read the input pin, the program reads the input_val 
register, right-shifts the value by 19 (to move pin 19’s value into bit 0), 
and performs a bitwise AND with 0x1 to retain only bit 0, leaving a single 
0 or 1 corresponding to the value originally in bit 19. To write a high 
value to a bit of the output_val register, we use the OR operation, as 
we did to turn on a bit in the enable registers. To write a 0 to a bit in the 
output_val register, we use the same approach as described above for 
clearing bits in the iof_en register.

In the context of bit 
manipulation, “setting” 
means to write 1 to a bit and 
“clearing” means to write 0 
to a bit. 

#include <stdint.h>
int main(void) {
  volatile uint32_t *input_val  = (uint32_t*)0x10012000;
  volatile uint32_t *input_en   = (uint32_t*)0x10012004;
  volatile uint32_t *output_en   = (uint32_t*)0x10012008;
  volatile uint32_t *output_val = (uint32_t*)0x1001200C;
  volatile uint32_t *iof_en   = (uint32_t*)0x10012038;
  int val;

  *iof_en  &= ~(1 << 19);  // Pin 19 is a GPIO
  *input_en   |=    (1 << 19);  // Pin 19 is an input
  *iof_en   &= ~ (1 << 5);  // Pin 5 is a GPIO
  *output_en    |=    (1 << 5);  // Pin 5 is an output
  while (1)   {
               val = (*input_val >> 19) & 1;  // Read value on pin 19
               if (val) *output_val |= (1 << 5);  // Turn ON pin 5
               else        *output_val &= ~(1 << 5);  // TURN OFF pin 5
        }
}

Code Example e9.1 SETTING GPIO OUTPUT BASED ON SWITCH INPUT

GPIO5

GPIO19

RED-V
3.3 V

1k�

330 �

Switch

Figure e9.5 LED output on GPIO 
pin 5 and switch input from GPIO 
pin 19
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Other GPIO Registers

Table e9.2 listed several other GPIO control registers of interest, partic-
ularly the pin drive strength (ds), internal pull-up enable (pue), and I/O 
function (iof_sel and iof_en) registers.

The ds register controls each pin’s maximum output current. The 
default value (0) configures IOL/IOH as 15 to 16 mA, while setting a pin’s 
ds to 1 increases that pin’s output current modestly to 21 mA, which 
might be helpful to drive a brighter LED.

The pue register configures an internal pull-up resistor. Figure e9.4 
showed an example of an external pull-down resistor. If the power and 
ground connections on the switch were reversed, the resistor would then 
be a pull-up resistor that drives the pin to 1 when the switch is not con-
nected. In that case, when the switch was pressed, the pin would drop 
to 0. To save money and circuit board space, many microcontrollers 
contain internal pull-up resistors that can optionally be enabled in soft-
ware. Writing a 1 to a bit of the pue register activates the internal pull-up 
resistor for the corresponding GPIO pin. According to Table 4.2 of the 
FE310-G002 datasheet, the pull-up current is 85 μA when the pin is at 0 
V. Hence, the effective pull-up resistance is 3.3  V/85 μA = 39 kΩ (V/I = R).

As shown in Table e9.3, most GPIO pins can also perform a special  
function, such as acting as a serial port or a pulse-width modulation 
(PWM) output. We discuss these functions in detail later in this chap-
ter. The iof_sel and iof_en registers together determine whether each 
pin is acting as a GPIO or as a special function. When iof_en is 0 (the 
default), the pin acts as a GPIO. When it is 1, it takes on the special 
function. The special function is chosen from Table e9.3 based on the 
iof_sel bit for that pin. For example, to use GPIO11 to generate a 
pulse-width modulated waveform, set bit 11 of iof_sel and iof_en to 1. 
Then, use the PWM registers to control the output. iof_en is mapped 
to address 0x10012038 and iof_sel to 0x1001203C. Table e9.3 lists 
32 GPIOs; however, remember that the RED-V boards only include 19 
GPIOs: GPIOs 0 to 5, 9 to 13, and 16 to 23.

9 . 3 . 4   Device Drivers

As we saw in Code Example e9.1, programmers can manipulate I/O 
devices directly by reading or writing the memory-mapped I/O registers. 
However, it is better programming practice to call functions that access 
the memory-mapped I/O. These functions are called device drivers. Some 
of the benefits of using device drivers include:

▸ The code is easier to read when it involves a clearly named function 
call rather than a write to bit fields at an obscure memory address.

▸ Somebody who is familiar with the deep workings of the I/O devices 
can write the device driver and casual users can call it without hav-
ing to understand the details.
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Table e9.3 GPIO pins special functions map

Reprinted with permission from Table 53 of the SiFive 
FE310-G0002 Manual, © 2019 SiFive, Inc.

▸ The code is easier to port to another processor with different mem-
ory mapping or I/O devices because only the device driver must 
change.

▸ If the device driver is part of the operating system (OS), the OS can 
control access to physical devices shared among multiple programs 
running on the system and can manage security (e.g., so a malicious 
program can’t read the keyboard while you are typing your pass-
word into a web browser).
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This chapter will develop a simple device driver called EasyREDVIO 
to access FE310 peripherals so that you can understand what is happen-
ing under the hood in a device driver. To access all features of the FE310, 
users may prefer the Freedom Metal environment, which provides  
convenient software interfaces for controlling SiFive Core IP features 
and peripheral devices. Freedom Metal is powerful since it is written in 
such a way that its API will work on any device that has a Freedom 
Metal board support package (BSP). A BSP is a software package con-
taining drivers and other commonly used routines. SiFive also provides 
the Freedom E software developer kit (SDK) and Freedom Studio, which 
allow users to develop software for any SiFive core.

Example e9.2 DEVICE DRIVERS IN C

Accessing and modifying the values for memory-mapped I/O is accomplished by 
reading or writing to memory addresses. In assembly, this is done using lw and sw 
instructions. As illustrated in Code Example e9.2, C can do the same thing with 
pointers, but it is tedious and error-prone to declare pointers for every memory- 
mapped I/O register. A more natural way to describe and control memory-mapped  
I/O in C is using structures.

As discussed in Section C.8.5 in the appendix, structures in C are a way to group 
a collection of different data types into a single unit. Using structures in the con-
text of memory-mapped registers allows communication with the I/O device 
using the name of a given register or field as opposed to a memory address. A C 
program can declare a structure for a memory-mapped peripheral, listing the reg-
isters in the order they appear in the memory map. It can then declare a pointer 
to such a structure and access the peripheral via the structure pointer.

Start the EasyREDVIO library by writing pinMode, digitalRead, and  
digitalWrite functions to configure a pin’s direction and read or write it.

▸  The pinMode function takes two inputs: the pin number and the mode. For 
example, pinMode(5, INPUT) sets GPIO pin 5 as an input, and pinMode(17, 
OUTPUT) sets GPIO pin 17 as an output.

▸  digitalRead takes one input, the pin number, and returns the value of that 
pin. For example, digitalRead(19) reads the value of GPIO19.

▸  digitalWrite takes two inputs: the pin number and the value. For exam-
ple, digitalWrite(3, 1) writes 1 to GPIO pin 3, and digitalWrite(5, 0) 
writes 0 to GPIO pin 5.

After writing these functions, write a C program that uses these functions to read the 
three switches and turn on the corresponding LEDs, using the hardware in Figure e9.4.

Solution The EasyREDVIO code is given below. The functions must choose 
which registers and bits within those registers to access. For example, to 

EasyREDVIO and the code 
examples in this chapter can 
be downloaded from the 
textbook website (see the 
Preface). More information 
about Freedom Metal and 
documentation can be found 
at https://github.com/sifive/
freedom-metal. 

https://github.com/sifive/freedom-metal
https://github.com/sifive/freedom-metal
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configure a pin as an input, pinMode must set that pin’s bit in input_en and 
clear that pin’s bit in output_en. digitalWrite handles writing either 1 or 0 by 
writing to output_val. digitalRead reads the desired bit of input_val.

The GPIO structure (struct) specifies the 32-bit registers by name. Two define 
statements then specify the base address of the GPIO (GPIO0_BASE) and instantiate 
a pointer of type GPIO located at that base address. Each of the 32-bit variables in 
the structure are then located in memory in ascending order from that base address.
 

Code Example e9.2 GPIO FOR SWITCHES AND LEDS

// EasyREDVIO.h
// Joshua Brake, David Harris, and Sarah Harris, 7 October 2020

#include <stdint.h>

#define INPUT   0
#define OUTPUT 1

// Define statements to map Arduino pin names to FE310 GPIO pin number according to Figure e9.2
#define D0    16
#define D1    17
#define D2    18
#define D3    19
#define D4    20
#define D5    21
#define D6    22
#define D7    23
#define D8    0
#define D9    1
#define D10 2
#define D11 3
#define D12 4
#define D13 5
#define D15 9
#define D16 10
#define D17 11
#define D18 12
#define D19 13

// Declare a GPIO structure defining the GPIO registers in the order they appear in Table e9.2
typedef struct {

 volatile uint32_t   input_val;  // (GPIO offset 0x00) Pin value
 volatile uint32_t   input_en;  // (GPIO offset 0x04) Pin input enable*
 volatile uint32_t   output_en;  // (GPIO offset 0x08) Pin output enable*
 volatile uint32_t   output_val;  // (GPIO offset 0x0C) Output value
 volatile uint32_t   pue;  // (GPIO offset 0x10) Internal pull-up enable*
 volatile uint32_t   ds;  // (GPIO offset 0x14) Pin drive strength
 volatile uint32_t   rise_ie;  // (GPIO offset 0x18) Rise interrupt enable
 volatile uint32_t   rise_ip;  // (GPIO offset 0x1C) Rise interrupt pending
 volatile uint32_t   fall_ie;  // (GPIO offset 0x20) Fall interrupt enable
 volatile uint32_t   fall_ip;  // (GPIO offset 0x24) Fall interrupt pending
 volatile uint32_t   high_ie;  // (GPIO offset 0x28) High interrupt enable
 volatile uint32_t   high_ip;  // (GPIO offset 0x2C) High interrupt pending
 volatile uint32_t   low_ie;  // (GPIO offset 0x30) Low interrupt enable
 volatile uint32_t   low_ip;  // (GPIO offset 0x34) Low interrupt pending
 volatile uint32_t   iof_en;  // (GPIO offset 0x38) HW-Driven functions enable
 volatile uint32_t   iof_sel;  // (GPIO offset 0x3C) HW-Driven functions selection
 volatile uint32_t   out_xor;  // (GPIO offset 0x40) Output XOR (invert)
 // Registers marked with * are asynchronously reset to 0 at startup

} GPIO;
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// Define the base address of the GPIO registers (see Table e9.1) and a pointer to this  
// structure
// The 0x…U notation in 0x10012000U indicates an unsigned hexadecimal number
#define GPIO0_BASE   (0x10012000U)
#define GPIO0 ((GPIO*) GPIO0_BASE)

// To access the members of the structure, the member-access operator –> is used.

void pinMode(int gpio_pin, int function) {
 switch(function) {

 case INPUT:
 GPIO0->input_en      |=    (1 << gpio_pin);   // Sets a pin as an input
 GPIO0->output_en   &= ~(1 << gpio_pin);   // Clear output_en bit
 GPIO0->iof_en        &= ~(1 << gpio_pin);   // Disable IOF
 break;

 case OUTPUT:
 GPIO0->output_en     |=    (1 << gpio_pin);   // Set pin as an output
 GPIO0->input_en      &= ~(1 << gpio_pin);   // Clear input_en bit
 GPIO0->iof_en          &= ~(1 << gpio_pin);   // Disable IOF
 break;

 }
}

void digitalWrite(int gpio_pin, int val) {
 if (val) GPIO0->output_val |=    (1 << gpio_pin);
 else         GPIO0->output_val &= ~(1 << gpio_pin);

}

int digitalRead(int gpio_pin) {
 return (GPIO0->input_val >> gpio_pin) & 0x1;

}

// The program below reads switches and writes LEDs. It sets pins 2 to 4 as inputs (for the  
// switches) and pins 7 to 9 as outputs (for the LEDs). It then continuously reads the  
// switches and writes their values to the corresponding LEDs.

#include "EasyREDVIO.h"
int main(void) {
 // Set GPIO 4:2 as inputs
 pinMode(2, INPUT);
 pinMode(3, INPUT);
 pinMode(4, INPUT);
 // Set GPIO 10:8 as outputs
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 while (1) { // Read each switch and write corresponding LED
 digitalWrite(8,    digitalRead(2));
 digitalWrite(9,    digitalRead(3));
 digitalWrite(10, digitalRead(4));

 }
}

9 . 3 . 5   Serial I/O

A microcontroller can send multiple bits to a peripheral device by 
using multiple wires or by sending multiple bits in series over a sin-
gle wire. The former is called parallel I/O and the latter is called serial 
I/O. Serial I/O is popular, especially when pins are limited, because it 
uses few wires and is fast enough for many applications. Indeed, it is 
so popular that many standards for serial I/O have been established 
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and microcontrollers offer dedicated hardware to easily send data via 
these standards. This section describes the SPI and UART standard 
serial interfaces.

Other common serial standards include inter-integrated circuit (I2C),  
universal serial bus (USB), and Ethernet. I2C (pronounced “I squared C”) 
is a 2-wire interface with a clock and a bidirectional data pin; it is 
used in a fashion similar to SPI. USB and Ethernet are more complex, 
high-performance standards. The FE310 supports SPI, UART, and I2C 
via on-board specialized peripherals.

Serial Peripheral Interface (SPI)
SPI (pronounced “S-P-I”) is a simple synchronous serial protocol that is 
easy to use and relatively fast. The physical interface consists of three 
pins: serial clock (SCK), serial data out (SDO), and serial data in (SDI). 
SPI connects a controller device to a peripheral device, as shown in 
Figure e9.6(a). The controller produces the clock. It initiates communi-
cation by sending clock pulses on SCK. The controller sends data from 
its SDO pin to the peripheral’s SDI pin one bit per cycle, starting with 
the most significant bit. The peripheral may simultaneously respond 
with its SDO pin back to the controller’s SDI pin. Figure e9.6(b) shows 
the SPI waveforms for an 8-bit data transmission. Bits change on the 
falling edge of SCK and are stable to sample on the rising edge. The SPI 
interface may also send an active-low chip enable to alert the receiver 
that data is coming.

The terms master/slave used 
to be common (instead of 
controller/peripheral), but 
they are now outdated. Serial 
data out (SDO) or controller-
out peripheral-in (COPI) is 
now used in place of master-
out slave-in (MOSI). Serial 
data in (SDI) or controller-in 
peripheral-out (CIPO) is now 
used in place of master-in 
slave-out (MISO). 
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SDI

Controller
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SDI

SDO

Peripheral
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SDO
(peripheral)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
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SPI_CE0 CE
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Figure e9.6 SPI configuration: (a) SPI controller-peripheral connection diagram, (b) Example SPI data signals
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The FE310 has three SPI controller ports, but only two (SPI1 and 
SPI2) are available to the user. The remaining SPI controller port, SPI0, 
is used to communicate with external flash memory for program and 
data storage. This section describes the SPI1 controller port, which is 
accessible using GPIO pins 5:2. The SPI2 controller port is identical 
except that it is connected to different GPIO pins and its control regis-
ters are located at different memory addresses. To use pins for SPI rather 
than GPIO, their iof_sel bits should be set to 0 to select the SPI1 func-
tion and their iof_en bits should be set to 1 to give the SPI controller 
access to the pins. When the FE310 writes to the SPI txdata register, the 
data is transmitted serially to the peripheral. Simultaneously, data 
received from the peripheral is collected and the FE310 can read it from 
rxdata when the transfer is complete.

SPI ports on a microcontroller normally offer a variety of configu-
ration options to match the requirements of peripheral devices. When 
designing an interface to communicate with a particular peripheral 
device, the controller must be configured properly to ensure that the 
data being transmitted via the link is properly interpreted.

Two common configuration parameters are clock polarity (CPOL) 
and clock phase (CPHA). CPOL sets the level of the clock when it is 
idle and CPHA sets the clock edge when data (SDO and SDI) is sam-
pled (and changed). If CPOL = 1, SCK remains high (1) when data is 
not being transmitted; if CPOL = 0, SCK remains low (0) when idle. If 
CPHA = 0, data are sampled on the leading edge (and change on the 
trailing edge) of SCK; if CPHA = 1, data are sampled on the trailing 
edge (and change on the leading edge) of SCK. The edge on which data 
changes is also referred to as the shifting edge because the underlying 
hardware is usually a shift register. Figure e9.7 shows the four possi-
ble combinations of CPHA and CPOL. The example from Figure  e9.6 
shows CPOL = 0 and CPHA = 0.

SPI always sends data in both 
directions on each transfer. 
If the system only needs 
unidirectional communication, 
it can ignore the unwanted 
data. For example, if the 
controller only needs to send 
data to the peripheral, the byte 
received from the peripheral 
can be ignored. If the controller 
only needs to receive data from 
the peripheral, it must still 
trigger the SPI communication 
by sending an arbitrary byte 
that the peripheral will ignore. 
It can then read the data 
received from the peripheral. 
The SPI clock (SCK) only 
toggles while the controller is 
transmitting data. 

The term port refers to a pin 
or a group of associated pins. 
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Table e9.4 Memory map of SPI registers

Reprinted with permission from Table 65 of the SiFive 
FE310-G0002 Manual, © 2019 SiFive, Inc.

Table e9.4 shows the control registers associated with SPI1, and 
Table e9.5 shows the fields of the key registers. sckdiv (see Table e9.4) 
configures the SPI clock frequency by specifying a divisor (div) for the 
selected input peripheral clock—on the RED-V board, the peripheral 
clock’s default frequency is 16 MHz. The frequency of the SPI clock is 
given by fsck

fin
div= +2 1( )  . For example, if div = 15, then the serial clock 

is fsck = +
16
2 15 1

MHz
( ) = 500 kHz. If the frequency is too high (>~1 MHz on a 

breadboard or tens of MHz on an unterminated printed circuit board), 
the SPI connection may become unreliable due to reflections, crosstalk, 
or other signal integrity issues.
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Table e9.5 SPI register bitfields

Reprinted with permission from Tables 66, 67, 80, and 81 of the SiFive FE310-G0002 
Manual, © 2019 SiFive, Inc.

 

 

 

 

sckmode controls the phase and polarity of the clock. sckmode uses 
only the two least significant bits. Bit 0 is CPHA and bit 1 is CPOL.

txdata is written to transmit a byte over the SPI channel, and 
rxdata is read to get the received byte. Only the least significant byte 
(LSB) written to txdata is transmitted. The SPI instances on the FE310 
have 8-entry first-in-first-out (FIFO) buffers on both the transmit and 
receive data registers. This means that when data is written to the 
txdata register, it is placed in the FIFO buffer and the hardware within 
the SPI peripheral takes care of sending it out. The most significant bit 
(msb) of the txdata register is a flag bit called full, which is 1 when 
the FIFO is full and cannot receive any more data.

Care must be taken when reading data in from the FE310 SPI 
rxdata register. The SPI controller is designed such that the data in the 
register is removed from the receive FIFO when the register is read. To 
check if the rxdata register has valid data, the register should be read 

Configuration registers have 
many unused or “reserved” 
bits. These bits might be 
used in a future version of 
the chip, so they should not 
be written lest they cause 
unintended consequences in 
the future. 
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Controller
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Figure e9.8 RED-V to Altera 
Cyclone FPGA connection diagram

once and then the empty bit should be checked to determine if the data 
is valid. The programmer should take care to avoid reading the register 
more than once for each byte, as this will result in lost data.

The registers csid, csdef, and csmode are optionally used to con-
trol parameters related to the control and configuration of the chip 
select line. Alternatively, the chip select pin can be configured as a GPIO 
output pin and controlled in software through digitalWrite.

Some SPI registers pack multiple small fields of information into a 
single 32-bit word. In C, we can declare the number of bits of each field 
with a colon and number as part of a bitfield structure. Example e9.3 
shows how to use bitfields and structures to define these registers.

Example e9.3 SENDING AND RECEIVING BYTES OVER SPI

Design a system to communicate between a FE310 controller and an FPGA 
peripheral over SPI. Sketch a schematic of the interface. Write the C code for the 
FE310 to send the character “A” and receive a character back. Write HDL code 
for an SPI peripheral on the FPGA. How could the peripheral be simplified if it 
only needs to receive data?

Solution Figure e9.8 shows the connection between the FE310 controller and the 
FPGA peripheral using SPI1. The pin numbers are obtained from the component 
datasheets (e.g., Table e9.3 for the FE310). Notice that both the pin numbers and signal 
names are shown on the diagram to indicate both the physical and logical connec-
tivity. When the SPI connection is enabled, these pins cannot be used for GPIO.

The following code from EasyREDVIO.h is used to initialize the SPI channel and to 
send and receive a character. The file first declares the SPI bitfields and memory map. 
The pinMode function is generalized to support I/O functions as well as inputs and 
outputs. The function spiSendReceive completes a full SPI transaction sending and 
receiving a single byte. It initially checks to make sure that the transmit FIFO is not 
full and can accept another entry. If yes, it writes the character to the transmit FIFO 
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///////////////////////////////////////////////////////////////////////////////
//  SPI Registers
///////////////////////////////////////////////////////////////////////////////
typedef struct {

 volatile uint32_t  div :  12; // Clock divisor
 volatile uint32_t   :  20;

} sckdiv_bits;

typedef struct {
 volatile uint32_t  pha  :  1; // Serial clock phase
 volatile uint32_t  pol  :  1; // Serial clock polarity
 volatile uint32_t   :  30;

} sckmode_bits;

...

typedef struct {
 volatile uint32_t  data  :  8; // Transmit data
 volatile uint32_t   :  23;
 volatile uint32_t  full  :  1; // FIFO full flag

} txdata_bits;

typedef struct {
 volatile uint32_t  data  :  8; // Received data
 volatile uint32_t   :   23;
 volatile uint32_t  empty  :  1; // FIFO empty flag

} rxdata_bits;

// Pin modes
#define INPUT    0
#define OUTPUT 1
#define GPIO_IOF0 2
#define GPIO_IOF1 3

void pinMode(int gpio_pin, int function) {
 switch(function) {

 case INPUT:
 GPIO0->input_en  |=   (1 << gpio_pin);  // Set a pin as an input
 GPIO0->iof_en  &= ~(1 << gpio_pin);  // Disable IOF
 break;

 case OUTPUT:
 GPIO0->output_en  |=    (1 << gpio_pin);  // Set pin as an output
 GPIO0->iof_en  &= ~(1 << gpio_pin);  // Disable IOF
 break;

 case GPIO_IOF0:
 GPIO0->iof_en  |=    (1 << gpio_pin);  // Enable IOF
 GPIO0->iof_sel &= ~(1 << gpio_pin);  // IO Function 0
 break;

 case GPIO_IOF1:
 GPIO0->iof_en  |=  (1 << gpio_pin);  // Enable IOF
 GPIO0->iof_sel  |=  (1 << gpio_pin);  // IO Function 1
 break;

 }
}

Code Example e9.3 SPI FUNCTIONS

to be shifted out. After transmitting, the rxdata register is read. Here, care must be 
taken because the empty flag bit of the rxdata register is updated whenever the reg-
ister is read. So, the entire 32-bit rxdata register should be read. Then, after checking 
that the empty flag is not set (i.e., the data is valid), the received byte is returned.
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#include "EasyREDVIO.h"

int main(void) {
    uint8_t volatile received;

    // Initialize the SPI
    // Clock divisor of div = 15, CPOL = 0, CPHA = 0
    spiInit(15, 0, 0);

    digitalWrite(2, 0);                     // enable the peripheral (chip select = 0), if necessary
    received = spiSendReceive('A'); // Send letter A and receive byte
    digitalWrite(2, 1);                     // turn off chip enable
}

Code Example e9.4 SPI FUNCTIONS

The C code in Code Example e9.4 initializes the SPI and then sends 
and receives a character. Using the formula fclk

fin
div= +2 1( ) 

, where fin is 
the 16 MHz coreclk, it sets the SPI clock to 500 kHz.

void spiInit(uint32_t clkdivide, uint32_t cpol, uint32_t cpha) {

 // Initially assigning SPI pins (GPIO 2-5) to HW I/O function 0
 pinMode(3, GPIO_IOF0); // SDO
 pinMode(4, GPIO_IOF0); // SDI
 pinMode(5, GPIO_IOF0); // SCK

 digitalWrite(2, 1);  // make sure CS0 doesn’t pulse low
 pinMode(2, OUTPUT);  // CS0 is manually controlled

 SPI1->sckdiv.div = clkdivide; // Set the clock divisor

 SPI1->sckmode.pol = cpol;  // Set the polarity
 SPI1->sckmode.pha = cpha;  // Set the phase

}

/* Transmits a character (1 byte) over SPI and returns the received character.
 *  send: the character to send over SPI
 *  return value: the character received over SPI */
uint8_t spiSendReceive(uint8_t send) {

 while(SPI1->txdata.full);  // Wait until transmit FIFO is ready for new data
 SPI1->txdata.data = send;  // Transmit the character over SPI

 rxdata_bits rxdata;
 while (1) {

 rxdata = SPI1->rxdata; // Read the rxdata register EXACTLY once
 if (!rxdata.empty) {  // If the empty bit was not set, return the data

 return (uint8_t)rxdata.data;
 }

 }
} 
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HDL Example e9.2 gives the SystemVerilog code for an SPI periph-
eral that can both send and receive data (i.e., an SPI transceiver), 
and Figure e9.9 shows its block diagram and timing with CPHA = 
CPOL = 0. The main component is still a shift register, shown on the 
right of Figure e9.9. The shift register parallel loads the byte to send  
(d[7:0]) into the shift register and then shifts out this data on sdo 
while it shifts in data transmitted from the controller (t[7:0]) on sdi. 
A counter, cnt, keeps track of how many bits have been sent/received. 
When sck is idle, cnt = 0 and the most significant bit of d (d[7]) sits 
on the sdo wire. One subtlety is that sdo can only change on the falling 
clock edge, so the sdo output (which is the most significant bit of the 
shift register, q[7], is delayed by half a clock cycle by the negative-edge 
triggered qdelayed register on the bottom left of Figure e9.9.

If the peripheral needs to receive data only from the controller, it is 
a simple shift register, as shown in HDL Example e9.1. On each rising 
sck edge, a new sdi bit is shifted into the shift register, starting with the 
data’s most significant bit. After eight clock cycles, the entire byte has 
been read into the shift register.

module spi_peripheral_receive_only(input   logic           sck,  // From controller
                                                           input    logic           sdi,  // From controller
                                                           output  logic [7:0] q);   // Data received
    always_ff @(posedge sck)
       q < = {q[6:0], sdi}; // shift register
endmodule 

HDL Example e9.1 HDL FOR SPI PERIPHERAL (RECEIVER ONLY)

module spi_peripheral(input    logic           sck,     // From controller
                                        input    logic           sdi,     // From controller
                                        output logic           sdo,     // To controller
                                        input    logic            reset, // System reset
                                        input    logic [7:0] d,         // Data to send
                                        output logic [7:0] q);       // Data received
    logic [2:0] cnt;
    logic   qdelayed;

    // 3-bit counter tracks when full byte is transmitted
    always_ff @(negedge sck, posedge reset)
       if (reset) cnt = 0;
       else           cnt = cnt + 3’b1;

     // Loadable shift register
     // Loads d at the start, shifts sdi into bottom on each step
     always_ff @(posedge sck)
         q < = (cnt = = 0) ? {d[6:0], sdi} : {q[6:0], sdi};

     // Align sdo to falling edge of sck
     // Load d at the start
     always_ff @(negedge sck)
         qdelayed = q[7];

     assign sdo = (cnt = = 0) ? d[7] : qdelayed;
endmodule

HDL Example e9.2 HDL FOR SPI PERIPHERAL
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Universal Asynchronous Receiver/Transmitter (UART)
A UART (pronounced “you-art”) is a serial I/O peripheral that com-
municates between two systems without sending a clock. Instead, the 
systems must agree in advance about what data rate to use and must 
each locally generate their own clocks. Hence, the transmission is asyn-
chronous because the clocks are not synchronized. Although these sys-
tem clocks may have a small frequency error and an unknown phase 
relationship, the UART manages reliable asynchronous communication. 
UARTs are used in protocols such as RS-232 and RS-485. For example, 
old computer serial ports use the RS-232C standard, introduced in 1969 
by the Electronics Industries Associations. The standard originally envi-
sioned connecting data terminal equipment (DTE) such as a mainframe 
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Figure e9.9 Block and timing diagram for SPI peripheral on FPGA



9.3 Embedded I/O Systems 542.e24

computer to data communication equipment (DCE) such as a modem. 
Although a UART is relatively slow compared with SPI and prone to 
misconfiguration issues, the standards have been around for so long that 
they remain important today.

Figure e9.10(a) shows an asynchronous serial link. The DTE sends 
data to the DCE over the TX line and receives data back over the RX 
line. Figure e9.10(b) shows one of these lines sending a character at a 
data rate of 9600 baud. The lines idle at a logic “1” when not in use. 
Each character is sent as a start bit (0), 7 or 8 data bits, an optional 
parity bit, and one or more stop bits (1’s). Most typically, start and stop 
bits and 8 bits of data are sent. The UART detects the falling transi-
tion from idle to start to lock on to the transmission at the appropriate 
time. Although seven data bits is sufficient to send an ASCII character, 
eight bits are normally used because they can convey an arbitrary byte 
of data.

The optional parity bit allows the system to detect if a bit was cor-
rupted during transmission. It can be configured as even or odd; even 
parity means that the parity bit is chosen such that the total collection 
of data and parity has an even number of 1’s. In other words, the par-
ity bit is the XOR of the data bits. The receiver can then check if an 
even number of 1’s was received and signal an error if not. Odd parity 
is the reverse.

A common choice is 1 start bit, 8 data bits, no parity, and 1 stop bit, 
making a total of 10 symbols to convey an 8-bit character of informa-
tion. Hence, signaling rates are referred to in units of baud rather than 
bits/sec. For example, 9600 baud indicates 9600 symbols/sec, or 960 
characters/second. Both the transmitter and receiver must be configured 
for the appropriate baud rate and number of data, parity, and stop bits 
or the data will be garbled. This is a hassle, especially for nontechnical 
users, which is one of the reasons that USB has replaced UARTs in per-
sonal computer systems.

Typical baud rates include 300, 1200, 2400, 9600, 14400, 19200, 
38400, 57600, and 115200. The lower rates were used in the 1970’s and 
1980’s for modems that sent data over the phone lines as a series of 
tones. In contemporary systems, 9600 and 115200 are two of the most 

Baud rate gives the signaling 
rate, measured in symbols per 
second, whereas bit rate gives 
the data rate, measured in bits 
per second. In a simple system 
like SPI, where each symbol 
is a data bit, the baud rate is 
equal to the bit rate. UARTs 
and some other signaling 
conventions require overhead 
bits in addition to the data. For 
example, a UART that adds 
start and stop bits for each 8 
bits of data (i.e., 10 symbols 
per 8 bits of data) and operates 
at a baud rate of 9600 has a bit 
rate of (9600 symbols/second) 
× (8 bits/10 symbols) = 7680 
bits/second = 960 characters/
second. 
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Figure e9.10 Asynchronous serial link
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common baud rates; 9600 is encountered where speed does not matter, 
and 115200 is the fastest standard rate, though still slow compared with 
other modern serial I/O standards.

The RS-232 standard defines several additional signals. The request 
to send (RTS) and clear to send (CTS) signals can be used for hardware 
handshaking. They can be operated in either of two modes: flow control 
or simplex. In flow control mode, the DTE clears RTS to 0 when it is 
ready to accept data from the DCE. Likewise, the DCE clears CTS to 0 
when it is ready to receive data from the DTE. Some datasheets use an 
overbar to indicate that they are active-low. In the older simplex mode, 
the DTE clears RTS to 0 when it is ready to transmit. The DCE replies 
by clearing CTS when it is ready to receive the transmission.

Some systems, especially those connected over a telephone line, 
also used data terminal ready (DTR), data carrier detect (DCD), data 
set ready (DSR), and ring indicator (RI) signals to indicate when equip-
ment is connected to the line. These signals still show up in some 
connectors.

The original RS-232 standard recommended a massive 25-pin 
DB-25 connector, but PCs streamlined it to a male 9-pin DE-9 con-
nector with the pinout shown in Figure e9.12(a). The cable wires nor-
mally connect straight across, as shown in Figure e9.12(b). However, 
when directly connecting two DTEs, a null modem cable shown in 
Figure e9.12(c) may be needed to swap RX and TX and complete the 
handshaking. As a final insult, some connectors are male and some 
are female. In summary, it can take a large box of cables and a cer-
tain amount of guesswork to connect two systems over RS-232, again 
explaining the shift to USB. Fortunately, embedded systems typically 
use a simplified 3- or 5-wire setup consisting of GND, TX, RX, and 
possibly RTS and CTS.

RS-232 represents a 0 electrically with 3 to 15 V and a 1 with −3 
to −15 V; this is called bipolar signaling. A transceiver converts the digi-
tal logic levels of the UART to the positive and negative levels expected 
by RS-232 and also provides electrostatic discharge protection to protect 
the serial port from getting zapped when the user plugs in a cable. The 
MAX3232E is a popular transceiver compatible with both 3.3 and 5 V 
digital logic. It contains a charge pump that, in conjunction with exter-
nal capacitors, generates ±5 V outputs from a single low-voltage power 
supply. Some serial peripherals intended for embedded systems omit the 
transceiver and just use 0 V for a 0 and 3.3 or 5 V for a 1; check the 
datasheet!

The FE310 has two UARTs, named UART0 and UART1. UART0 
can be configured to operate on pins 16 and 17; UART1 operates on 
pins 18 and 23. To use these pins as a UART instead of as GPIOs, their 
corresponding iof_sel bits should be set to 0 (to select IOF0) and 

In the 1950’s through  
1970’s, early hackers calling 
themselves phone phreaks 
learned to control the phone 
company switches by whistling 
appropriate tones. A 2600 Hz 
tone produced by a toy whistle 
from a Cap’n Crunch cereal 
box (Figure e9.11). could be 
exploited to place free long-
distance and international calls. 

Handshaking refers to the 
negotiation between two 
systems. Typically, one system 
signals that it is ready to send or 
receive data and the other system 
acknowledges that request. 

Figure e9.11 Cap’n Crunch  
Bosun Whistle 

(Photograph by Evrim Sen, 
reprinted with permission.)
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iof_en bits set to 1 to enable peripheral control. As with SPI, the FE310 
must first configure the port. Unlike SPI, reading and writing can occur 
independently because either system may transmit without receiving and 
vice versa. UART0’s registers are shown in Table e9.6.

To configure the UART, first set the baud rate. The UART uses 
the on-board TileLink bus clock, tlclk, as its clock source. For the 
FE310-G002, this bus clock is configured by default to be the same 
as the processor clock, coreclk, at 16 MHz. This clock signal must be 
divided down to produce the desired baud rate. The final baud rate is 
given by Equation 9.1:

 fbaud
inf

div
=

+ 1
 (e9.1)

The FE310 UART peripheral supports only 8-N-1 and 8-N-2  
protocol configurations. Both protocols support 8 data bits and 
no parity bit, and the packets can be configured to have either one 
stop bit (in 8-N-1) or two stop bits (in 8-N-2). The stop bit configu-
ration is set in the txctrl register using the nstop field. By default,  
nstop = 0, which sets the peripheral to use one stop bit.

Data is transmitted and received using the txdata and rxdata  
registers, respectively. Both the transmit and receive registers are buff-
ered by 8-entry, FIFO buffers. To transmit data, check that the full bit of 
the txdata register is 0, which indicates that there is room in the FIFO 
buffer for new data to be written. Then, write a byte to the data field in 
txdata. To read data, read the rxdata register and check that the empty 
bit is 0 to confirm that the byte in the data field is valid.

Example e9.4 SERIAL COMMUNICATION WITH A PC

Develop a circuit and a C program for an FE310 to communicate with a PC 
over a serial port at 115200 baud with 8 data bits, 1 stop bit, and no parity. The 
PC should be running a console program such as PuTTY1 to read and write over 
the serial port. The program should ask the user to type a string. It should then 
indicate what the user typed.

Solution Figure e9.13(a) shows a basic schematic of the serial link illustrating the 
issues of level conversion and cabling. Because few PCs still have physical serial 
ports, we use a Plugable USB to RS-232 DB9 Serial Adapter from plugable.com 
shown in Figure e9.14 to provide a serial connection to the PC. The adapter con-
nects to a female DE-9 connector soldered to wires that feed a transceiver, which 

1  PuTTY is available for free download at www.putty.org.
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Figure e9.12 DE-9 male cable (a) 
pinout, (b) standard wiring, and (c) 
null modem wiring

Table e9.6 UART memory mapped 
registers

0x10013018 div

rxctrl
txctrl

rxdata
txdata

0x1001300C
0x10013008
0x10013004
0x10013000

...

...

...

Adapted and printed with permission 
from Table 55 of the SiFive FE310- 
G002 Manual, © 2019 SiFive, Inc.
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converts the voltages from the bipolar RS-232 levels to the FE310’s 3.3 V level. 
The FE310 and PC are both DTE, so the TX and RX pins must be cross-con-
nected in the circuit. The RTS/CTS handshaking from the FE310 is not used, 
and the RTS and CTS on the DE9 connector are tied together so that the PC will 
shake its own hand.
 

Figure e9.13(b) shows an easier approach with an Adafruit 954 USB 
to TTL serial cable. The cable is directly compatible with 3.3 V levels.

To configure PuTTY to work with the serial link, set Connection 
type to Serial and Speed to 115200. Set Serial line to the COM port 
assigned by the operating system to the Serial to USB Adapter. In 

TX / GPIO17 D1

RX / GPIO16 D0

RED-V
MAX3232E
Transceiver

11 T1IN

10 T2IN

12 R1OUT

9 R2OUT

T1OUT 14

T2OUT 7

R1IN 13

R2IN 8

1 C1+

4 C2+

3 C1-

5 C2-

16 VDD

15 GND

2 V+

6 V-

0.1 �F

0.1 �F

0.1 �F

0.1 �F

Female
DE-9

Connector

1 DCD

3 TX
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4 DTR

5 GND

7 RTS

6 DSR

8 CTS

9 RI

Plugable
USB to RS-232
Serial Adapter

To PC
USB
Port

(a)

RED-V

GND

(b)

Adafruit 954 USB to TTL Serial Cable

To PC
USB
Port

RX

TX

GND

white

green

black

TX / GPIO17 D1

RX / GPIO16 D0

GND

Figure e9.13 Serial communication link schematics: (a) serial communication via RS-232, (b) serial communication with USB to 
TTL serial cable
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Windows, this can be found in the Device Manager; for example, it 
might be COM3. Under the Connection → Serial tab, set flow control 
to NONE or RTS/CTS. Under the Terminal tab, set Local Echo to Force 
On to have characters appear in the terminal as you type them.

The serial port device driver code in EasyREDVIO.h is shown in 
Code Example e9.5. The Enter key in the terminal program corresponds 
to a carriage return character represented as \r in C with an ASCII code 
of 0x0D. To advance to the beginning of the next line when printing, 
send both the \n and \r (new line and carriage return) characters.2  
The uartInit function configures the UART as described above. 
getCharSerial and putCharSerial read and write characters to the 
terminal, respectively, using the UART (Code Example e9.5).

The main function in Code Example e9.6 demonstrates printing to 
the console and reading from the console using the putStrSerial and 
getStrSerial functions.

2  PuTTY prints correctly even if the \r is omitted.

void uartInit(uint32_t baud) {
 uint32_t div = 16000000/baud-1;           // 16 MHz tileclock
 pinMode(16, GPIO_IOF0);
 pinMode(17, GPIO_IOF0);

 UART0->div.div = div;                           // Set clock divisor
 UART0->txctrl.txen = 1;                        // Enable transmitter
 UART0->txctrl.nstop = 1;                      // Set one stop bit
 UART0->rxctrl.rxen = 1;                        // Enable receiver

}

uint8_t getCharSerial(void) {
 uart_rxdata_bits rxdata;                      // Create temporary variable to store register

 while(1) {
 rxdata = UART0->rxdata;                // Read register exactly once
 if(!rxdata.empty) {

 return (uint8_t)rxdata.data; // Check to see if the data is valid
 }

 }
}

void putCharSerial(uint8_t c) {
 while(UART0->txdata.full);                 // Wait until ready to transmit
 UART0->txdata.data = c;

}

Code Example e9.5  READING AND WRITING CHARACTERS (CHARS)  
TO A TERMINAL USING A UART

Figure e9.14 Plugable USB to 
RS-232 DB9 serial adapter
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Communicating with the serial port from a C program on a PC is 
a bit of a hassle because serial port driver libraries are not standardized 
across operating systems. Other programming environments such as 
Python, MATLAB, or LabVIEW make serial communication painless.

9 . 3 . 6   Timers

Embedded systems commonly need to measure time. For example, a micro-
wave oven needs a timer to keep track of the time of day and another to 
measure how long to cook. It might use yet another to generate pulses to 
the motor spinning the platter and a fourth to control the power setting by 
only activating the microwave’s energy for a fraction of every second.

The FE310 has a system timer with a 64-bit free-running counter 
that increments according to an externally provided clock signal. On the 
RED-V, this clock source is a 32.768  kHz oscillator (conveniently 215 Hz). 
Figure e9.16 shows the memory map for the system timer. It is located 
within the core-local interruptor (CLINT) block. mtime contains the 
64-bit current value of the counter. It can be read or written; so, to restart 

#include "EasyREDVIO.h"

#define MAX_STR_LEN 80

void getStrSerial(char *str) {
       int i = 0;
       do {  // Read an entire string until detecting
             str[i] = getCharSerial();  // Carriage return
       } while ((str[i++] != '\r') && (i < MAX_STR_LEN));  // Look for carriage return
       str[i−1] = 0;  // Null-terminate the string
}

void putStrSerial(char *str) {
       int i = 0;
        while (str[i] != 0) {      // Iterate over string
               putCharSerial(str[i++]); // Send each character
       }
}

int main(void) {
       char str[MAX_STR_LEN];

       uartInit(115200); // initialize UART with baud rate

       while(1) {
             putStrSerial("Please type something: \r\n");
             getStrSerial(str);
             putStrSerial("You typed: ");
             putStrSerial(str);
             putStrSerial("\r\n");
       }
}

Code Example e9.6  READING AND WRITING STRINGS TO A TERMINAL 
USING A UART
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the timer, a zero can be written. mtimecmp is a 64-bit register containing 
the timer comparison value and msip is the machine-mode software inter-
rupt register. When the counter hits the value in mtimecmp, the least sig-
nificant bit in the msip register is set to 1. Using the msip and mtimecmp 
registers is an efficient way to check that a delay has taken place.  
Table e9.7 shows the memory addresses for these registers.

If additional timers are needed, the PWM module (see Section 9.3.7.2) 
provides additional counters that can be used to measure precise delays.

Example e9.5 BLINKING LED

Write a program that blinks the status LED on the RED-V 5 times per second 
for 4 seconds.

Solution The delay function in EasyREDVIO (see Code Example e9.7) creates a 
delay of a specified number of milliseconds using the timer compare channel.
 

#define MTIME_CLK_FREQ 32768  // RTC frequency in Hz
volatile uint64_t *mtime = (uint32_t*) 0x0200BFF8;
void delay(int ms) {
       uint64_t doneTime = *mtime + (ms*MTIME_CLK_FREQ)/1000;
       while (*mtime < doneTime);                   // Wait until time is reached
}

GPIO5 (D13) drives the activity LED on the RED-V board. The program in Code 
Example e9.8 sets this pin to be an output. It then turns the LED OFF and ON through a 
series of digital writes with a 200 ms repetition rate (5 Hz).

Code Example e9.7 DELAY FUNCTION

9 . 3 . 7   Analog I/O

The real world is an analog place. Many embedded systems need 
analog inputs and outputs to interface with the world. They use 

#include "EasyREDVIO.h"

void main(void) {
 uint32_t i;

 pinMode(D13, OUTPUT);  // status led as output

 for(i = 0; i < 20; i++) {
 delay(100);
 digitalWrite(D13, 0); // turn led off
 delay(100);
 digitalWrite(D13, 1); // turn led on

 }
}

Code Example e9.8 BLINK ACTIVITY LED

Table e9.7 System timer registers

0x0200BFFC
0x0200BFF8

0x02004004
0x02004000

0x02000000

...

...

...

...

mtime (hi)
mtime (lo)

mtimecmp (hi)
mtimecmp (lo)

msip

Adapted and printed with 
permission from Table 24 of the 
SiFive FE310-G002 Manual,  
© 2019 SiFive, Inc.
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analog-to-digital converters (ADCs) to quantize analog signals into dig-
ital values and digital-to-analog-converters (DACs) to do the reverse. 
Figure e9.15 shows symbols for these components. Such converters are 
characterized by their resolution, dynamic range, sampling rate, and 
accuracy. For example, an ADC might have N = 12-bit resolution over 
a range Vref

− to Vref
+ of 0 to 5 V with a sampling rate of fs = 44 kHz 

and an accuracy of ±3 least significant bits (lsbs). Sampling rates are 
also listed as samples per second (sps), where 1 sps = 1 Hz. The rela-
tionship between the analog input voltage Vin(t) and the digital sample  
X[n = t / fs] is

 X n N V t V

V V

in ref

ref ref

[ ]
( )

=
−

−

−

+ −
2  (e9.2)

For example, an input voltage of 2.5 V (half of full scale) would cor-
respond to 212/2 (half of the maximum value), that is, an output of 
1000000000002  = 0x800 = 211 = 2048, with an uncertainty of up to 3  lsbs.

Similarly, a DAC might have N = 16-bit resolution over a full-scale 
output range of Vref  =  2.56 V. It produces an output of

 V t Vout ref
X n

N
( )

[ ]
=

2

 (e9.3)

Many microcontrollers have built-in ADCs of moderate perfor-
mance. For higher performance (e.g., 16-bit resolution or sampling 
rates in excess of 1 MHz), it is often necessary to use a separate ADC 
connected to the microcontroller. Fewer microcontrollers have built-in 
DACs, so separate chips must be used to convert digital values to an 
analog voltage. However, microcontrollers often produce analog outputs 
using a technique called pulse-width modulation (PWM).

D/A Conversion
The FE310 has no general-purpose DAC. This section describes D/A 
conversion using external DACs and illustrates interfacing the FE310 
with other chips over parallel and serial ports. The next section achieves 
the same result using PWM.

Some DACs accept the N-bit digital input on a parallel interface 
with N wires, while others accept it over a serial interface, such as SPI. 
Some DACs require both positive and negative power supply voltages, 
while others operate off of a single supply. Some support a flexible range 
of supply voltages, while others demand a specific voltage. The input 
logic levels should be compatible with the digital source. Some DACs 

ADC
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DACX[n]

VDD

Vref

Vout(t)

(b)

(a)

N

N

clk

Vref+

X[n]

Figure e9.15 ADC and DAC 
symbols
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produce a voltage output proportional to the digital input, while others 
produce a current output; an operational amplifier may be needed to 
convert this current to a voltage in the desired range.

In this section, we use the Linear Technology LTC1450 12-bit  
parallel DAC and the Microchip MCP4801 8-bit serial DAC. Both produce  
voltage outputs, run off a single 5 to 15 V power supply, use VIH  =  2.4 V 
such that they are compatible with 3.3 V I/O, come in DIP packages 
that make them easy to breadboard, and are easy to use. The LTC1450  
produces an output on a scale of 0 to 2.048 V or 0 to 4.095 V depending on  
the gain setting, consumes 2 mW, comes in a 24-pin package, and has 
a 4 µs settling time, permitting an output rate of 250 ksamples/second. 
The datasheet is at analog.com. The MCP4801 produces an output on 
a scale of 0 to 2.048 V or 0 to 4.096 V, consumes less than 2 mW, comes 
in an 8-pin package, and has a 4.5 µs settling time. Its SPI operates at a 
maximum of 20 MHz. The datasheet is at microchip.com.

Example e9.6 ANALOG OUTPUT WITH EXTERNAL DACS

Sketch a circuit and write the software for a simple signal generator producing 
sine and triangle waves using a RED-V, an LTC1450, and an MCP4801.

Solution The circuit is shown in Figure e9.16. Two DAC chips are used in this 
example. Both DACs use a 5 V power supply and have a 0.1 µF decoupling 
capacitor to reduce power supply noise.

The LTC1450 DAC has 12 data inputs, D0 to D11, that specify the analog volt-
age to generate on VOUT. In our example, we use only 8-bit precision, so we tie 
the four least significant bits, D0 to D3, to ground. To load data into the DAC, 
the RED-V puts the desired value on D4 to D11. Then, the RED-V drives the 
active-low write (WR) pin low to write the data to the DAC. CLR is tied to VCC 
because we don’t need to clear the input data latches. LDAC, the low-asserted 
load DAC signal, is tied to GND to load data every time WR goes low.

The MCP4801 connects to the RED-V via SPI1. In addition to the standard SPI 
signals, the MCP4801 has an analog output voltage pin (VOUT) and two active-
low control inputs: hardware shutdown (SHDN) and latch DAC (LDAC). SHDN 
is used to turn off the output driving circuitry and save power when the output 
value is not needed. The LDAC latches the input values when it is low. To send 
data to the MCP4801, a 16-bit value is sent over SPI: bits 11 to 4 hold D7 to 
D0; bit 13 is the gain selection (1x if set to 1, 2x if set to 0); and bit 12 con-
trols SHDN (0 shuts down the output, 1 allows VOUT to drive an analog value).  
In this case, SHDN is controlled in software, so it is left floating (not driven) in 
the circuit.

http://analog.com
http://linear.com
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Figure e9.16 DAC parallel and 
serial interfaces to a RED-V board

The program for driving both DACs is shown in Code Example 
e9.9. The program configures the 8 parallel port pins as outputs 
and also configures GPIO0 as an output to drive the WR signal on the 
LTC1450 and GPIO1 to drive the chip select signal on the MCP4801. It 
initializes the SPI to 500 kHz. initWaveTables precomputes an array of 
sample values for the sine and triangle waves. It then updates the serial 
DAC. Then, the program delays until the timer indicates that it is time 
for the next sample. The maximum frequency of the generated wave-
forms is set by the time to send each point in the genWaves function, 
which is limited by the SPI transmission time.
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Pulse-Width Modulation
Another way for a digital system to generate an analog output is with 
pulse-width modulation (PWM), in which a periodic output is pulsed 
high for part of the period and low for the remainder. The duty cycle 
is the fraction of the period for which the pulse is high (pulse width/
period), as shown in Figure e9.17. The average value of the output is 

#include "EasyREDVIO.h"
#include <math.h> // required to use the sine function

#define NUMPTS 64
int sine[NUMPTS], triangle[NUMPTS];

#define SHDNn_Pos 12
#define Gain_Pos  13

int parallelPins[8] = {D0, D1, D2, D3, D4, D5, D6, D7};

void initWaveTables(void) {
      int i;
      for (i = 0; i<NUMPTS; i++) {
           sine[i] = 127*(sin(2*3.14159*i/NUMPTS) + 1);  // 8-bit scale
           if (i < NUMPTS/2) triangle[i] = i*255/NUMPTS;  // 8-bit scale
           else triangle[i] = 254 – i*255/NUMPTS;
      }
}

void genWaves(int freq) {
      int i, j;
      int delay_cycles = MTIME_CLK_FREQ/(NUMPTS*freq);

      for (i = 0; i < 2000; i++){
           for (j = 0; j < NUMPTS; j++) {
                uint64_t doneTime = *mtime + delay_cycles; // Set sample period

                // Load serial DAC
                digitalWrite(1, 0);   //  enable chip (chip select: CS = 0)
                // Set SHDNn to active (bit 12) and gain to 1 (bit 13)
                volatile uint16_t sine_samp_dac = ((uint16_t) sine[j] << 4) \

                |(1 << SHDNn_Pos) | (1 << Gain_Pos);
                spiSendReceive16(sine_samp_dac);
                digitalWrite(1, 1);   // disable chip (chip select: CS = 1)

                // Load parallel DAC
                digitalWrite(0, 1);   // No load while changing inputs
                digitalWrites(parallelPins, 8, triangle[j]);
                digitalWrite(0, 0);   // Load new points into DACs
                while(*mtime < doneTime); // Wait for mtime_cmp to hit
             }
      }
}

int main(void) {
 pinsMode(parallelPins, 8, OUTPUT); // Set pins connected to the AD558 as outputs
 pinMode(0, OUTPUT);                          // Make pin 0 an output to control LOAD
 pinMode(1, OUTPUT);                          // Make pin 1 an output to control CE
 spiInit(15, 0, 0);                            // Initialize the SPI
 initWaveTables();
 genWaves(100);

}

Code Example e9.9 GENERATING A SINE WAVE USING A DAC
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Scaled Clock
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Figure e9.17 Pulse-width modulated (PWM) signal

proportional to the duty cycle. For example, if the output swings 
between 0 and 3.3 V and has a duty cycle of 25%, the average value 
will be 0.25 × 3.3 = 0.825 V. Low-pass filtering a PWM signal eliminates 
the oscillation and leaves a signal with the desired average value. Thus, 
PWM is an effective way to produce an analog output if the pulse rate is 
much higher than the analog output frequencies of interest. Other appli-
cations of PWM include making square wave audio tones and digital 
control of a motor or light at partial power or brightness.

The FE310 has three PWM peripherals and, as shown in Table 
e9.3, each PWM has four PWM outputs, for a total of 12 available 
PWM outputs. The outputs on PWM0 have 8-bit precision, and PWM1 
and PWM2 have 16-bit precision. In this section, we show how to use 
PWM2, but configuring and using the other two PWM peripherals fol-
lows similar steps. PWM2 has four outputs (PWM2_PWM0, PWM2_
PWM1, PWM2_PWM2, PWM2_PWM3) that are available on pins 
GPIO10-13 using pin function IOF1.

PWMs have several waveform generation modes, but we focus on 
generating PWM waveforms such as those in Figure e9.17. To do this, 
the peripheral is configured in a repeating mode in which comparator 
0 (pwmcmp0) sets the period and comparator 1 (pwmcmp1) sets the low 
time. These times are in units of a scaled clock period, Tcs. For example, 
as shown in Figure e9.17, if the scaled clock period is 0.5 μs (2 MHz) 
and pwmcmp0 = 5, then PWM2_PWM1 (pin 11) will oscillate at a period 
of 5 × 0.5 μs = 2.5 μs (400 kHz). If pwmcmp1 = 3, then the duty cycle is 
1−(3/5) = 40%.

Table e9.8 shows the memory map for the PWM2 registers. In this 
section, we describe the steps needed to configure the PWM1_PWM1 
output; the other PWMs and their outputs are configured using a similar 
procedure.

Table e9.9 shows the bitfields in the PWM configuration  
register pwmcfg. Note that most bits are not cleared on system reset, 

Table e9.8 PWM2 configuration 
registers

pwmcmp3
pwmcmp2
pwmcmp1
pwmcmp0

pwms

pwmcount

pwmcfg

...

...

...

...

...

0x1002502C
0x10025028
0x10025024
0x10025020

0x10025010
0x1002500C
0x10025008
0x10025004
0x10025000

Adapted and printed with permission 
from Table 89 of the SiFive 
FE310-G002 Manual, © 2019 
SiFive, Inc.
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Table e9.9 PWM configuration register fields

Reprinted with permission from Table 91 of the SiFive FE310-G0002 Manual, © 2019 SiFive, Inc.

so it is prudent to start by resetting all bits to 0, then writing a 1 to  
pwmen always and pwmzerocmp to configure the PWM to generate a 
repeating waveform with the period set by pwmcmp0.

The scaled clock frequency fscaled is the base bus clock frequency of 
fbase = 16 MHz divided by 2pwmscale, where pwmscale is a 4-bit number 
in the range of 0 to 15 in the pwmcfg register. The PWM frequency is 
fpwm = fscaled/pwmcmp0 = fbase/(pwmcmp0 × 2pwmscale). As described above, 
the duty cycle is 1−(pwmcmp1/pwmcmp0). Many possible choices exist for 
pwmscale and pwmcmp0 to give a desired PMW frequency. However, the 
PWM frequency resolution (error between desired and actual frequency) 
is best when pwmscale is as small as possible and pwmcmp0 is as large as 
possible, within the constraint that pwmcmp0 is an unsigned 16-bit num-
ber (i.e., it cannot exceed 65,535).
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Example e9.7 PULSE-WIDTH MODULATION (PWM)

Choose pwmscale and pwmcmp0 to blink an LED at 1.2 Hz. Repeat the question 
to generate a tone of 1190 Hz.

Solution To illustrate this, suppose that we wished to blink an LED at fpwm = 
1.2 Hz. fpwm = fbase/(pwmcmp0 × 2pwmscale). Thus, choose pwmscale = 8 and 
pwmcmp0 = 52083.33 to get the desired frequency with fscaled = 16 MHz/28 = 
62.5 KHz. pwmcmp0 is a 16-bit register, so we must round to 52083, giving an 
actual fpwm = 16 MHz/(52083 × 28) = 1.20000768 Hz, which is very close to the 
desired frequency and comparable to the 10 parts per million accuracy of a typi-
cal quartz crystal clock reference.

On the other hand, suppose that we wanted a 1190  Hz output. If we didn’t change 
pwmscale, pwmcmp0 would need to be 52.521. Rounding to 53 gives an actual fpwm 
= 16 MHz/(53 × 28) = 1179.2 Hz, an error of about 10 Hz, or 0.91%. If we needed 
a more accurate output frequency, we could reduce pwmscale to 0 and increase 
pwmcmp0 to 13445, obtaining fpwm = 16 MHz/(13445 × 20) = 1190.03 Hz.
 

A PWM device driver could have pwmInit() and pwm(int freq, 
float duty) functions. pwmInit would set the appropriate pin for the 
PWM peripheral and set the bits in the pwmcfg register. The pwm func-
tion would choose the appropriate pwmscale, pwmcmp0, and pwmcmp1 
to generate a waveform with the specified frequency and duty cycle. 
Writing these functions is similar to writing the SPI or UART device 
driver; details are left as an exercise for the reader.

A/D Conversion
Many microcontrollers have at least one built-in ADC, but the FE310 
does not. This section describes A/D conversion using an external con-
verter similar to the external DACs described in the prior section.

Example e9.8 ANALOG INPUT WITH AN EXTERNAL ADC

Interface a 10-bit MCP3002 A/D converter to an FE310 using SPI and print the 
input value. Set a full-scale voltage of 3.3 V. Search for the datasheet on the web 
for full details of operation.

Solution Figure e9.18 shows a schematic of the connection between the FE310 
and the MCP3002 ADC and Code Example e9.10 shows the driver code. The 
MCP3002 uses VDD as its full-scale reference: that is, VDD (Pin 8) is con-
nected to 3.3 V. It can accept a 3.3 to 5.5 V supply; we choose 3.3 V. The ADC 
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has two input channels, CH0 and CH1. We connect channel 0 to a potenti-
ometer (not shown in the figure) that we rotate to adjust the input voltage 
between 0 and 3.3 V.

The FE310 code (see Code Example e9.10) initializes the SPI and repeatedly 
reads and prints samples. According to the datasheet, the FE310 must send the 
16-bit quantity 0x6000 over SPI to read CH0 and will receive the 10-bit result 
back in the bottom 10 bits of the 16-bit result. Since we cannot directly set the 
FE310 to transmit 16-bit frames, we can put together two 8-bit packets without 
raising the chip select line in between. Although the SPI peripheral has the option 
to control the chip select line automatically, here we manually configure GPIO2 
as an output and toggle it appropriately at the beginning of the transmission  
(writing the chip select line to 0) and the end of the transmission (writing the 
chip select line to 1).
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3 CH1

4 GND

VDD 8

CLK 7

Dout 6

Din 5
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0.1 �FM
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SPI1_CS0 GPIO2 D10
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Figure e9.18 Reading an analog 
input using an external ADC

#include "EasyREDVIO.h"

int main(void) {
  uint8_t sample;
  spiInit(15, 0, 0);   // Initialize the SPI
                       // Clock divisor of div = 15, CPOL = 0, CPHA = 0
  pinMode(D10,  OUTPUT);
  while(1) {

 digitalWrite(D10, 0);
 spiSendReceive('0x60');
 sample = spiSendReceive('0x00');
 digitalWrite(D10, 1);
 printf("Read %d\n", sample);
 delay(200);

 }
}

Code Example e9.10 CODE FOR INTERFACING WITH ADC
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9 . 3 . 8   Interrupts

So far, we have relied on polling, in which the program continually 
checks a value until an event occurs such as data arriving on a UART 
or a timer reaching its compare value. This can be a waste of the proces-
sor’s power and makes it difficult to write programs that do interesting 
work while simultaneously waiting for events to occur.

Most microcontrollers support interrupts. When an event occurs, 
the microcontroller stops the executing program and jumps to an inter-
rupt handler that responds to the interrupt. After handling the interrupt, 
the processor then returns to the user program and seamlessly contin-
ues where it was interrupted. Interrupts are the hardware exceptions dis-
cussed in Section 6.6.2. 

The FE310 has a core-local interruptor (CLINT) that handles timer 
and software interrupts. Software interrupts are used for interprocessor 
communication and debugging. The FE310 also has a platform-level 
interrupt controller (PLIC) that collects interrupts from other peripher-
als. In a multiprocessor system, the PLIC routes the peripheral interrupt 
to an appropriate processor to handle it.

Example e9.9 shows how to blink an LED using interrupts instead 
of polling.

Example e9.9 BLINKING AN LED WITH A TIMER INTERRUPT

We configure local interrupts on the FE310 using the CLINT. For the 
FE310-G002 chip used on the RED-V RedBoard and RED-V Thing Plus, 
information on how to use interrupts is provided in Chapters 8 to 10 of the 
FE310-G002 Manual. The basic configuration procedure for local interrupts 
through the CLINT is outlined below.

 1. Write a trap handler to handle execution whenever an interrupt or 
exception is triggered. The main purpose of the trap handler is to figure out 
what interrupt or exception was triggered and then to perform the desired 
operation in response.

 2. Configure mtvec, a control and status register (CSR), with the address of 
the trap handler and the mode (direct or vectored).

 3. Enable the specific interrupt (e.g., from the timer)

 4. Globally enable all interrupts.

After defining constants and function pointer arrays, the code declares the global 
trap handler function handle_trap(), as shown in Code Example e9.11. This 
function is called whenever we trigger a trap (interrupt or exception). Its job is 
to figure out which trap triggered the call and jump to the correct interrupt or 
exception handler. The trap handler performs two tasks. First, it uses a mask 
(MCAUSE_INT_MASK) to check the most significant bit of the  mcause  register, 
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which indicates whether the trap is an interrupt (generated from a device exter-
nal to the core) or an exception (generated internally in the core). The structure 
of mcause is shown in Table e9.10 and the listing of interrupt and exception 
codes is shown in Table 6.6. Then, it uses an additional mask (MCAUSE_CODE_
MASK) to determine the trap code and jumps to the appropriate interrupt or 
exception handler based on the index of the interrupt_handler or excep-
tion_handler function pointer arrays.
 

// Function pointer arrays for interrupt and exception handlers
#define MAX_INTERRUPTS 16
void (*interrupt_handler[MAX_INTERRUPTS])();
void (*exception_handler[MAX_INTERRUPTS])();

// Masks for isolating interrupt vs. exception and the relevant code
#define MCAUSE_INT_MASK 0x80000000    // If [31] = 1 interrupt, else exception
#define MCAUSE_CODE_MASK 0x7FFFFFFF // low bits show code

// Declaration for interrupt handler. Declared with attribute interrupt which
// maps to GCC helper function.
void handle_trap(void) __attribute((interrupt));

// Define trap handler
void handle_trap() {

 unsigned long mcause_value = read_csr(mcause);
 if (mcause_value & MCAUSE_INT_MASK) {

 // Branch to interrupt handler here
 // Index into 32-bit array containing addresses of functions
 interrupt_handler[mcause_value & MCAUSE_CODE_MASK]();

 }
 else {

 // Branch to exception handler here
 exception_handler[mcause_value & MCAUSE_CODE_MASK]();

 }
}

Code Example e9.11 SETTING UP THE TRAP HANDLER

Table e9.10 mcause register fields

Bits Field Name Description

[9:0] Exception Code A code identifying the most recent exception

[30:10] Reserved

31 Interrupt 1 if trap was caused by an interrupt; 0 otherwise

Reprinted with permission from Table 22 of the SiFive FE310-G0002 Manual, © 2019 SiFive, Inc.

Next, we define an interrupt service routine (ISR) for the timer.  
This is a function that contains instructions we want to execute  
whenever we get a timer interrupt. In this example, we call this function  
timer_handler(). It reads the current value of the GPIO pin driving the 
on-board LED (D13/GPIO5) and toggles the state using digitalWrite(). 
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Unlike the other registers we have used in this chapter, most of the 
registers related to the CLINT—such as mtvec, mie, and mstatus—are 
not memory mapped. These registers are called control and status registers 
(CSRs). To manipulate CSRs, we must use the RISC-V assembly instructions 
CSR read (csrr) and CSR write (csrw). These instructions can conveniently 
be wrapped in C macros to enable us to more easily interact with them.

After setting up the trap handler, we register it by placing its address 
in the  mtvec  register. Its structure is shown in Table e9.11. mtvec is a 
32-bit register where bits [31:2] hold bits [31:2] of the address of the trap 
handler function (bits [1:0] are automatically assumed to be 0 since the 
instructions must be word aligned in the memory). Bits [1:0] of mtvec are 
instead used to configure whether the exceptions are handled in direct or 
vector mode. In direct mode, regardless of what interrupt or exception  
fires, we jump to the function address indicated by mtvec[31:2]. This 
is the mode we will use here. In vectored mode, we jump to different  
memory addresses depending on what interrupt is triggered.

After configuring the trap handler and setting up the timer interrupt 
service routine, we finish by enabling the machine timer interrupt by set-
ting bit 7, the machine timer interrupt enable (MTIE) bit, in the machine 
interrupt enable mie register and by enabling interrupts globally by  

Then, it resets the timer by calling reset_timer(), which sets the cur-
rent count in the mtime register to 0 and resets the count value at which 
the next interrupt should be triggered.

void timer_handler() {
volatile int pin_val = (GPIO0->output_val >> D13) & 1; // Read the current output state
 if(pin_val) digitalWrite(D13, LOW);
 else digitalWrite(D13, HIGH);
 reset_timer(MTIME_CLK_FREQ / (2 * BLINK_FREQ));

}

void reset_timer(int count_val) {
 *MTIME = 0;
 *MTIMECMP = count_val;

} 

Code Example e9.12 TIMER ISR AND FUNCTION TO RESET TIMER

// Macros for reading and writing the control and status registers (CSRs)
#define read_csr(reg) ({ unsigned long __tmp; \
  asm volatile ("csrr %0, " #reg : " = r"(__tmp)); \
  __tmp; })

#define write_csr(reg, val) ({ \
  asm volatile ("csrw " #reg ", %0" :: "rK"(val)); }) 

Code Example e9.13 MACROS FOR WRITING AND READING CSRs
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setting bit 3, the machine interrupt enable (MIE) bit, in the machine status  
register (mstatus). Simple helper functions for globally enabling and 
disabling interrupts are shown in Code Example e9.15. Complete details 
about the structure of mstatus and mie can be found in Tables 17 and 
20 in the SiFive FE310-G002 Manual.

Table e9.11 mtvec register fields

Bits Field Name Description

[1:0] MODE Sets the interrupt processing mode to direct 
(00) or vectored (10)

[31:2] BASE[31:2] Base address of the trap_handler

Adapted and printed with permission from Table 18 of the SiFive FE310-G0002 Manual, 
© 2019 SiFive, Inc.

Finally, we put all the pieces together and call the functions we built 
in our main function, as shown in Code Example e9.16. Here, because 
our application is interrupt driven, we don’t do anything in the main 
while loop.

Care should be taken when developing safety- or timing-critical 
applications with interrupts as they are asynchronous events and can be 
triggered at any time during program execution. You as a programmer 
should consider what bugs may be introduced by an interrupt triggering 
at an inopportune time. If you have a segment of code where you want 
to avoid being interrupted, you can disable interrupts (i.e., clear MIE in 

Code Example e9.14  FUNCTIONS TO REGISTER TRAP HANDLER BY 
WRITING TO mtvec

void register_trap_handler(void *func) {
       // Set mtvec[31:2] to interrupt handler function address
       // The two lsbs are not meaningful because instructions are aligned to 4 bytes
       // Set mtvec[1:0] to 00 for direct mode.
       write_csr(mtvec, ((unsigned long) func) & ~(0b11));
} 

void enable_interrupts() {
       // Set bit 3 in mstatus (MIE) to enable machine interrupts
       write_csr(mstatus, read_csr(mstatus) | (1 << 3));

void disable_interrupts() {
       // Clear bit 3 in mstatus (MIE) to disable machine interrupts
       write_csr(mstatus, read_csr(mstatus) & ~(1 << 3));
}

Code Example e9.15 GLOBALLY ENABLE OR DISABLE INTERRUPTS
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mstatus) when executing the instructions and then re-enable interrupts 
when finished (i.e., set MIE in mstatus).

9.4  OTHER MICROCONTROLLER PERIPHERALS
Microcontrollers frequently interface with other external peripherals. 
This section describes a variety of common examples, including character- 
mode liquid crystal displays (LCDs), VGA monitors, Bluetooth wireless 
links, and motor controllers.

9 . 4 . 1   Character LCDs

A character LCD is a small liquid crystal display capable of showing one 
or a few lines of text. They are commonly used in the front panels of appli-
ances such as cash registers, laser printers, and fax machines that need to 
display a limited amount of information. They are easy to interface with 
a microcontroller over parallel, RS-232, or SPI interfaces. Crystalfontz 
America sells a wide variety of character LCDs ranging from 8 columns × 
1 row to 40 columns × 4 rows with choices of color, backlight, 3.3 or 5 V  

#include "EasyREDVIO.h"

// CLINT memory map pointers
#define MTIMECMP ((uint64_t *) 0x02004000UL)
#define MTIME ((uint64_t *) 0x0200BFF8UL)

#define BLINK_FREQ 4 // This is an arbitrary constant used to specify the LED blink 
frequency

int main(void) {

 // Set LED pin as an output
 pinMode(D13, OUTPUT);

 // Register interrupt handler.
 // The machine timer interrupt is exception code 7 as shown in   so we put the
 // timer_handler() function at index 7 of the array.
 interrupt_handler[7] = timer_handler;

 // Set up interrupt by configuring mtvec
 register_trap_handler(handle_trap);

 // Reset timer
 reset_timer(MTIME_CLK_FREQ / (2 * BLINK_FREQ));

 // Enable timer interrupt
 write_csr(mie, read_csr(mie) | (1 << 7));

 enable_interrupts();

 while(1) {
 };

 return 0;
}

Code Example e9.16 BLINK LED WITH TIMER INTERRUPTS
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operation, and daylight visibility. Their LCDs can cost $20 or more in 
small quantities, but prices come down to under $5 in high volume.

This section shows how to interface the RED-V board to the 
Crystalfontz CFAH2002A-TMI-JT 20 × 2 parallel LCD shown in Figure 
e9.19. The interface is an 8-bit parallel interface, which is compatible 
with the industry-standard HD44780 LCD controller originally devel-
oped by Hitachi.

Figure e9.20 shows the LCD connected to a RED-V board over an 
8-bit parallel interface (inputs D0-D7 on the LCD). The LCD logic oper-
ates at 5 V but is compatible with 3.3 V inputs from the RED-V board. 
The LCD contrast is set by a second voltage (input to pin 3, VO) pro-
duced using a potentiometer; it is usually most readable at a setting of 
4.2 to 4.8 V. The LCD receives three control signals: RS (1 for charac-
ters, 0 for instructions), R/W  (1 to read from the display, 0 to write), 
and E (pulsed high for at least 250 ns to enable the LCD when the next 
data byte is ready to be written to it). In addition to sending data bits, 
the data lines (D0–D7) are used to set LCD configurations when RS = 
0 (i.e., when in instruction mode). When read, LCD port D7 returns the 
busy flag, which is 1 when the LCD is busy and 0 when it is ready to 
accept another instruction or byte of data.

To initialize the LCD, the RED-V board must write a sequence of 
instructions to the LCD as given in Table e9.12. Instructions are writ-
ten by making RS = 0 and R/W = 0, putting the value on the eight 
data lines, and pulsing E for at least 250 ns. Data bytes are writ-
ten by doing the same thing except making RS = 1. After sending an 
instruction or data byte, the processor must wait for at least a speci-
fied amount of time (or sometimes until the busy flag is clear) before 
sending another instruction or data byte. The busy flag (D7) is read 
by making RS = 0 and R/W = 1 and pulsing E for at least 250 ns. 
Remember that GPIO23 must also be temporarily set as an input when 
reading the busy flag (D7).

After configuration is complete, the LCD is ready to accept text to 
display. Write text to the LCD by making RS = 1 and R/W = 0, putting 

Figure e9.19 Crystalfontz CFAH2002A-TMI 20 × 2 character LCD
 © 2012 Crystalfontz America; reprinted with permission.
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the value on the eight data lines, and pulsing E for at least 250 ns. After 
each character, the RED-V must wait for the busy bit to clear before 
sending another character. It may also send the instruction 0x01 to clear 
the display or 0x02 to return to the home position in the upper left.

Example e9.10 LCD CONTROL

Write a program to print “I love LCDs” to the Crystalfontz CFAH2002A-TMI 
character display.

Solution The program in Code Example e9.17 writes “I love LCDs” to the dis-
play by initializing the display and then sending the characters.
 

9 . 4 . 2   VGA Monitor

A more flexible display option is to drive a computer monitor. This 
section explains the low-level details of driving a VGA (video graphics 
array) monitor directly from an FPGA.
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#include "EasyREDVIO.h"

int LCD_IO_Pins[] = {D0, D1, D2, D3, D4, D5, D6, D7};

typedef enum {INSTR, DATA} mode;
#define RS D10
#define RW D9
#define E    D8

char lcdRead(mode md) {
       char c;
        pinsMode(LCD_IO_Pins, 8, INPUT);
        digitalWrite(RS,(md = = DATA));  // set instr/data mode
        digitalWrite(RW, 1);   // RWbar = read mode
        digitalWrite(E, 1);      // pulse enable
        delay(1);                       // wait for LCD response
        c = digitalReads(LCD_IO_Pins, 8); // read a byte from parallel port
        digitalWrite(E, 0);              // turn off enable
        delay(1);
        return c;
}

void lcdBusyWait(void) {
        char state;
        do {
  state = lcdRead(INSTR);
        } while(state & 0x80);
}

void lcdWrite(char val, mode md) {
       pinsMode(LCD_IO_Pins, 8, OUTPUT);
       digitalWrite(RS, (md = = DATA)); // set instr/data mode. OUTPUT = 1, INPUT = 0
       digitalWrite(RW, 0);  // set RW pin to write   (RW = 0)
       digitalWrites(LCD_IO_Pins, 8, val);  // write the char to the parallel port
       digitalWrite(E, 1); delay(1);          // pulse E
       digitalWrite(E, 0); delay(1);
}

void lcdClear(void) {
       lcdWrite(0x01, INSTR); delay(1);
}

void lcdPrintString(char* str) {
       while (*str ! = 0) {
               lcdWrite(*str, DATA); lcdBusyWait();
               str++;
  }
}

void lcdInit(void) {
       pinMode(RS, OUTPUT); pinMode(RW, OUTPUT); pinMode(E,OUTPUT);
       // send initialization routine:
       delay(15);
       lcdWrite(0x30, INSTR); delay(1);
       lcdWrite(0x30, INSTR); delay(1);
       lcdWrite(0x30, INSTR); lcdBusyWait();
       lcdWrite(0x3C, INSTR); lcdBusyWait();
       lcdWrite(0x08, INSTR); lcdBusyWait();
       lcdClear();
       lcdWrite(0x06, INSTR); lcdBusyWait();
       lcdWrite(0x0C, INSTR); lcdBusyWait();
}

int main(void) {
        lcdInit();
        lcdPrintString("I love LCDs!");
}

Code Example e9.17 WRITING “I LOVE LCDS” TO LCD
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The VGA monitor standard was introduced in 1987 for the IBM 
PS/2 computers, with a 640 × 480 pixel resolution on a cathode ray tube 
(CRT) and a 15-pin connector conveying color information with ana-
log voltages. Modern LCD monitors have higher resolution but remain 
backward compatible with the VGA standard.

In a CRT, an electron gun scans across the screen from left to right, 
exciting fluorescent material to display an image. Color CRTs use three 
different phosphors for red, green, and blue, and three electron beams. 
The strength of each beam determines the intensity of each color in the 
pixel. At the end of each scan line, the gun must turn off for a horizontal 
blanking interval to return to the beginning of the next line. After all of 
the scan lines are complete, the gun must turn off again for a vertical 
blanking interval to return to the upper left corner. This entire process 
repeats about 60 to 75 times per second to refresh the fluorescence and 
give the visual illusion of a steady image. Modern displays typically use 
LCD technology, which doesn’t require the same electron scan gun but 
uses the same VGA interface timing for compatibility.

In a 640 × 480 pixel VGA monitor, the full frame is actually 800 pixels ×  
525 horizontal scan lines as shown in Figure e9.21, but only 480 of the 
scan lines and 640 pixels per scan line actually convey the image, while 
the remainder are black. A scan line begins with a 48-pixel back porch, 
the blank section on the left edge of the screen. It then contains 640 active 
pixels, followed by a blank 16-pixel front porch at the right edge of the 
screen and a 96-pixel clock horizontal sync (hsync) pulse to rapidly move 

Table e9.12 LCD initialization sequence

Code (D7-D0) Purpose Wait (µs)

(apply VDD) Allow device to turn on 15000

0x30 Set 8-bit mode 4100

0x30 Set 8-bit mode again 100

0x30 Set 8-bit mode yet again Until busy flag is clear

0x3C Configure 2 lines and 5  ×  8 dot font Until busy flag is clear

0x08 Turn display OFF Until busy flag is clear

0x01 Clear display 1530

0x06 Set entry mode that increments  
cursor after each character

Until busy flag is clear

0x0C Turn display ON with no cursor

(These are instructions: so RS  =  0 and R/W = 0.)
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the gun back to the left edge. In the ver tical direction, the screen starts 
with a 32-scan line back porch at the top, followed by 480 active scan 
lines, a front porch of 11 scan lines at the bottom and a 2-scan line ver-
tical sync (vsync) pulse to return to the top to start the next frame. For a 
640 × 480 pixel VGA monitor refreshed at 59.52 Hz, the pixel clock oper-
ates at 800 × 525 × 59.52 = 25 MHz, so each pixel is 40 ns wide.

Figure e9.22(a) shows the timing of each of the scan lines. The entire 
scan line is 32 μs long. Figure e9.22(b) shows the vertical timing; note 
that the time units are now scan lines rather than pixel clocks. A new 
frame is drawn approximately 60 times per second. Higher resolutions 
use a faster pixel clock, up to 388 MHz for 2048 × 1536 refreshed at 
85 Hz. For example, a 1024 × 768 display refreshed at 60 Hz can be 
achieved with a 65 MHz pixel clock.

Figure e9.23 shows the pinout for a female connector coming from 
a video source. Pixel information is conveyed with three analog voltages 
for red, green, and blue. Each voltage ranges from 0 to 0.7 V, with more 
positive indicating brighter. The voltages should be 0 during the front 
and back porches. The video signal must be generated in real time at high 
speed, which is difficult on a microcontroller but easy on an FPGA. A  
simple black-and-white display could be produced by driving all three color 
pins with either 0 or 0.7 V using a voltage divider connected to a digital 
output pin. A color monitor, on the other hand, uses a video DAC with 
three separate D/A converters to independently drive the three color pins.

Figure e9.24 shows an FPGA driving a VGA monitor through an 
ADV7125 triple 8-bit video DAC. The DAC receives 8 bits of R, G, 
and B from the FPGA. It also receives a SYNC_b signal that is driven 
active low whenever HSYNC or VSYNC are asserted. The video DAC 
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produces three output currents to drive the red, green, and blue analog  
lines, which are normally 75 Ω transmission lines parallel terminated 
at both the video DAC and the monitor. The RSET resistor sets the 
scale of the output current to achieve the full range of color. The clock 
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Figure e9.23 VGA connector 
pinout
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rate depends on the resolution and refresh rate; it may be as high as 
330 MHz with a fast-grade ADV7125JSTZ330 model DAC.

Example e9.11 VGA MONITOR DISPLAY

Write HDL code to display text and a green box on a VGA monitor using the 
circuitry from Figure e9.24.

Solution The code assumes a system clock frequency of 50 MHz and uses a clock 
divider to generate the 25 MHz VGA clock. You could also use a PLL to gener-
ate the clock. PLL configuration varies among FPGAs; for the Cyclone III, the 
frequencies are specified with Altera’s megafunction wizard. Alternatively, the 
VGA clock could be provided directly from a signal generator.

The VGA controller counts through the columns and rows of the screen, gener-
ating the hsync and vsync signals at the appropriate times. It also produces a 
blank_b signal that is asserted low to draw black when the coordinates are out-
side the 640 × 480 active region. 

The video generator produces red, green, and blue color values based on the 
current (x, y) pixel location. (0, 0) represents the upper left corner. The gener-
ator draws a set of characters on the screen, along with a green rectangle. The 
character generator draws an 8 × 8-pixel character, giving a screen size of 80 
× 60 characters. It looks up the character from a ROM, where it is encoded in 
binary as 6 columns by 8 rows. The other two columns are blank. The bit order 
is reversed by the SystemVerilog code because the leftmost column in the ROM 
file is the most significant bit, while it should be drawn in the least significant 
x-position.

Figure e9.25c shows a photograph of the VGA monitor while running this  
program. The rows of letters alternate red and blue. A green box overlays part of 
the image.

Figure e9.25 VGA output
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module vga(input   logic clk, reset,
                   output logic vgaclk,  // 25 MHz VGA clock
                  output logic hsync, vsync,
                  output logic sync_b, blank_b, // to monitor & DAC
               output logic [7:0] r, g, b);  // to video DAC

  logic [9:0] x, y;

 // divide 50 MHz input clock by 2 to get 25 MHz clock
  always_ff @(posedge clk, posedge reset)
     if (reset) vgaclk = 1'b0;
     else           vgaclk = ~vgaclk;

  // generate monitor timing signals
  vgaController vgaCont(vgaclk, reset, hsync, vsync, sync_b, blank_b, x, y);

  // user–defined module to determine pixel color 
  videoGen videoGen(x, y, r, g, b);

endmodule

module vgaController #(parameter HBP         = 10'd48,     // horizontal back porch
                                              HACTIVE = 10'd640,  // number of pixels per line
                                             HFP        = 10'd16,     // horizontal front porch
                                              HSYN      = 10'd96,      // horizontal sync pulse = 60 to move 

// electron gun back to left
                                               // number of horizontal pixels (i.e., clock cycles) 

HMAX      = HBP + HACTIVE + HFP + HSYN,  //48+640+16+96=800:  
                                              VBP         = 10'd32,     // vertical back porch
                                              VACTIVE = 10'd480,  // number of lines
                                               VFP       = 10'd11,     // vertical front porch
                                                VSYN      = 10'd2,       // vertical sync pulse = 2 to move  

// electron gun back to top
                                                // number of vertical pixels (i.e., clock cycles) 

VMAX      = VBP + VACTIVE + VFP  + VSYN) //32+480+11+2=525:

 (input   logic vgaclk, reset,
       output logic hsync, vsync, sync_b, blank_b,
       output logic [9:0] hcnt, vcnt);

      // counters for horizontal and vertical positions
      always @(posedge vgaclk, posedge reset) begin

             if (reset) begin 
                 hcnt <= 0;
                 vcnt <= 0;
          end
           else   begin
              hcnt++;
                if (hcnt = = HMAX) begin 
                 hcnt <= 0; 
                        vcnt++;
                        if (vcnt = = VMAX)
                           vcnt <= 0;
                  end
            end
       end

       // compute sync signals (active low)
       assign hsync   = ~( (hcnt >= (HACTIVE + HFP)) & (hcnt < (HACTIVE + HFP + HSYN)) );
       assign vsync   = ~( (vcnt >= (VACTIVE + VFP)) & (vcnt < (VACTIVE + VFP + VSYN)) );
       assign sync_b = 1'b0;    // this should be 0 for newer monitors
                                            // for older monitors, use: assign sync_b = hsync & vsync;
       // force outputs to black when not writing pixels
       assign blank_b = (hcnt < HACTIVE) & (vcnt < VACTIVE);
endmodule

HDL Example e9.3 vga.sv



9.4 Other Microcontroller Peripherals 542.e52

module videoGen(input logic [9:0] x, y, output logic [7:0] r, g, b);
 logic pixel, inrect;

 // given y position, choose a character to display
// then look up the pixel value from the character ROM
 // and display it in red or blue. Also draw a green rectangle.
 chargenrom chargenromb(y[8:3]+8'd65, x[2:0], y[2:0], pixel);
 rectgen rectgen(x, y, 10'd120, 10'd150, 10'd200, 10'd230, inrect);
 assign {r, b} = (y[3]= =0) ? {{8{pixel}},8'h00} : {8'h00, {8{pixel}}};
  assign g         = inrect    ? 8'hFF : 8'h00;
endmodule

 module chargenrom(input  logic [7:0] ch,
                            input  logic [2:0] xoff, yoff,
                            output logic           pixel);

   logic [5:0] charrom[2047:0]; // character generator ROM
   logic [7:0] line;                   // a line read from the ROM

    // initialize ROM with characters from text file
 initial $readmemb("charrom.txt", charrom);

   // index into ROM to find line of character 
  assign line = charrom[yoff+{ch–65, 3'b000}];  // subtract 65 because A
                                                                          // is entry 0 
  // reverse order of bits
  assign pixel = line[3'd7-xoff];
endmodule

module rectgen(input   logic [9:0] x, y, left, top, right, bot,
                         output logic inrect);

   assign inrect = (x >= left & x < right & y >= top & y < bot);
endmodule

// A ASCII 65
011100
100010
100010
111110
100010
100010
100010
000000
//B ASCII 66
111100
100010
100010
111100
100010
100010
111100
000000
//C ASCII 67
011100
100010
100000
100000
100000
100010
011100
000000
... 

HDL Example e9.4 charrom.txt: CONTENTS OF THE CHARACTER ROM
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9 . 4 . 3   Bluetooth Wireless Communication

Many standards are now available for wireless communication, includ-
ing Wi-Fi, ZigBee, and Bluetooth. The standards are elaborate and 
require sophisticated integrated circuits, but a growing assortment 
of modules abstract away the complexity and give the user a sim-
ple interface for wireless communication. One of these modules is the 
BlueSMiRF, which is an easy-to-use Bluetooth wireless interface that can 
be used instead of a serial cable.

Bluetooth is a wireless standard initially developed by Ericsson in 
1994 for low-power, moderate-speed communication over distances of 5 
to 100 meters, depending on the transmitter power level. It is commonly 
used to connect an earpiece to a cellphone or a keyboard to a computer. 
Unlike infrared communication links, it does not require a direct line of 
sight between devices.

Bluetooth operates in the 2.4 GHz unlicensed industrial-scientific- 
medical (ISM) band. It defines 79 radio channels spaced at 1 MHz  
intervals starting at 2402 MHz. It hops between these channels in a pseudo- 
random pattern to avoid consistent interference with other devices, 
such as wireless routers operating in the same band. As given in  
Table e9.13, Bluetooth transmitters are classified at one of three power 
levels, which dictate the range and power consumption. In the basic 
rate mode, it operates at 1 Mbit/sec using Gaussian frequency shift key-
ing (FSK). In ordinary FSK, each bit is conveyed by transmitting a fre-
quency of fc ± fd, where fc is the center frequency of the channel and 
fd is an offset of at least 115 kHz. The abrupt transition in frequencies 
between bits consumes extra bandwidth. In Gaussian FSK, the change in 
frequency is smoothed to make better use of the spectrum. Figure e9.26 
shows the frequencies being transmitted for a sequence of 0’s and 1’s on a  
2402 MHz channel using FSK and GFSK.

A BlueSMiRF Silver module, shown in Figure e9.27(a), contains a 
Class 2 Bluetooth radio, modem, and interface circuitry on a small card 
with a serial interface. It communicates with another Bluetooth device,  
such as a laptop with built-in Bluetooth, or a Bluetooth USB dongle 
connected to a PC. Thus, it can provide a wireless serial link between a 
RED-V and a PC similar to the link from Figure e9.13 but without the 
cable. The wireless link is compatible with the same software as is the 
wired link.

Figure e9.28 shows a schematic for such a link. The TX pin of the 
BlueSMiRF connects to the RX pin of the RED-V and vice versa. The 
RTS and CTS pins are connected so that the BlueSMiRF shakes its own 
hand.

The BlueSMiRF defaults to 115.2 kbaud with 8 data bits, 1 stop 
bit, and no parity or flow control. It operates at 3.3 V digital logic 

King Bluetooth
(So... this is actually Olof 
Kindgren, but we imagine King 
Bluetooth looked similar. Photo 
reprinted with permission.)
The Bluetooth standard is named 
for King Harald Bluetooth of  
Denmark, a 10th century monarch 
who unified the warring Danish 
tribes. This wireless standard is  
only partially successful at unifying 
a host of competing wireless 
protocols! 
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Figure e9.26 FSK and GFSK 
waveforms

Table e9.13 Bluetooth classes

Class

Transmitter 
Power 
(mW)

Range 
(m)

1 100 100

2 2.5 10

3 1 5
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Figure e9.29 DC motor

(a)

(b)

Figure e9.27 (a) BlueSMiRF 
module and (b) USB dongle

RED-V BlueSMiRF

1 CTS

3 GND

2 VCC

4 TX

5 RX

6 RTS

PC
USB

Bluetooth
Dongle

Wireless
Link

USB
Port

TX / GPIO17 D1

RX / GPIO16 D0

GND

3.3V

Figure e9.28 BlueSMiRF RED-V to PC link

levels, so no RS-232 transceiver is necessary to connect with another 
3.3 V device.

To use the interface, plug a USB Bluetooth dongle into a PC. Power 
up the RED-V and BlueSMiRF. The red STAT light will flash on the 
BlueSMiRF, indicating that it is waiting to make a connection. Open the 
Bluetooth icon in the PC system tray and use the Add Bluetooth Device 
Wizard to pair the dongle with the BlueSMiRF. The default passkey for 
the BlueSMiRF is 1234. Take note of which COM port is assigned to the 
dongle. Then communication can proceed just as it would over a serial 
cable. Note that the dongle typically operates at 9600 baud and that 
PuTTY must be configured accordingly.

9 . 4 . 4   Motor Control

Another major application of microcontrollers is to drive actuators such 
as motors. This section describes three types of motors: DC motors, 
servo motors, and stepper motors. DC motors require a high drive cur-
rent, typically on the order of 1 A. Thus, a microcontroller’s GPIO can-
not drive them directly and a powerful driver such as an H-bridge must 
be connected between the microcontroller and the motor. Motors also 
require a shaft encoder if the user wants to know the current position of 
the motor. Servo motors accept a pulse-width modulated signal to spec-
ify their position over a limited range of angles. They are very easy to 
interface but are not as powerful and are not suited to continuous rota-
tion. Stepper motors accept a sequence of pulses, each of which rotates 
the motor by a fixed angle, called a step. They are more expensive and 
still need an H-bridge to drive the high current, but the position can be 
precisely controlled.

Motors can draw a substantial amount of current and may intro-
duce glitches on the power supply that disturb digital logic. One way to 
reduce this problem is to use a different power supply or battery for the 
motor than for the digital logic.
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DC Motors

Figure e9.29 shows the structure of a brushed DC motor. The motor is 
a two-terminal device. It contains permanent stationary magnets called 
the stator and a rotating electromagnet called the rotor or armature 
connected to the shaft. The front end of the rotor connects to a split 
metal ring called a commutator. Metal brushes attached to the power 
lugs (input terminals) rub against the commutator, providing current to 
the rotor’s electromagnet. This induces a magnetic field in the rotor that 
causes the rotor to spin to become aligned with the stator field. Once 
the rotor has spun part way around and approaches alignment with the 
stator, the brushes touch the opposite sides of the commutator, reversing 
the current flow and magnetic field and causing it to continue spinning 
indefinitely.

DC motors tend to spin at thousands of rotations per minute (RPM) 
at very low torque. Most systems add a gear train to reduce the speed 
to a more reasonable level and increase the torque. Look for a gear 
train designed to mate with your motor. Pittman manufactures a wide 
range of high-quality DC motors and accessories, while inexpensive toy 
motors are popular among hobbyists.

A DC motor requires substantial current and voltage to deliver sig-
nificant power to a load. The current should also be reversible so the 
motor can spin in both directions. Most microcontrollers cannot pro-
duce enough current to drive a DC motor directly. Instead, they use 
an H-bridge, which conceptually contains four electrically controlled 
switches, as shown in Figure e9.30(a). It is called an H-bridge because 
the configuration of switches mimics the letter H. If switches A and D 
are closed, current flows from left to right through the motor and it 
spins in one direction. If B and C are closed, current flows from right to 
left through the motor and it spins in the other direction. If A and C or 
B and D are closed, the voltage across the motor is forced to 0, causing 
the motor to actively brake. If none of the switches are closed, the motor 
will coast to a stop. The switches in an H-bridge are power transistors, 
that is, they can carry high currents of one or more Amps. The H-bridge 
also contains some digital logic to conveniently control the switches. 
The microcontroller supplies a low-current digital input to control the 
H-bridge high-current output.

When the motor current changes abruptly, the inductance of the 
motor’s electromagnet will induce a large voltage spike that could damage 
the power transistors. Therefore, many H-bridges also have protection  
diodes in parallel with the switches, as shown in Figure e9.30(b). If the 
inductive kick drives either terminal of the motor above Vmotor or below 
ground, the diodes will turn ON and clamp the voltage at a safe level. 
H-bridges can dissipate large amounts of power, so a heat sink may be 
necessary to keep them cool.

M

Vmotor
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B

C

D

(a)

M

Vmotor

A

B

C

D

(b)

Figure e9.30 H-bridge



9.4 Other Microcontroller Peripherals 542.e56

Table e9.14 H-Bridge control

EN12 1A 2A Motor

0 X X Coast

1 0 0 Brake

1 0 1 Reverse

1 1 0 Forward

1 1 1 Brake

Example e9.12 AUTONOMOUS VEHICLE

Design a system in which a RED-V board controls two drive motors for a robot 
car. Write a library of functions to initialize the motor driver and to make the car 
drive forward and back, turn left or right, and stop. Use PWM to vary the volt-
age output and, thus, control the speed of the motors.

Solution Figure e9.31 shows a pair of DC motors controlled by a RED-V via a  
Texas Instruments SN754410 dual H-bridge. The H-bridge requires a 5 V 
logic supply VCC1 and a 4.5 to 36 V motor supply VCC2; it has VIH = 2 V and, 
hence, is compatible with the 3.3 V I/O from the RED-V. It can deliver up to  
1 A of current to each of two motors. Vmotor should come from a separate bat-
tery pack; the 5 V output of the RED-V cannot supply enough current to drive 
most motors and the RED-V could be damaged.

GPIO23 D7

RED-V
M

Vmotor

1 EN12

3 1Y

2 1A

4 GND

5 GND

6 2Y

7 2A

8 VCC2

VCC1 16

4Y 14

4A 15

GND 13

GND 12

3Y 11

3A 10

EN34 9

SN754410 H-Bridge 5 V

MGPIO22 D6

GPIO21 D5

GPIO20 D4

PWM1_PWM1 / GPIO19 D3

left right

Figure e9.31 Motor control with dual H-bridge

Table e9.14 describes how the inputs to each H-bridge control a motor. The  
microcontroller drives the enable signals with a PWM signal to control the speed  
of the motors. It drives the four other pins to control the direction of each motor.

The PWM is configured to work at about 5 kHz with a duty cycle ranging from 
0% to 100%. Any PWM frequency far higher than the motor’s bandwidth will 
give the effect of smooth movement. Note that the relationship between duty 
cycle and motor speed is nonlinear and that below some duty cycle, the motor 
will not move at all.

Code Example e9.18 shows how to use PWM control with the dual H-bridge 
configuration shown in Figure e9.31 to drive two DC motors.
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#include "EasyREDVIO.h"

// Motor Constants
#define EN D3
#define MOTOR_1A D4
#define MOTOR_2A D5
#define MOTOR_3A D6
#define MOTOR_4A D7

void setMotorLeft(int dir) {   // dir of 1 = forward, 0 = backward
       digitalWrite(MOTOR_1A, dir);
       digitalWrite(MOTOR_2A, !dir);
}

void setMotorRight(int dir) {   // dir of 1 = forward, 0 = backward
        digitalWrite(MOTOR_3A, dir);
        digitalWrite(MOTOR_4A, !dir);
}

void forward(void) {
        setMotorLeft(1); setMotorRight(1); // both motors drive forward
}

void backward(void) {
        setMotorLeft(0); setMotorRight(0); // both motors drive backward
}

void left(void) {
        setMotorLeft(0); setMotorRight(1); // left back, right forward
}

void right(void) {
        setMotorLeft(1); setMotorRight(0); // right back, left forward
}

void halt(void) {   // turn both motors off
        digitalWrite(MOTOR_1A, 0);
        digitalWrite(MOTOR_2A, 0);
        digitalWrite(MOTOR_3A, 0);
        digitalWrite(MOTOR_4A, 0);
}

void initMotors(void) {
        pinMode(MOTOR_1A, OUTPUT);
        pinMode(MOTOR_2A, OUTPUT);
        pinMode(MOTOR_3A, OUTPUT);
        pinMode(MOTOR_4A, OUTPUT);
        halt();  // ensure motors are not spinning
        pwmInit(EN, 1, 255);  // turn on PWM
        analogWrite(200);  // default to partial power
}

int  main(void) {
        initMotors();
        while(1)
        {
               forward();
               delay(5000);
               backward();
               delay(5000);
               left();
               delay(5000);
               right();
               delay(5000);
               halt();
       }
}

Code Example e9.18 DC MOTOR DRIVER
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Figure e9.33 SG90 servo motor

 

In the previous example, there is no way to measure the position of 
each motor. Two motors are unlikely to be exactly matched, so one is 
likely to turn slightly faster than the other, causing the robot to veer off 
course. To solve this problem, some systems add shaft encoders. Figure 
e9.32(a) shows a simple shaft encoder consisting of a disk with slots 
attached to the motor shaft. An LED is placed on one side and a light 
sensor is placed on the other side. The shaft encoder produces a pulse 
every time the gap rotates past the LED. A microcontroller can count 
these pulses to measure the total angle that the shaft has turned. By 
using two LED/sensor pairs spaced half a slot width apart, an improved 
shaft encoder can produce quadrature outputs shown in Figure e9.32(b) 
that indicate the direction the shaft is turning, as well as the angle by 
which it has turned. Sometimes shaft encoders add another hole to indi-
cate when the shaft is at an index position.

Servo Motor
A servo motor is a DC motor integrated with a gear train, a shaft 
encoder, and some control logic so that it is easier to use. It has a lim-
ited rotation, typically 180°. Figure e9.33 shows a servo with the lid 
removed to reveal the gears. A servo motor has a 3-pin interface with 
power (typically 5 V), ground, and a control input. The control input 
is typically a 50 Hz pulse-width modulated signal. The servo’s control 
logic drives the shaft to a position determined by the duty cycle of the 
control input. The servo’s shaft encoder is typically a rotary potentiome-
ter that produces a voltage dependent on the shaft position.

In a typical servo motor with 180 degrees of rotation, a pulse width 
of 1 ms drives the shaft to 0°, 1.5 ms to 90°, and 2 ms to 180°. For 
example, Figure e9.34 shows a control signal with a 1.5   ms pulse width. 
Driving the servo outside its range may cause it to hit mechanical stops 
and be damaged. The servo’s power comes from the power pin rather 
than the control pin, so the control can connect directly to a micro-
controller without an H-bridge. Servo motors are commonly used in 
remote-control model airplanes and small robots because they are small, 
light, and convenient. Finding a motor with an adequate datasheet can 

(a) (b)

A

B

Figure e9.32 Shaft encoder (a) disk, (b) quadrature outputs
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be difficult. The center pin with a red wire is normally power, and the 
black or brown wire is normally ground.

Example e9.13 SERVO MOTOR

Design a system in which a RED-V drives a servo motor to a desired angle.

Solution Figure e9.35 shows a diagram of the connection to an SG90 servo 
motor, including the colors of the wires on the servo cable. The servo operates 
off of a 4.0 to 7.2 V power supply. It can draw as much as 0.5 A if it must deliver 
a large amount of force but may run directly off the RED-V power supply if the 
load is light. A single wire carries the PWM signal, which can be provided at  
5 or 3.3 V logic levels. The code configures the PWM generation and computes 
the appropriate duty cycle for the desired angle. It cycles through positioning the 
servo at 0°, 90°, and 180°.
 

20 ms period (50 Hz)

1.5 ms pulse width

Figure e9.34 Servo control waveform

#include "EasyREDVIO.h"

void genPulseMicroseconds(uint16_t pulse_len_us) {
        PWM1->pwmcmp1.pwmcmp = pulse_len_us;
}

void setServo(float angle) {
        volatile uint16_t pulse_len_us = (uint16_t) (1000 + (angle / 180) * 1000);
        genPulseMicroseconds(pulse_len_us);
}

int main(void) {
        uint32_t scale = 4; // Set scale to get 16e6/2^4 = 1 MHz count speed for 1 us accuracy
        float freq = 50.0;
        volatile uint32_t pwm_period_count = (uint32_t) (1/freq * 1e6); // Period for PWM in  
                                                                                                            // microseconds

        pwmInit(D3, scale, pwm_period_count);
        while(1) {
    setServo(0.0);
       delay(1000);
        setServo(90.0);
        delay(1000);
         setServo(180.0);
           delay(1000);
        }
} 

Code Example e9.19 SERVO MOTOR DRIVER

RED-V
PWM1_PWM1 / GPIO19 D3

SG90
Servo

VIN (5V)

GND

orange

red

brown

Figure e9.35 Servo motor control
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Figure e9.36 Two-phase bipolar 
motor: (a) simplified diagram, (b) 
symbol

It is also possible to convert an ordinary servo into a continuous 
rotation servo by carefully disassembling it, removing the mechanical 
stop, and replacing the potentiometer with a fixed voltage divider. Many 
websites show detailed directions for particular servos. The PWM will 
then control the velocity rather than position, with 1.5 ms indicating 
stop, 2 ms indicating full speed forward, and 1 ms indicating full speed 
backward. A continuous rotation servo may be more convenient and less 
expensive than a simple DC motor combined with an H-bridge and gear 
train.

Stepper Motor
A stepper motor advances in discrete steps as pulses are applied to  
alternate inputs. The step size is usually a few degrees, allowing precise 
positioning and continuous rotation. Small stepper motors generally 
come with two sets of coils called phases wired in bipolar or unipolar  
fashion. Bipolar motors are more powerful and less expensive for a 
given size but require an H-bridge driver, while unipolar motors can be 
driven with transistors acting as switches. This section focuses on the 
more efficient bipolar stepper motor.

Figure e9.36(a) shows a simplified two-phase bipolar motor with a 
90-degree step size. The rotor is a permanent magnet with one north and 
one south pole. The stator is an electromagnet with two pairs of coils 
comprising the two phases. Two-phase bipolar motors thus have four 
terminals. Figure e9.36(b) shows a symbol for the stepper motor mod-
eling the two coils as inductors. Practical motors add gearing to reduce 
the output step size and increase torque.

Figure e9.37 shows three common drive sequences for a two-phase 
bipolar motor. Figure e9.37(a) illustrates wave drive, in which the coils 
are energized in the sequence AB–CD–BA–DC. Note that BA means that 
the winding AB is energized with current flowing in the opposite direc-
tion; this is the origin of the name bipolar. The rotor turns by 90 degrees 
at each step. Figure e9.37(b) illustrates two-phase-on drive, following 
the pattern (AB, CD)–(BA, CD)–(BA, DC)–(AB, DC). (AB, CD) indicates 
that both coils AB and CD are energized simultaneously. The rotor again 
turns by 90 degrees at each step, but aligns itself halfway between the 
two pole positions. This gives the highest torque operation because both 
coils are delivering power at once. Figure e9.37(c) illustrates half-step 
drive, following the pattern (AB, CD)–CD–(BA, CD)–BA–(BA, DC)–
DC–(AB, DC)–AB. The rotor turns by 45 degrees at each half-step. The 
rate at which the pattern advances determines the speed of the motor. To 
reverse the motor direction, the same drive sequences are applied in the 
opposite order.
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In a real motor, the rotor has many poles to make the angle between 
steps much smaller. For example, Figure e9.39 shows an AIRPAX 
LB82773-M1 bipolar stepper motor with a 7.5-degree step size. The 
motor operates off 5 V and draws 0.8 A through each coil.
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Figure e9.39 AIRPAX 
LB82773-M1 bipolar stepper 
motor

The torque in the motor is proportional to the coil current. This cur-
rent is determined by the voltage applied and by the inductance L and 
resistance R of the coil. The simplest mode of operation is called direct 
voltage drive or L/R drive, in which the voltage V is directly applied to 
the coil. The current ramps up to I = V/R with a time constant set by 
L/R, as shown in Figure e9.38(a). This works well for slow speed oper-
ation. However, at higher speed, the current doesn’t have enough time 
to ramp up to the full level, as shown in Figure e9.38(b), and the torque 
drops off.

A more efficient way to drive a stepper motor is by pulse-width 
modulating a higher voltage. The high voltage causes the current to 
ramp up to full current more rapidly; then, it is turned off (during the 
off portion of the PWM duty cycle) to avoid overloading the motor. 
The voltage is then modulated or chopped to maintain the current near 
the desired level. This is called chopper constant current drive and is 

0
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t

t(a)

(b)

0

1

t(c)

Current

Current

Current

Figure e9.38 Bipolar stepper motor direct drive current: (a) slow rotation, (b) fast rotation,  
(c) fast rotation with chopper drive
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shown in Figure e9.38(c). The controller uses a small resistor in series 
with the motor to sense the current being applied by measuring the volt-
age drop and applies an enable signal to the H-bridge to turn off the 
drive when the current reaches the desired level. In principle, a micro-
controller could generate the right waveforms, but it is easier to use a 
stepper motor controller. The L297 controller from ST Microelectronics 
is a convenient choice, especially when coupled with the L298 dual 
H-bridge with current sensing pins and a 2 A peak power capability. 
Unfortunately, the L298 is not available in a DIP package, so it is harder 
to breadboard. ST’s application notes AN460 and AN470 are valuable 
references for stepper motor designers.

Example e9.14 BIPOLAR STEPPER MOTOR DIRECT WAVE DRIVE

Design a system to drive an AIRPAX bipolar stepper motor at a specified speed 
and direction using direct wave drive.

Solution Figure e9.40 shows the bipolar stepper motor driven directly by an 
H-bridge with the same interface as the DC motor. Note that VCC2 must supply 
enough voltage and current to meet the motor’s demands or the motor may skip 
steps as the rotation rate increases.
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Figure e9.40 Bipolar stepper motor direct drive with H-bridge
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9.5  SUMMARY
Most processors use memory-mapped I/O to communicate with the 
real world. Microcontrollers offer a range of basic peripherals including  
general-purpose, serial, and analog I/O and timers.

This chapter has provided many specific examples of I/O using 
the FE310 RISC-V microcontroller on a SparkFun RED-V RedBoard. 
Embedded system designers continually encounter new processors and 
peripherals. The general principle for incorporating simple embedded 
I/O is to consult the datasheet to identify the peripherals that are avail-
able and which pins and memory-mapped I/O registers are involved. 
Then, it is usually straightforward to write a simple device driver that 
initializes the peripheral’s registers and transmits or receives data.

For more complex standards such as USB, writing a device driver 
is a highly specialized undertaking best done by an expert with detailed 
knowledge of the device and the USB protocol stack. Casual designers 
should select a processor that comes with proven device drivers and 
example code for the devices of interest.

Code Example e9.20 STEPPER MOTOR DRIVER

#include "EasyREDVIO.h"

#define STEPSIZE 7.5
#define SECS_PER_MIN 60
#define MILLIS_PER_SEC 1000
#define DEG_PER_REV 360

int stepperPins[] = {19, 22, 23, 20, 21};
int curStepState; // Keep track of the current position of stepper motor

void stepperInit(void) {
    pinsMode(stepperPins, 5, OUTPUT);
    curStepState = 0;
}

void stepperSpin(int dir, int steps, float rpm) {
    int sequence[4] = {0b00011, 0b01001, 0b00101, 0b10001}; //{2A, 1A, 4A, 3A, EN}
    int step = 0;

    unsigned int millisPerStep = (SECS_PER_MIN * MILLIS_PER_SEC * STEPSIZE) /
                                                  (rpm * DEG_PER_REV);

    for (step = 0; step < steps; step++) {
       digitalWrites(stepperPins, 5, sequence[curStepState]);
       if (dir = = 0) curStepState = (curStepState + 1) % 4;
       else   curStepState = (curStepState + 3) % 4;
       delay(millisPerStep);
    }
}
int main(void) {
    stepperInit();
    stepperSpin(1, 12000, 120); // Spin 60 revolutions at 120 rpm
} 
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A.1  INTRODUCTION
This appendix introduces practical issues in the design of digital systems. 
The material is not necessary for understanding the rest of the book; 
however, it seeks to demystify the process of building real digital systems. 
Moreover, we believe that the best way to understand digital systems is 
to build and debug them yourself in the laboratory.

Digital systems are usually built using one or more chips. One strat-
egy is to connect multiple chips containing individual logic gates or 
larger elements, such as arithmetic/logical units (ALUs) or memories. 
Another is to use programmable logic, which contains generic arrays of 
circuitry that can be programmed to perform specific logic functions. Yet 
a third is to design a custom integrated circuit containing the specific 
logic necessary for the system. These three strategies offer trade-offs in 
cost, speed, power consumption, and design time that are explored in 
the following sections. This appendix also examines the physical pack-
aging and assembly of circuits, the transmission lines that connect the 
chips, and the economics of digital systems.

A.2  74xx LOGIC
In the 1970’s and 1980’s, many digital systems were built from simple 
chips, each containing a handful of logic gates. For example, the 7404 
chip contains six NOT gates, the 7408 contains four AND gates, and the 
7474 contains two flip-flops. These chips are collectively referred to as 
74xx-series logic. They were sold by many manufacturers, typically for 
10 to 25 cents per chip. These chips are now largely obsolete, but they 
are still handy for simple digital systems or class projects because they 
are so inexpensive and easy to use. 74xx-series chips are commonly sold 
in 14-pin dual inline packages (DIPs).
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A . 2 . 1   Logic Gates

Figure eA.1 shows the pinout diagrams for a variety of popular 74xx-series 
chips containing basic logic gates. These are sometimes called small-scale 
integration (SSI) chips because they are built from a few transistors. The 
14-pin packages typically have a notch at the top or a dot on the top left to 
indicate orientation. Pins are numbered starting with 1 in the upper left 
and going counterclockwise around the package. The chips need to receive 
power (VDD = 5 V) and ground (GND = 0 V) at pins 14 and 7, respectively. 
The number of logic gates on the chip is determined by the number of pins. 
Note that pins 3 and 11 of the 7421 chip are not connected (NC) to any-
thing. The 7474 flip-flop has the usual D, CLK, and Q terminals. It also 
has a complementary output, Q. Moreover, it receives asynchronous set 
(also called preset, or PRE) and reset (also called clear, or CLR) signals. 
These are active low; in other words, the flop sets when PRE = 0, resets 
when CLR = 0, and operates normally when PRE CLR= = 1. Low-
asserted signals are often written in text as CLRb or CLRbar.

A . 2 . 2   Other Functions

The 74xx series also includes somewhat more complex logic functions, 
including those shown in Figures eA.2 and  eA.3. These are called medium- 
scale integration (MSI) chips. Most use larger packages to accommodate  
more inputs and outputs. Power and ground are still provided at the 
upper right and lower left, respectively, of each chip. A general functional 
description is provided for each chip. See the manufacturer’s datasheets 
for complete descriptions.

A.3  PROGRAMMABLE LOGIC
Programmable logic consists of arrays of circuitry that can be config-
ured to perform specific logic functions. We have already introduced 
three forms of programmable logic: programmable read-only memories 
(PROMs), programmable logic arrays (PLAs), and field-programmable 
gate arrays (FPGAs). This section shows chip implementations for each of 
these. Configuration of these chips may be performed by blowing on-chip 
fuses to connect or disconnect circuit elements. This is called one-time 
programmable (OTP) logic because, once a fuse is blown, it cannot be 
restored. Alternatively, the configuration may be stored in a memory that 
can be reprogrammed at will. Reprogrammable logic is convenient in the 
laboratory because the same chip can be reused during development.

A . 3 . 1   PROMs

As discussed in Section 5.5.7, PROMs can be used as lookup tables. 
A 2N-word × M-bit PROM can be programmed to perform any 

74LS04 inverter chip in a 
14-pin dual inline package. 
The part number is on the 
first line. LS indicates the logic 
family (see Section A.6). The N 
suffix indicates a DIP package. 
The large S is the logo of the 
manufacturer, Signetics. The 
bottom two lines of gibberish 
are codes indicating the 
batch in which the chip was 
manufactured. 
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Figure eA.1 Common 74xx-series logic gates

DQ

Q

1

2

3

4

5

6

7

14

13

12

11

10

9

8
GND

VDD1A

1B

1Y

2A

2B

2Y

4B

4A

4Y

3B

3A

3Y
7400 NAND

1

2

3

4

5

6

7

14

13

12

11

10

9

8
GND

VDD1Y

1A

1B

2Y

2A

2B

4Y

4B

4A

3Y

3B

3A
7402 NOR

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VDD1A

1Y

2A

2Y

3A

3Y

6A

6Y

5A

5Y

4A

4Y
7404 NOT

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VDD1A

1B

2A

2B

2C

2Y

1C

1Y

3C

3B

3A

3Y
7411 AND3

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VDD1A

1B

1Y

2A

2B

2Y

4B

4A

4Y

3B

3A

3Y
7408 AND

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VDD1A

1B

1Y

2A

2B

2Y

4B

4A

4Y

3B

3A

3Y
7486 XOR

GND

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VDD1A

1B

1Y

2A

2B

2Y

4B

4A

4Y

3B

3A

3Y
7432 OR

GND

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VDD1A

1B

1C

1D

1Y

2D

2C

NC

2B

2A

2Y
7421 AND4

NC

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VDD

1D

1Q

7474 FLOP

1CLK

1CLR

1PRE

1Q

2CLR

2D

2PRE

2Q

2Q

2CLK

reset

set

D Q

Q
reset

set



Digital System ImplementationAPPENDIX A543.e4

Figure eA.2 Medium-scale integration chips
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always_ff @(posedge CLK) // 74163
  if (~CLRb) Q <= 4'b0000;
  else if (~LOADb) Q <= D;
  else if (ENP & ENT) Q <= Q+1;

assign RCO = (Q == 4'b1111) & ENT;

4-bit Counter
CLK: clock
Q3:0: counter output
D3:0: parallel input
CLRb: async reset (161)

sync reset (163) 
LOADb: load Q from D
ENP, ENT: enables
RCO: ripple carry out
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always_comb
  if (1Gb) 1Y = 0;
  else     1Y = 1D[S];
always_comb 
  if (2Gb) 2Y = 0;
  else     2Y = 2D[S];
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Y: output
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3:8 Decoder
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output
G1: active high enable
G2: active low enables
G1 G2A G2B A2:0 Y7:0
0  x   x   xxx  11111111
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always_comb 
  if (Gb) 1Y = 0;
  else     1Y = S ? 1D[1] : 1D[0];
  if (Gb) 2Y = 0;
  else     2Y = S ? 2D[1] : 2D[0];
  if (Gb) 3Y = 0;
  else     3Y = S ? 3D[1] : 3D[0];
  if (Gb) 4Y = 0;
  else     4Y = S ? 4D[1] : 4D[0];

Four 2:1 Multiplexers
D1:0: data
S: select
Y: output
Gb: enable
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assign 1Y = 
  1ENb ? 4'bzzzz : 1A;
assign 2Y  =

2ENb ? 4'bzzzz : 2A;

8-bit Tristate Buffer
A3:0: input
Y3:0: output
ENb: enable

always_ff @(posedge CLK)
  if (~ENb) Q <= D;

EN

Q0

D0

D1

Q1

GND

74377 Register

VDD

Q7

D7

D6

Q6

Q5

D5

D4

1

2

3

4

5

6

7

8

20

19

18

17

16

15

14

13

9

10

12

11

Q2

D2

D3

Q3 Q4

CLK

8-bit Enableable Register
CLK: clock
D7:0: data
Q7:0: output
ENb: enable

Yb7:0:

000  11111110
1  0   0 001  11111101
1  0   0 010  11111011
1  0   0 011  11110111
1  0   0 100  11101111
1  0   0 101  11011111
1  0   0 110  10111111
1  0   0 111  01111111

Note: SystemVerilog variable names cannot start with numbers, but the names in the example code in Figure eA.2
are chosen to match the manufacturer’s datasheet.
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Figure eA.3 More medium-scale integration (MSI) chips
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4-bit Comparator
A3:0, B3:0 : data
relin : input relation
relout : output relation

always_comb 
  case (F)
    0000: Y = M ? ~A       :  A                  + ~Cbn;
    0001: Y = M ? ~(A | B) :  A       +  B       + ~Cbn;
    0010: Y = M ? (~A) & B :  A       + ~B       + ~Cbn;
    0011: Y = M ? 4'b0000  :  4'b1111            + ~Cbn;
    0100: Y = M ? ~(A & B) :  A       + (A & ~B) + ~Cbn;
    0101: Y = M ? ~B       : (A | B)  + (A & ~B) + ~Cbn;
    0110: Y = M ? A ^ B    :  A       - B        - Cbn;
    0111: Y = M ? A & ~B   : (A & ~B)            - Cbn;
    1000: Y = M ? ~A + B   :  A       + (A & B)  + ~Cbn;
    1001: Y = M ? ~(A ^ B) :  A       +  B       + ~Cbn;
    1010: Y = M ? B        : (A | ~B) + (A & B)  + ~Cbn;
    1011: Y = M ? A & B    : (A & B)             + ~Cbn;
    1100: Y = M ? 1        :  A       +  A       + ~Cbn;
    1101: Y = M ? A | ~B   : (A | B)  +  A       + ~Cbn;
    1110: Y = M ? A | B    : (A | ~B) +  A       + ~Cbn;
    1111: Y = M ? A        :  A                  - Cbn;
  endcase

inputs

always_comb
  if  ( A  >  B  |  ( A  ==  B  &  AgtBin ))  begin 
    AgtBout  =  1 ;  AeqBout  =  0 ;  AltBout  =  0 ; 
  end 
  else if  ( A  <  B  |  ( A  ==  B  &  AltBin )  begin 
    AgtBout  =  0 ;  AeqBout  =  0 ;  AltBout  =  1 ; 
  end else begin 
    AgtBout  =  0 ;  AeqBout  =  1 ;  AltBout  =  0 ; 
  end 
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combinational function of N inputs and M outputs. Design changes sim-
ply involve replacing the contents of the PROM rather than rewiring 
connections between chips. Lookup tables are useful for small functions 
but become prohibitively expensive as the number of inputs grows.

For example, the classic 2764 8-KiB (64-kib) erasable PROM 
(EPROM) is shown in Figure eA.4. The EPROM has 13 address lines to 
specify one of the 8 Ki words and 8 data lines to read the byte of data at 
that word. The chip enable and output enable must both be asserted for 
data to be read. The maximum propagation delay is 200 ps. In normal 
operation, PGM = 1 and VPP is not used. The EPROM is usually pro-
grammed on a special programmer that sets PGM = 0, applies 13 V to 
VPP, and uses a special sequence of inputs to configure the memory.

Modern PROMs are similar in concept but have much larger capac-
ities and more pins. Flash memory is the cheapest type of PROM, selling 
for about $0.10 per gigabyte in 2021. Prices have historically declined 
by 30% to 40% per year.

A . 3 . 2   PLAs

As discussed in Section 5.6.1, PLAs contain AND and OR planes to 
compute any combinational function written in sum-of-products form. 
The AND and OR planes can be programmed using the same techniques 
for PROMs. A PLA has two columns for each input and one column for 
each output. It has one row for each minterm. This organization is more 
efficient than a PROM for many functions, but the array still grows 
excessively large for functions with numerous I/Os and minterms.

Many different manufacturers have extended the basic PLA con-
cept to build programmable logic devices (PLDs) that include registers. 

Figure eA.4 2764 8 KiB EPROM
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assign D  = ( ~ CEb  & ~ OEb )  ?  ROM [ A ] 
                         :  8 ' bz; 

8 KB EPROM 
A12:0: address input 
D7:0 : data output 
CEb : chip enable 
OEb : output enable 
PGMb : program 
VPP : program voltage 
NC : no connection 
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The 22V10 is one of the most popular classic PLDs. It has 12 dedi-
cated input pins and 10 outputs. The outputs can come directly from 
the PLA or from clocked registers on the chip. The outputs can also be 
fed back into the PLA. Thus, the 22V10 can directly implement finite 
state machines (FSMs) with up to 12 inputs, 10 outputs, and 10 bits 
of state. The 22V10 costs about $1.35 in quantities of 100. PLDs have 
been rendered mostly obsolete by the rapid improvements in capacity 
and cost of FPGAs.

A . 3 . 3   FPGAs

As discussed in Section 5.6.2, FPGAs consist of arrays of configurable 
logic elements (LEs), also called configurable logic blocks (CLBs), con-
nected with programmable wires. The LEs contain small lookup tables 
and flip-flops. FPGAs scale gracefully to extremely large capacities, with 
thousands of lookup tables. Xilinx and Intel FPGAs (formerly Altera) 
are two of the leading FPGA manufacturers.

Lookup tables and programmable wires are flexible enough to 
implement any logic function. However, they are an order of magnitude 
less efficient in speed and cost (chip area) than hard-wired versions of 
the same functions. Thus, FPGAs often include specialized blocks, such 
as memories, multipliers, and even entire microprocessors.

Figure eA.5 shows the design process for a digital system on an FPGA. 
The design is usually specified with a hardware description language  
(HDL), although some FPGA tools also support schematics. The design 
is then simulated. Inputs are applied and compared against expected 
outputs to verify that the logic is correct. Usually, some debugging  
is required. Next, logic synthesis converts the HDL into Boolean  
functions. Good synthesis tools produce a schematic of the functions. 
The prudent designer examines these schematics and any warnings  
produced during synthesis to ensure that the desired logic was produced. 
Sometimes, sloppy coding leads to circuits that are much larger than 
intended or to circuits with asynchronous logic. When the synthesis  
step completes successfully, the FPGA tool maps the functions onto the 
LEs of a specific chip. The place and route tool determines which func-
tions go in which lookup tables and how they are wired together. Wire 
delay increases with length, so critical circuits should be placed close  
together. If the design is too big to fit on the chip, it must be reengineered. 
Timing analysis compares the timing constraints (e.g., an intended 
clock speed of 100 MHz) against the actual circuit delays and reports 
any errors. If the logic is too slow, it may have to be redesigned or pipe-
lined differently. When the design is correct, a file is generated specifying 
the contents of all the LEs and the programming of all the wires on the 
FPGA. Many FPGAs store this configuration information in static RAM 
that must be reloaded each time the FPGA is turned on. The FPGA can Figure eA.5 FPGA design flow
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Logic Verification

Mapping

Timing Analysis

Configure FPGA

Place and Route

Debug

Debug

Too big

Too slow
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download this information from a computer in the laboratory or can 
read it from a nonvolatile ROM when power is first applied.

Example eA.1 FPGA TIMING ANALYSIS

Alyssa P. Hacker is using an FPGA to implement an M&M sorter with a color 
sensor and motors to put red candy in one jar and green candy in another. 
Her design is implemented as an FSM, and she is using a Cyclone IV FPGA. 
According to the datasheet, the FPGA has the timing characteristics shown in 
Table eA.1.

Alyssa would like her FSM to run at 100 MHz. What is the maximum number 
of LEs on the critical path? What is the fastest speed at which her FSM could 
possibly run?

Solution At 100 MHz, the cycle time, Tc, is 10 ns. Alyssa uses Equation eA.1 to 
figure out the minimum combinational propagation delay, tpd, at this cycle time:

 tpd ≤ − + =10 0 0 9( . . ) .ns 199ns 076 ns 725ns  (eA.1)

With a combined LE and wire delay of 381 ps + 246 ps = 627 ps, Alyssa’s FSM 
can use at most 15 consecutive LEs (9.725/0.627) to implement the next-state 
logic.

The fastest speed at which an FSM will run on this Cyclone IV FPGA is when it 
is using a single LE for the next-state logic. The minimum cycle time is

 Tc ≥ + + =3 181ps 99ps 76ps 656ps  (eA.2)

Therefore, the maximum frequency is 1.5 GHz.
 

Altera advertised the Cyclone IV FPGA with 14,400 LEs for $25 
in 2021. In large quantities, medium-sized FPGAs typically cost several 

Table eA.1 Cyclone IV timing

Name Value (ps)

tpcq 199

tsetup 76

thold 0

tpd (per LE) 381

twire (between LEs) 246

tskew 0
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dollars. The largest FPGAs cost hundreds or even thousands of dollars. 
The cost has declined at approximately 30% per year, so FPGAs are 
becoming extremely popular.

A.4  APPLICATION-SPECIFIC INTEGRATED CIRCUITS
Application-specific integrated circuits (ASICs) are chips designed 
for a particular purpose. Graphics accelerators, network interface 
chips, and cellphone chips are common examples of ASICs. The ASIC 
designer places transistors to form logic gates and wires the gates 
together. Because the ASIC is hardwired for a specific function, it is 
typically several times faster than an FPGA and occupies an order of 
magnitude less chip area (and, hence, cost) than an FPGA with the 
same function. However, the masks specifying where transistors and 
wires are located on the chip cost hundreds of thousands of dollars 
to produce. The fabrication process usually requires 6 to 12 weeks 
to manufacture, package, and test the ASICs. If errors are discovered 
after the ASIC is manufactured, the designer must correct the prob-
lem, generate new masks, and wait for another batch of chips to be 
fabricated. Hence, ASICs are suitable only for products that will be 
produced in large quantities and whose function is well defined in 
advance.

Figure eA.6 shows the ASIC design process, which is similar to the 
FPGA design process of Figure eA.5. Logic verification is especially 
important because correction of errors after the masks are produced is 
expensive. Synthesis produces a netlist consisting of logic gates and con-
nections between the gates. The gates in this netlist are placed, and the 
wires are routed between gates. When the design is satisfactory, masks 
are generated and used to fabricate the ASIC. A single speck of dust can 
ruin an ASIC, so the chips must be tested after fabrication. The fraction 
of manufactured chips that work is called the yield. It is typically 50% 
to 90% depending on the size of the chip and the maturity of the man-
ufacturing process. Finally, the working chips are placed in packages, as 
will be discussed in Section A.7.

A.5  DATASHEETS
Integrated circuit manufacturers publish datasheets that describe the 
functions and performance of their chips. It is essential to read and 
understand the datasheets. One of the leading sources of errors in digital 
systems comes from misunderstanding the operation of a chip.

Datasheets are usually available from the manufacturer’s website. If 
you cannot locate the datasheet for a part and do not have clear docu-
mentation from another source, don’t use the part. Some of the entries 

Figure eA.6 ASIC design flow
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in the datasheet may be cryptic. Often, the manufacturer publishes data-
books containing datasheets for many related parts. The beginning of 
the data book has additional explanatory information. This information 
can usually be found on the Web with a careful search.

This section dissects the Texas Instruments (TI) datasheet for a 
74HC04 inverter chip. The datasheet is relatively simple but illustrates 
many of the major elements. TI still manufacturers a wide variety of 
74xx-series chips. In the past, many other companies built these chips as 
well, but the market is consolidating as the sales decline.

Figure eA.7 shows the first page of the datasheet. Some of the key 
sections are highlighted in blue. The title is SN54HC04, SN74HC04 
HEX INVERTERS. HEX INVERTERS means that the chip contains six 
inverters. SN indicates that TI is the manufacturer. Other manufacturer 
codes include MC for Motorola and DM for National Semiconductor. 
You can generally ignore these codes because all of the manufacturers 
build compatible 74xx-series logic. HC is the logic family (high-speed 
CMOS). The logic family determines the speed and power consumption 
of the chip, but not the function. For example, the 7404, 74HC04, and 
74LS04 chips all contain six inverters, but they differ in performance 
and cost. Other logic families are discussed in Section A.6. The 74xx 
chips operate across the commercial or industrial temperature range 
(0°C to 70°C or −40°C to 85°C, respectively), whereas the 54xx chips 
operate across the military temperature range (−55° to 125°C) and sell 
for a higher price but are otherwise compatible.

The 7404 is available in many different packages; it is important to 
order the one you intended when you make a purchase. The packages 
are distinguished by a suffix on the part number. N indicates a plastic 
dual inline package (PDIP), which fits in a breadboard or can be sol-
dered in through-holes in a printed circuit board. Other packages are 
discussed in Section A.7.

The function table shows that each gate inverts its input. If A is 
HIGH (H), Y is LOW (L) and vice versa. The table is trivial in this case 
but is more interesting for more complex chips.

Figure eA.8 shows the second page of the datasheet. The logic dia-
gram indicates that the chip contains inverters. The absolute maximum 
section indicates conditions beyond which the chip could be destroyed. In 
particular, the power supply voltage (VCC, also called VDD in this book) 
should not exceed 7 V. The continuous output current should not exceed 
25 mA. The thermal resistance or impedance, θJA, is used to calculate the 
temperature rise caused by the chip’s dissipating power. If the ambient 
temperature in the vicinity of the chip is TA and the chip dissipates Pchip, 
then the temperature on the chip itself at its junction with the package is

 T T PJ A JA= + chip  θ  (eA.3)
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Figure eA.7 7404 datasheet page 1

SCLS078D – DECEMBER 1982 – REVISED JULY 2003

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Wide Operating Voltage Range of 2 V to 6 V
Outputs Can Drive Up To 10 LSTTL Loads
Low Power Consumption, 20-µA Max ICC

Typical tpd = 8 ns
±4-mA Output Drive at 5 V
Low Input Current of 1 µA Max

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A
1Y
2A
2Y
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SN54HC04 . . . J OR W PACKAGE
SN74HC04 . . . D, N, NS, OR PW PACKAGE

(TOPVIEW)
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SN54HC04 . . . FK PACKAGE
(TOPVIEW)

NC – No internal connection

description/ordering information

ORDERING INFORMATION

TA PACKAGE† ORDERABLE
PARTNUMBER

TOP-SIDE
MARKING

PDIP  –  N Tube of 25 SN74HC04N SN74HC04N

Tube of 50 SN74HC04D

SOIC – D
Reel of 2500 SN74HC04DR HC04

Reel of 250 SN74HC04DT
–40°C to 85°C

SOP – NS Reel of 2000 SN74HC04NSR HC04

Tube of 90 SN74HC04PW

TSSOP – PW Reel of 2000 SN74HC04PWR HC04

Reel of 250 SN74HC04PWT

CDIP – J Tube of 25 SNJ54HC04J SNJ54HC04J

–55°C to 125°C CFP – W Tube of 150 SNJ54HC04W SNJ54HC04W

LCCC – FK Tube of 55 SNJ54HC04FK SNJ54HC04FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at  www.ti.com/sc/package.

FUNCTION TABLE
(each inverter)

INPUT
A

OUTPUT
Y

H L

L H

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers there to appears at the end of this datasheet.

Copyright (c)2003, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

On products compliant to MIL-PRF-38535, all parameters are tested 
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.

SN54HC04, SN74HC04
HEX INVERTERS

The ’HC04 devices contain six independent inverters. They perform the Boolean function Y = A
in positive logic.
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Figure eA.8 7404 datasheet page 2

SN54HC04, SN74HC04
HEX INVERTERS

SCLS078D – DECEMBER 1982 – REVISED JULY 2003

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

logic diagram (positive logic)

YA

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, VCC –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous output current, IO (VO = 0 to VCC) ±25 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous current through VCC or GND ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA 86° C/WegakcapD:)2etoNees( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80° C/WegakcapN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76° C/WegakcapSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

131° C/WegakcapWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg –65° C to 150° C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

SN54HC04 SN74HC04
UNIT

MIN NOM MAX MIN NOM MAX
UNIT

VCC Supply voltage 2 5 6 2 5 6 V

VCC = 2 V 1.5 1.5

VIH High-level input voltage VCC = 4.5 V 3.15 3.15 V

VCC = 6 V 4.2 4.2

VCC = 2 V 0.5 0.5

VIL Low-level input voltage VCC = 4.5 V 1.35 1.35 V

VCC = 6 V 1.8 1.8

VI Input voltage 0 VCC 0 VCC V

VO Output voltage 0 VCC 0 VCC V

VCC = 2 V 1000 1000

∆t /∆v Input transition rise/fall time VCC = 4.5 V 500 500 ns

VCC = 6 V 400 400

TA Operating free-air temperature –55 125 –40 85 ° C

NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TEXAS
INSTRUMENTS
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For example, if a 7404 chip in a plastic DIP package is operating in a 
hot box at 50°C and consumes 20 mW, the junction temperature will 
climb to 50°C + 0.02 W × 80°C/W = 51.6°C. Internal power dissipation 
is seldom important for 74xx-series chips, but it becomes important for 
modern chips that dissipate tens of watts or more.

The recommended operating conditions define the environment in 
which the chip should be used. Within these conditions, the chip should 
meet specifications. These conditions are more stringent than the abso-
lute maximums. For example, the power supply voltage should be 
between 2 and 6 V. The input logic levels for the HC logic family depend 
on VDD. Use the 4.5 V entries when VDD = 5 V to allow for a 10% droop 
in the power supply caused by noise in the system.

Figure eA.9 shows the third page of the datasheet. The electrical 
characteristics describe how the device performs when used within the 
recommended operating conditions if the inputs are held constant. For 
example, if VCC = 5 V (and droops to 4.5 V) and the output current IOH/ 
IOL does not exceed 20 μA, VOH = 4.4 V and VOL = 0.1 V in the worst 
case. If the output current increases, the output voltages become less 
ideal because the transistors on the chip struggle to provide the current. 
The HC logic family uses CMOS transistors that draw very little cur-
rent. The current into each input is guaranteed to be less than 1000 nA 
and is typically only 0.1 nA at room temperature. The quiescent power 
supply current (IDD) drawn while the chip is idle is less than 20 μA. Each 
input has less than 10 pF of capacitance.

The switching characteristics define how the device performs when 
used within the recommended operating conditions if the inputs change. 
The propagation delay, tpd, is measured from when the input passes 
through 0.5 VCC to when the output passes through 0.5 VCC. If VCC is 
nominally 5 V and the chip drives a capacitance of less than 50 pF, the 
propagation delay will not exceed 24 ns (and typically will be much 
faster). Recall that each input may present 10 pF, so the chip cannot 
drive more than five identical chips at full speed. Indeed, stray capaci-
tance from the wires connecting chips cuts further into the useful load. 
The transition time, also called the rise/fall time, is measured as the out-
put transitions between 0.1 VCC and 0.9 VCC.

Recall from Section 1.8 that chips consume both static and dynamic 
power. Static power is low for HC circuits. At 85°C, the maximum qui-
escent supply current is 20 μA. At 5 V, this gives a static power consump-
tion of 0.1 mW. The dynamic power depends on the capacitance being 
driven and the switching frequency. The 7404 has an internal power dis-
sipation capacitance of 20 pF per inverter. If all six inverters on the 7404 
switch at 10 MHz and drive external loads of 25 pF, then the dynamic 
power given by Equation 1.4 is 1

2
(6)(20 pF + 25 pF)(52)(10 MHz) = 

33.75 mW and the maximum total power is 33.85 mW.
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Figure eA.9 7404 datasheet page 3

SN54HC04, SN74HC04
HEX INVERTERS

SCLS078D – DECEMBER 1982 – REVISED JULY 2003

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TEXAS
INSTRUMENTS

electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER TEST CONDITIONS VCC

TA = 25 °C SN54HC04 SN74HC04
UNIT

MIN TYP MAX MIN MAX MIN MAX
UNIT

2 V 1.9 1.998 1.9 1.9
IOH = –20 µA

IOL = 20 µA

4.5V 4.4 4.499 4.4 4.4
VOH

VOL

VI = VIH or VIL

VI = VIH or VIL

VI = VCC or 0

VI = VCC or 0, 

6 V 5.9 5.999 5.9 5.9 V
IOH = –4 mA

IOL = 4 mA

4.5V 3.98 4.3 3.7 3.84
IOH = –5.2 mA

IOL = 5.2 mA

6 V 5.48 5.8 5.2 5.34

2 V 0.002 0.1 0.1 0.1

4.5V 0.001 0.1 0.1 0.1

6 V 0.001 0.1 0.1 0.1 V

4.5V 0.17 0.26 0.4 0.33

6 V 0.15 0.26 0.4 0.33
II 6 V ±0.1 ±100 ±1000 ±1000 nA
ICC IO = 0 6 V 2 40 20 µA
Ci 2 V to 6 V 3 10 10 10 pF

switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)

FROM TO VCC
TA = 25 °C SN54HC04 SN74HC04

UNITPARAMETER (INPUT) (OUTPUT) MIN TYP MAX MIN MAX MIN MAX
UNIT

2 V 45 95 145 120
tpd A Y 4.5V 9 19 29 24 ns

6 V 8 16 25 20

2 V 38 75 110 95
tt Y 4.5V 8 15 22 19 ns

6 V 6 13 19 16

operating characteristics, TA = 25 °C
PARAMETER TEST CONDITIONS TYP UNIT

Cpd Power dissipation capacitance per inverter No load 20 pF
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A.6  LOGIC FAMILIES
The 74xx-series logic chips have been manufactured using many different 
technologies, called logic families, that offer different speed, power, and 
logic level trade-offs. Other chips are usually designed to be compatible 
with some of these logic families. The original chips, such as the 7404, 
were built using bipolar transistors in a technology called transistor- 
transistor logic (TTL). Newer technologies add one or more letters 
after the 74 to indicate the logic family, such as 74LS04, 74HC04, or 
74AHCT04. Table eA.2 summarizes the most common 5-V logic 
families.

Advances in bipolar circuits and process technology led to the 
Schottky (S) and Low-Power Schottky (LS) families. Both are faster than 
TTL. Schottky draws more power, whereas Low-Power Schottky draws 
less. Advanced Schottky (AS) and Advanced Low-Power Schottky (ALS) 
have improved speed and power compared with S and LS. Fast (F) logic 
is faster and draws less power than AS. All of these families provide 
more current for LOW outputs than for HIGH outputs and, hence, have 

Table eA.2 Typical specifications for 5-V logic families

Bipolar/TTL CMOS
CMOS / TTL 
Compatible

Characteristic TTL S LS AS ALS F HC AHC HCT AHCT

tpd (ns) 22 9 12 7.5 10 6 21 7.5 30 7.7

VIH (V) 2 2 2 2 2 2 3.15 3.15 2 2

VIL (V) 0.8 0.8 0.8 0.8 0.8 0.8 1.35 1.35 0.8 0.8

VOH (V) 2.4 2.7 2.7 2.5 2.5 2.5 3.84 3.8 3.84 3.8

VOL (V) 0.4 0.5 0.5 0.5 0.5 0.5 0.33 0.44 0.33 0.44

IOH (mA) 0.4 1 0.4 2 0.4 1 4 8 4 8

IOL (mA) 16 20 8 20 8 20 4 8 4 8

IIL (mA) 1.6 2 0.4 0.5 0.1 0.6 0.001 0.001 0.001 0.001

IIH (mA) 0.04 0.05 0.02 0.02 0.02 0.02   0.001 0.001 0.001 0.001

IDD (mA) 33 54 6.6 26 4.2 15 0.02 0.02 0.02 0.02

CPd (pF) n/a 20 12 20 14

cost* (US $) obsolete 0.63 0.25 0.53 0.32 0.22 0.12 0.12 0.12 0.12

*Per unit in quantities of 1000 for the 7408 from Texas Instruments in 2012.
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asymmetric logic levels. They conform to the “TTL” logic levels: VIH = 
2 V, VIL = 0.8 V, VOH > 2.4 V, and VOL < 0.5 V.

As CMOS circuits matured in the 1980’s and 1990’s, they became 
popular because they draw very little power supply or input current. 
The High-Speed CMOS (HC) and Advanced High-Speed CMOS 
(AHC) families draw almost no static power. They also deliver the 
same current for HIGH and LOW outputs. They conform to the 
“CMOS” logic levels: VIH = 3.15 V, VIL = 1.35 V, VOH > 3.8 V, and VOL 
< 0.44 V. Unfortunately, these levels are incompatible with TTL cir-
cuits because a TTL HIGH output of 2.4 V may not be recognized as a 
legal CMOS HIGH input. This motivates the use of High-Speed TTL-
compatible CMOS (HCT) and Advanced High-Speed TTL-compatible 
CMOS (AHCT), which accept TTL input logic levels and generate 
valid CMOS output logic levels. These families are slightly slower than 
their pure CMOS counterparts. All CMOS chips are sensitive to elec-
trostatic discharge (ESD) caused by static electricity. Ground yourself 
by touching a large metal object before handling CMOS chips, lest you 
zap them.

The 74xx-series logic is inexpensive. The newer logic families are 
often cheaper than the obsolete ones. The LS family is widely available 
and robust and is a popular choice for laboratory or hobby projects that 
have no special performance requirements.

The 5-V standard collapsed in the mid-1990’s, when transis-
tors became too small to withstand the voltage. Moreover, lower volt-
age offers lower power consumption. Now 3.3, 2.5, 1.8, 1.2, and even 
lower voltages are commonly used. The plethora of voltages raises chal-
lenges in communicating between chips with different power supplies. 
Table  eA.3 lists some of the low-voltage logic families. Not all 74xx 
parts are available in all of these logic families.

All of the low-voltage logic families use CMOS transistors, the 
workhorse of modern integrated circuits. They operate over a wide 
range of VDD, but the speed degrades at lower voltage. Low-Voltage 
CMOS (LVC) logic and Advanced Low-Voltage CMOS (ALVC) 
logic are commonly used at 3.3, 2.5, or 1.8 V. LVC withstands inputs 
up to 5.5 V, so it can receive inputs from 5-V CMOS or TTL circuits. 
Advanced Ultra-Low-Voltage CMOS (AUC) is commonly used at 2.5, 
1.8, or 1.2 V and is exceptionally fast. Both ALVC and AUC withstand 
inputs up to 3.6 V, so they can receive inputs from 3.3 V circuits.

FPGAs often offer separate voltage supplies for the internal logic, 
called the core, and for the input/output (I/O) pins. As FPGAs have 
advanced, the core voltage has dropped from 5 to 3.3, 2.5, 1.8, and 
1.2 V to save power and avoid damaging the very small transistors. 
FPGAs have configurable I/Os that can operate at many different volt-
ages to be compatible with the rest of the system.
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A.7  SWITCHES AND LIGHT-EMITTING DIODES
Digital circuits need inputs and outputs. The most basic way to provide 
inputs is to wire them directly to power or ground, but a more interest-
ing way is with switches that the user can control. The most basic way 
to check outputs is with a voltmeter, but a more interesting way is with 
light-emitting diodes (LEDs) that glow if the output is TRUE. Switches 
and LEDs are analog components used in this digital application. This 
section describes how they operate.

A . 7 . 1   Switches

Figure eA.10 shows symbols for single-pole single-throw (SPST) and 
single-pole double-throw (SPDT) switches. Single-pole indicates that the 
switch has a single output, and single-throw means that the switch can 
connect to one terminal. Double-throw indicates that the output can 
connect to either of two terminals.

An SPST switch or button is either open or closed by default, which 
blocks or allows current to flow, respectively. To produce a digital logic 
level, the switch is normally placed in series with a resistor R, as shown 
in Figure eA.11(a). When the switch is open, the resistor pulls Y down 

Table eA.3 Typical specifications for low-voltage logic families

LVC ALVC AUC

Vdd (V) 3.3 2.5 1.8 3.3 2.5 1.8 2.5 1.8 1.2

tpd (ns) 4.1 6.9 9.8 2.8 3 ?* 1.8 2.3 3.4

VIH (V) 2 1.7 1.17 2 1.7 1.17 1.7 1.17 0.78

VIL (V) 0.8 0.7 0.63 0.8 0.7 0.63 0.7 0.63 0.42

VOH (V) 2.2 1.7 1.2 2 1.7 1.2 1.8 1.2 0.8

VOL (V) 0.55 0.7 0.45 0.55 0.7 0.45 0.6 0.45 0.3

IO (mA) 24 8 4 24 12 12 9 8 3

II (mA) 0.02 0.005 0.005

IDD (mA) 0.01 0.01 0.01

Cpd (pF) 10 9.8 7 27.5 23 ?* 17 14 14

cost (US $) 0.17 0.20 not available

*Delay and capacitance not available at the time of writing.

Figure eA.10 (a) SPST and (b) 
SPDT switches

(a) (b)

pole

throw

pole

throw

throw
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toward ground (logic 0). If the circuitry attached to pin Y presents a 
small load current Iload, the actual voltage on node Y will be VY = IloadR. 
When the switch is closed, the top of the resistor connects to VDD and, 
thus, pulls Y up to VDD (logic 1). A current of VDD/R flows through the 
resistor, causing a static power consumption of P = VDD

2/R. The resistor 
should be chosen according to the Goldilocks principle: not too big, not 
too small, but just right. If the resistor is too large, the voltage at Y, VY, 
might not fall low enough when the switch is open (and the circuitry 
connected to Y draws some current). If the resistor is too small, the cir-
cuit dissipates excessive and wasteful power (or might even melt down). 
As a practical matter, this often means the resistor is selected in the 1- to 
10-kΩ range such that the power is small and leakage causes a negligi-
ble disturbance to the output voltage. However, if extremely low-power 
operation is needed, a larger resistor would be appropriate and the 
leakage current drawn by the load (connected to Y) must be considered 
more carefully so that the output voltage remains a valid low logic level.

An alternative to the SPST switch and resistor is a single-pole, dou-
ble-throw switch (SPDT). Figure eA.11(b) shows the SPDT switch with 
an output that connects to either VDD or GND to produce a strong high 
or low value without requiring a resistor and without consuming static 
power (assuming that Y is connected to the input of a CMOS gate). 
However, SPDT switches are often more expensive.

A . 7 . 2   LEDs

An LED can be approximated as OFF when the voltage across the diode 
is less than some voltage VD and ON when the voltage is greater than 
VD. VD varies from about 1.7 to 2.3 V depending on the color of the 
diode and the ambient temperature, but 2.0 V is a reasonable average 
for rough calculations. When the diode is off, it draws negligible cur-
rent. When it is ON, it draws as much current, ID, as it can, and the 
brightness is proportional to the current. However, if the current is too 
great, the diode or the device sourcing the current will burn out. Hence, 
diodes are normally used with current-limiting resistors, as shown in 
Figure eA.12. Ordinary small diodes typically are visible in indoor light-
ing when they carry more than 1 mA and glow nicely at 5 to 10 mA. 
Ultrabright LEDs might draw 100 mA or more.

Figure eA.12 shows an LED being driven by a voltage Vin through 
a resistor R. The order of the resistor and LED does not matter because 
the same current flows through both in series. In a digital application, 
Vin typically comes from the output of a logic gate and may be in the 
range of VOH to VDD. The voltage across the resistor is Vin – VD (where 
VD is the voltage drop across the diode) and it is also R × ID because 
the current flowing through the diode also flows through the resistor. 
Equating these two, we find that ID = (Vin – VD)/R. If R is too large, not 

Figure eA.11 Digital inputs from 
switches: (a) SPST and resistor,  
(b) SPDT and no resistor

(a)

R

VDD

Y
Iload
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Figure eA.12 LED with current-
limiting resistor

R

ID

Vin
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enough current will flow and the diode will be too dim. If R is too small, 
the diode will burn out or draw too much current from the component 
driving Vin. Hence, resistors in the low hundreds of ohms are common in 
digital circuits driving LEDs. Check the output current IO specification 
on a datasheet to see how much current the digital output can deliver. 
For example, if a logic gate operates at 3.3 V and has a maximum output 
current of 5 mA under normal conditions, then pick R = (3.3 – 2) V / 
0.005 A = 260 Ω to obtain the brightest light the driver can offer.

Remember that the absolute maximum specifications are those 
beyond which the component may take permanent damage, not those at 
which the component works correctly. Use the recommended operating 
condition data instead.

A.8  PACKAGING AND ASSEMBLY
Integrated circuits are typically placed in packages made of plastic or 
ceramic. The packages serve a number of functions, including connecting 
the tiny metal I/O pads of the chip to larger pins in the package for ease 
of connection, protecting the chip from physical damage, and spreading 
the heat generated by the chip over a larger area to help with cooling. 
The packages are placed on a breadboard or printed circuit board (PCB) 
and wired together to assemble the system.

A . 8 . 1   Packages

Figure eA.13 shows a variety of integrated circuit packages. Packages 
can be generally categorized as through-hole or surface mount (SMT). 
Through-hole packages, as their name implies, have pins that can be 
inserted through holes in a PCB or into a socket. Dual inline packages 
(DIPs) have two rows of pins with 0.1-inch spacing between pins. Pin 
grid arrays (PGAs) support more pins in a smaller package by placing 
the pins under the package. SMT packages are soldered directly to the 

Figure eA.13 Integrated circuit 
packages
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surface of a PCB without using holes. Pins on SMT parts are called leads. 
The thin small outline package (TSOP) has two rows of closely spaced 
leads (typically, 0.02-inch spacing). Plastic leaded chip carriers (PLCCs) 
have J-shaped leads on all four sides, with 0.05-inch spacing. They can 
be soldered directly to a board or placed in special sockets. Quad flat 
packs (QFPs) accommodate a large number of pins, using closely spaced 
legs on all four sides. Ball grid arrays (BGAs) eliminate the legs alto-
gether. Instead, they have hundreds of tiny solder balls on the underside 
of the package. They are carefully placed over matching pads on a PCB, 
then heated so that the solder melts and joins the package to the under-
lying board. Dual and quad flat packs with no leads (DFNs and QFNs) 
have pins on two or four sides of the chip, respectively, but the leads are 
under the package instead of on the outside of the package, which can 
conserve space on a PCB but also requires more tricky soldering.

A . 8 . 2   Breadboards

DIPs are easy to use for prototyping, because they can be placed in a 
breadboard. A breadboard is a plastic board containing rows of sockets, 
as shown in Figure eA.14. All five holes in a row are connected. Each 
pin of the package is placed in a hole in a separate row. Wires can be 
placed in adjacent holes in the same row to make connections to the pin. 
Breadboards often provide separate columns of connected holes running 
the height of the board to distribute power and ground.

Figure eA.14 shows a breadboard containing a majority gate built 
with a 74LS08 AND chip and a 74LS32 OR chip. The schematic of the 
circuit is shown in Figure eA.15. Each gate in the schematic is labeled 
with the chip (08 or 32) and the pin numbers of the inputs and outputs 
(see Figure eA.1). Observe that the same connections are made on the 
breadboard. The inputs are connected to pins 1, 2, and 5 of the 08 chip, 
and the output is measured at pin 6 of the 32 chip. Power and ground 
are connected to pins 14 and 7, respectively, of each chip, from the ver-
tical power and ground columns that are attached to the banana plug 
receptacles, Vb and Va. Labeling the schematic in this way and checking 
off connections as they are made is a good way to reduce the number of 
mistakes made during breadboarding.

Unfortunately, it is easy to accidentally plug a wire in the wrong 
hole or have a wire fall out, so breadboarding requires a great deal of 
care (and usually some debugging in the laboratory). Breadboards are 
suited only to prototyping, not production.

A . 8 . 3   Printed Circuit Boards

Instead of breadboarding, chip packages may be soldered to a printed 
circuit board (PCB). The PCB is formed of alternating layers of 
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conducting copper and insulating epoxy. The copper is etched to form 
wires called traces. Holes called vias are drilled through the board and 
plated with metal to connect between layers. PCBs are usually designed 
with computer-aided design (CAD) tools. You can etch and drill your 
own simple boards in the laboratory, or you can send the board design 
to a specialized factory for inexpensive mass production. Factories have 
turnaround times of days (or weeks, for cheap mass production runs) 
and typically charge a few hundred dollars in setup fees and a few dol-
lars per board for moderately complex boards built in large quantities.

PCB traces are normally made of copper because of its low resis-
tance. The traces are embedded in an insulating material, usually a green, 
fire-resistant plastic called FR4. A PCB also typically has copper power 

Figure eA.14 Majority circuit on 
breadboard
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and ground layers, called planes, between signal layers. Figure eA.16 
shows a cross-section of a PCB. The signal layers are on the top and bot-
tom, and the power and ground planes are embedded in the center of the 
board. The power and ground planes have low resistance, so they distrib-
ute stable power to components on the board. They also make the capac-
itance and inductance of the traces uniform and predictable.

Figure eA.17 shows a PCB for a 1970’s vintage Apple II+ computer. 
At the top is a 6502 microprocessor. Beneath are six 16-kib ROM chips 

Figure eA.16 Printed circuit 
board cross-section

Signal Layer

Signal Layer

Power Plane

Ground Plane

Copper Trace Insulator

Figure eA.17 Apple II+ circuit 
board
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forming 12 KiB of ROM containing the operating system. Three rows of 
eight 16-kib DRAM chips provide 48 KiB of RAM. On the right are sev-
eral rows of 74xx-series logic for memory address decoding and other 
functions. The lines between chips are traces that wire the chips together. 
The dots at the ends of some of the traces are vias filled with metal.

A . 8 . 4   Putting It All Together

Most modern chips with large numbers of inputs and outputs use SMT 
packages, especially QFPs and BGAs. These packages require a PCB 
rather than a breadboard. Working with BGAs is especially challeng-
ing because they require specialized assembly equipment. Moreover, the 
balls cannot be probed with a voltmeter or oscilloscope during debug-
ging in the laboratory because they are hidden under the package.

In summary, the designer needs to consider packaging early on to 
determine whether a breadboard can be used during prototyping and 
whether BGA parts will be required. Professional engineers rarely use 
breadboards when they are confident of connecting chips correctly with-
out experimentation.

A.9  TRANSMISSION LINES
We have assumed so far that wires are equipotential connections that 
have a single voltage along their entire length. Signals actually prop-
agate along wires at the speed of light in the form of electromagnetic 
waves. If the wires are short enough or the signals change slowly, the 
equipotential assumption is good enough. When the wire is long or the 
signal is very fast, the transmission time along the wire becomes impor-
tant to accurately determine the circuit delay. We must model such wires 
as transmission lines, in which a wave of voltage and current propa-
gates at the speed of light. When the wave reaches the end of the line, it 
may reflect back along the line. The reflection may cause noise and odd 
behaviors unless steps are taken to limit it. Hence, the digital designer 
must consider transmission line behavior to accurately account for the 
delay and noise effects in long wires.

Electromagnetic waves travel at the speed of light in a given 
medium, which is fast but not instantaneous. The speed of light, ν, 
depends on the permittivity, ε, and permeability, μ, of the medium1:

 
ν

µε
= =1 1

LC
.

1  The capacitance, C, and inductance, L, of a wire are related to the permittivity and  
permeability of the physical medium in which the wire is located.
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The speed of light in free space is v = c = 3 × 108 m/s. Signals in a 
PCB travel at about half this speed because the FR4 insulator has four 
times the permittivity of air. Thus, PCB signals travel at about 1.5 × 
108 m/s, or 15 cm/ns. The time delay for a signal to travel along a trans-
mission line of length l is

 t
l
v

d = . (eA.4)

The characteristic impedance of a transmission line, Z0 (pronounced 
“Z-naught”), is the ratio of voltage to current in a wave traveling along 
the line: Z0 = V/I. It is not the resistance of the wire (a good trans-
mission line in a digital system typically has negligible resistance). Z0 
depends on the inductance and capacitance of the line (see the derivation 
in Section A.9.7) and typically has a value of 50 to 75 Ω.

 Z
L
C

0 =  (eA.5)

Figure eA.18 shows the symbol for a transmission line. The symbol 
resembles a coaxial cable with an inner signal conductor and an outer 
grounded conductor like that used in television cable wiring.

The key to understanding the behavior of transmission lines is to 
visualize the wave of voltage propagating along the line at the speed of 
light. When the wave reaches the end of the line, it may be absorbed or 
reflected, depending on the termination or load at the end. Reflections 
travel back along the line, adding to the voltage already on the line. 
Terminations are classified as matched, open, short, or mismatched. The 
following sections explore how a wave propagates along the line and 
what happens to the wave when it reaches the termination.

A . 9 . 1   Matched Termination

Figure eA.19 shows a transmission line of length l with a matched ter-
mination, which means that the load impedance, ZL, is equal to the 
characteristic impedance, Z0. The transmission line has a characteristic 
impedance of 50 Ω. One end of the line is connected to a voltage source 
through a switch that closes at time t = 0. The other end is connected 

I

V

–

+

Z0 =
C

L

Figure eA.18 Transmission line 
symbol
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to the 50 Ω matched load. This section analyzes the voltages and cur-
rents at points A, B, and C—at the beginning of the line, one-third of the 
length along the line, and at the end of the line, respectively.

Figure eA.20 shows the voltages at points A, B, and C over time. 
Initially, there is no voltage or current flowing in the transmission line 
because the switch is open. At time t = 0, the switch closes and the volt-
age source launches a wave with voltage V = VS along the line. This is 
called the incident wave. Because the characteristic impedance is Z0, the 
wave has current I = VS /Z0. The voltage reaches the beginning of the 
line (point A) immediately, as shown in Figure eA.20(a). The wave prop-
agates along the line at the speed of light. At time td /3, the wave reaches 
point B. The voltage at this point abruptly rises from 0 to VS, as shown 
in Figure eA.20(b). At time td, the incident wave reaches point C at the 
end of the line, and the voltage rises there as well. All of the current, I, 
flows into the resistor, ZL, producing a voltage across the resistor of VR 
= ZLI = ZL (VS /Z0) = VS because ZL = Z0. This voltage is consistent with 
the wave flowing along the transmission line. Thus, the wave is absorbed 
by the load impedance and the transmission line reaches its steady state.

In steady state, the transmission line behaves like an ideal equipotential 
wire because it is, after all, just a wire. The voltage at all points along 
the line must be identical. Figure eA.21 shows the steady-state equivalent 
model of the circuit in Figure eA.19. The voltage is VS everywhere along 
the wire.

Example eA.2  TRANSMISSION LINE WITH MATCHED SOURCE AND 
LOAD TERMINATIONS

Figure eA.22 shows a transmission line with matched source and load imped-
ances ZS and ZL. Plot the voltage at nodes A, B, and C versus time. When does 
the system reach steady state, and what is the equivalent circuit at steady state?

Solution When the voltage source has a source impedance ZS in series with the 
transmission line, part of the voltage drops across ZS, and the remainder prop-
agates down the transmission line. At first, the transmission line behaves as an 
impedance Z0, because the load at the end of the line cannot possibly influ-
ence the behavior of the line until a speed-of-light delay has elapsed—that is, 
the signal at the source end cannot even know what is at the load end until it 

Figure eA.19 Transmission line 
with matched terminationVS

t = 0

Z0 = 50 Ω

length = l 
td  = l /v

A CB
l /3

ZL = 50 Ω 

Figure eA.20 Voltage waveforms 
for Figure eA.19 at points A, B, 
and C
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reaches it. Hence, by the voltage divider equation, the incident voltage flowing 
down the line is

 V V
Z

Z Z
V

S
S

S=
+

=










0

0 2
 (eA.6)

Thus, at t = 0, a wave of voltage, V VS= 2 , is sent down the line from point A. 
Again, the signal reaches point B at time td /3 and point C at td, as shown in 
Figure eA.23. All of the current is absorbed by the load impedance ZL, so the 
circuit enters steady state at t = td. In steady state, the entire line is at VS /2, just 
as the steady-state equivalent circuit in Figure eA.24 would predict.
 

A . 9 . 2   Open Termination

When the load impedance is not equal to Z0, the termination can-
not absorb all of the current and some of the wave must be reflected. 
Figure eA.25 shows a transmission line with an open load termination. 
No current can flow through an open termination, so the current at 
point C must always be 0.

The voltage on the line is initially zero. At t = 0, the switch closes 
and a wave of voltage, V VS

Z
Z ZS

VS= =+
0

0 2 , begins propagating down 

the line. Notice that this initial wave is the same as that of Example eA.2 
and is independent of the termination because the load at the end of the 
line cannot influence the behavior at the beginning until at least 2td has 
elapsed. This wave reaches point B at td /3 and point C at td, as shown in 
Figure eA.26.

When the incident wave reaches point C, it cannot continue forward 
because the wire is open. It must instead reflect back toward the source. 
The reflected wave also has voltage V VS= 2

 because the open termina-
tion reflects the entire wave.

The voltage at any point is the sum of the incident and reflected 
waves. At time t = td, the voltage at point C is V VVS VS

S= + =2 2 . 
The reflected wave reaches point B at 5td /3 and point A at 2td. When it 
reaches point A, the wave is absorbed by the source termination imped-
ance that matches the characteristic impedance of the line. Thus, the sys-
tem reaches steady state at time t = 2td, and the transmission line becomes 
equivalent to an equipotential wire with voltage VS and current I = 0.

Figure eA.22 Transmission line 
with matched source and load 
impedances VS

t = 0

Z0 = 50 Ω

ZL = 50 Ω

ZS = 50 Ω 
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t
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Figure eA.23 Voltage waveforms 
for Figure eA.22 at points A, B, and C

Figure eA.24 Equivalent circuit of 
Figure eA.22 at steady state
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A . 9 . 3   Short Termination

Figure eA.27 shows a transmission line terminated with a short circuit 
to ground. Thus, the voltage at point C must always be 0.

As in the previous examples, the voltages on the line are initially 0. 
When the switch closes, a wave of voltage, V VS= 2 , begins propagating 
down the line (Figure eA.28). When it reaches the end of the line, it must 
reflect with opposite polarity. The reflected wave, with voltage V VS= −

2 , 
adds to the incident wave, ensuring that the voltage at point C remains 0. 
The reflected wave reaches the source at time t = 2td and is absorbed by 
the source impedance. At this point, the system reaches steady state and 
the transmission line is equivalent to an equipotential wire with voltage 
V = 0.

Figure eA.25 Transmission line 
with open load terminationVS

t = 0

Z0 = 50 Ω

length = l 
td = l /v

A CB
l /3

ZS = 50 Ω 

Figure eA.26 Voltage waveforms 
for Figure eA.25 at points  
A, B, and C
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Figure eA.27 Transmission line with short termination
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A . 9 . 4   Mismatched Termination

The termination impedance is said to be mismatched when it does 
not equal the characteristic impedance of the line. In general, when an 
incident wave reaches a mismatched termination, part of the wave is 
absorbed and part is reflected. The reflection coefficient kr indicates the 
fraction of the incident wave Vi that is reflected: Vr = krVi.

Section A.9.8 derives the reflection coefficient using conservation of 
current arguments. It shows that, when an incident wave flowing along 
a transmission line of characteristic impedance Z0 reaches a termination 
impedance ZT at the end of the line, the reflection coefficient is

 k
Z Z
Z Z

r
T

T

=
−
+

0

0
.  (eA.7)
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Note a few special cases. If the termination is an open circuit (ZT = 
∞), kr = 1 because the incident wave is entirely reflected (thus, the cur-
rent out the end of the line remains zero). If the termination is a short 
circuit (ZT = 0), kr = –1 because the incident wave is reflected with neg-
ative polarity (thus, the voltage at the end of the line remains zero). If 
the termination is a matched load (ZT = Z0), kr = 0 because the incident 
wave is completely absorbed.

Figure eA.29 illustrates reflections in a transmission line with a mis-
matched load termination of 75 Ω. ZT = ZL = 75 Ω, and Z0 = 50 Ω, so 
kr = 1/5. As in previous examples, the voltage on the line is initially 0. 
When the switch closes, a wave of voltage V VS= 2  propagates down the 
line, reaching the end at t = td. When the incident wave reaches the ter-
mination at the end of the line, one-fifth of the wave is reflected, and the 
remaining four-fifths flows into the load impedance. Thus, the reflected 
wave has a voltage V VS VS= × =2

1
5 10 . The total voltage at point C is 

the sum of the incoming and reflected voltages, VC
VS VS VS= + =2 10

3
5 . 

At t = 2td, the reflected wave reaches point A, where it is absorbed by 
the matched 50 Ω termination, ZS. Figure eA.30 plots the voltages and 
currents along the line. Again, note that in steady state (in this case, at 
time t > 2td), the transmission line is equivalent to an equipotential wire, 
as shown in Figure eA.31. At steady state, the system acts like a voltage 
divider, so

 V V V V
Z

Z Z
V

V
A B C S

L

L S
S

S= = =
+

=
+

=


















75
75 50

3
5

Ω
Ω Ω

..

Reflections can occur at both ends of the transmission line. 
Figure eA.32 shows a transmission line with a source impedance, ZS, of 
450 Ω and an open termination at the load. The reflection coefficients at 
the load and source, krL and krS, are 1 and 4/5, respectively. In this case, 
waves reflect off both ends of the transmission line until a steady state is 
reached.

The bounce diagram shown in Figure eA.33 helps visualize reflec-
tions off both ends of the transmission line. The horizontal axis rep-
resents distance along the transmission line, and the vertical axis 
represents time, increasing downward. The two sides of the bounce 

Figure eA.28 Voltage waveforms 
for Figure eA.27 at points  
A, B, and C

t
td

VA

VS /2

2td
(a)

t

VS /2

5td 
/3td 

/3 td 

VB

(b)

(c)

t

VS

td 

VC

Figure eA.29 Transmission line with mismatched termination

VS

t = 0

Z0 = 50 Ω

length = l
td = l/v

A CB
l /3

ZL = 75 Ω

ZS = 50 Ω

+
–



A.9 Transmission Lines 543.e29

diagram represent the source and load ends of the transmission line, 
points A and C. The incoming and reflected signal waves are drawn as 
diagonal lines between points A and C. At time t = 0, the source imped-
ance and transmission line behave as a voltage divider, launching a volt-
age wave of VS

10  from point A toward point C. At time t = td, the signal 
reaches point C and is completely reflected (krL = 1). At time t = 2td, the 
reflected wave of VS

10
 reaches point A and is reflected with a reflection 

coefficient, krS = 4/5, to produce a wave of 2
25
VS  traveling toward point 

C, and so forth.
The voltage at a given time at any point on the transmission line is 

the sum of all the incident and reflected waves. Thus, at time t = 1.1td, 
the voltage at point C is VS VS VS

10 10 5+ = . At time t = 3.1td, the voltage 
at point C is VS VS VS VS VS

10 10
2
25

2
25

9
25+ + + = ,  and so forth. Figure eA.34  

plots the voltages against time. As t approaches infinity, the voltages 
approach steady state with VA = VB = VC = VS.
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A . 9 . 5   When to Use Transmission Line Models

Transmission line models for wires are needed whenever the wire delay, 
td, is longer than a fraction, typically 20%, of the edge rates (rise or 
fall times) of a signal. If the wire delay is shorter, it has an insignificant 
effect on the propagation delay of the signal, and the reflections dissi-
pate while the signal is transitioning. If the wire delay is longer, it must 
be considered in order to accurately predict the propagation delay and 
waveform of the signal. In particular, reflections may distort the digital 
characteristic of a waveform, resulting in incorrect logic operations.

Recall that signals travel on a PCB at about 15 cm/ns. For TTL 
logic, with edge rates of 10 ns, wires must be modeled as transmission 
lines only if they are longer than 30 cm (10 ns × 15 cm/ns × 20%). PCB 
traces are usually less than 30 cm, so most traces can be modeled as ideal 
equipotential wires. In contrast, many modern chips have edge rates of 
2 ns or less, so traces longer than about 6 cm (about 2.5 inches) must be 
modeled as transmission lines. Clearly, use of edge rates that are crisper 
than necessary just causes difficulties for the designer.

Breadboards lack a ground plane, so the electromagnetic fields of 
each signal are nonuniform and difficult to model. Moreover, the fields 
interact with other signals. This can cause strange reflections and cross-
talk between signals. Thus, breadboards are unreliable above a few 
megahertz.

In contrast, PCBs have good transmission lines, with consistent 
characteristic impedance and velocity along the entire line. As long as 
they are terminated with a source or load impedance that is matched to 
the impedance of the line, PCB traces do not suffer from reflections.

A . 9 . 6   Proper Transmission Line Terminations

Two common ways to properly terminate a transmission line exist, as 
shown in Figure eA.35. In parallel termination, the driver has a low 
impedance (ZS ≈ 0). A load resistor ZL with impedance Z0 is placed 
in parallel with the load (between the input of the receiver gate and 
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Figure eA.34 Voltage and current waveforms for Figure eA.32
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ground). When the driver switches from 0 to VDD, it sends a wave with 
voltage VDD down the line. The wave is absorbed by the matched load 
termination, and no reflections take place. In series termination, a source 
resistor ZS is placed in series with the driver to raise the source imped-
ance to Z0. The load has a high impedance (ZL ≈ ∞). When the driver 
switches, it sends a wave with voltage VDD/2 down the line. The wave 
reflects at the open circuit load and returns, bringing the voltage on the 
line up to VDD. The wave is absorbed at the source termination. Both 
schemes are similar in that the voltage at the receiver transitions from 0 
to VDD at t = td, just as one would desire. They differ in power consump-
tion and in the waveforms that appear elsewhere along the line. Parallel 
termination dissipates power continuously through the load resistor 
when the line is at a high voltage. Series termination dissipates no DC 
power, because the load is an open circuit. However, in series terminated 
lines, points near the middle of the transmission line initially see a volt-
age of VDD/2, until the reflection returns. If other gates are attached to 
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the middle of the line, they will momentarily see an illegal logic level. 
Therefore, series termination works best for point-to-point communi-
cation with a single driver and a single receiver. Parallel termination is  
better for a bus with multiple receivers, because receivers at the middle 
of the line never see an illegal logic level.

A . 9 . 7   Derivation of Z0*

Z0 is the ratio of voltage to current in a wave propagating along a trans-
mission line. This section derives Z0; it assumes some previous knowl-
edge of resistor-inductor-capacitor (RLC) circuit analysis.

Imagine applying a step voltage to the input of a semi-infinite trans-
mission line (so that there are no reflections). Figure eA.36 shows the 
semi-infinite line and a model of a segment of the line of length dx. R, 
L, and C are the values of resistance, inductance, and capacitance per 
unit length. Figure eA.36(b) shows the transmission line model with a 
resistive component, R. This is called a lossy transmission line model, 
because energy is dissipated, or lost, in the resistance of the wire. 
However, this loss is often negligible, and we can simplify the analysis by 
ignoring the resistive component and treating the transmission line as an 
ideal transmission line, as shown in Figure eA.36(c).

Voltage and current are functions of time and space throughout the 
transmission line, as given by Equations eA.8 and eA.9.

 ∂
∂

∂
∂=x tV x t L I x t( , ) ( , )  (eA.8)

 ∂
∂

∂
∂=x tI x t C V x t( , ) ( , )  (eA.9)

Taking the space derivative of Equation eA.8 and the time deriva-
tive of Equation eA.9 and substituting gives Equation eA.10, the wave 
equation.

 ∂

∂

∂

∂
=

2

2

2

2x t
V x t LC V x t( , ) ( , )  (eA.10)

Z0 is the ratio of voltage to current in the transmission line, as illus-
trated in Figure eA.37(a). Z0 must be independent of the length of the 
line because the behavior of the wave cannot depend on things at a 
distance. Because it is independent of length, the impedance must still 

xdx
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Ldx

(b)

Ldx
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Figure eA.36 Transmission line 
models: (a) semi-infinite cable,  
(b) lossy, (c) ideal
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equal Z0 after the addition of a small amount of transmission line, dx, as 
shown in Figure eA.37(b).

Using the impedances of an inductor and a capacitor, we rewrite the 
relationship of Figure eA.37 in equation form:

 Z j Ldx Z j Cdx0 0 1= +ω ω[ / ( ) ]||( )  (eA.11)

Rearranging, we get

 Z j C j L Z LCdx0
2 2

0 0ω ω ω( ) − + =  (eA.12)

Taking the limit as dx approaches 0, the last term vanishes and we find 
that

 Z
L
C

0 =  (eA.13)

A . 9 . 8   Derivation of the Reflection Coefficient*

The reflection coefficient kr is derived using conservation of current. 
Figure eA.38 shows a transmission line with characteristic impedance Z0 
and load impedance ZL. Imagine an incident wave of voltage Vi and cur-
rent Ii. When the wave reaches the termination, some current IL flows 
through the load impedance, causing a voltage drop VL. The remainder 
of the current reflects back down the line in a wave of voltage Vr and 
current Ir. Z0 is the ratio of voltage to current in waves propagating 
along the line, so Vi

Ii

Vr
Ir

Z= = 0.
The voltage on the line is the sum of the voltages of the inci-

dent and reflected waves. The current flowing in the positive direction 
on the line is the difference between the currents of the incident and 
reflected waves.

 V V VL i r= +  (eA.14)

 I I IL i r= –  (eA.15)
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Using Ohm’s law and substituting for IL, Ii, and Ir in Equation 
eA.15, we get

 
V V

Z
V
Z

V
Z

i r

L

i r+
= −

0 0
 (eA.16)

Rearranging, we solve for the reflection coefficient, kr:

 
V
V

Z Z
Z Z

kr

i

L

L
r=

−
+

=0

0
 (eA.17)

A . 9 . 9   Putting It All Together

Transmission lines model the fact that signals take time to propagate 
down long wires because the speed of light is finite. An ideal transmission 
line has uniform inductance L and capacitance C per unit length and 
zero resistance. The transmission line is characterized by its characteristic 
impedance Z0 and delay td, which can be derived from the inductance, 
capacitance, and wire length. The transmission line has significant delay 
and noise effects on signals whose rise/fall times are less than about 5td. 
This means that, for systems with 2 ns rise/fall times, PCB traces longer 
than about 6 cm must be analyzed as transmission lines to accurately 
understand their behavior.

A digital system consisting of a gate driving a long wire attached to 
the input of a second gate can be modeled with a transmission line as 
shown in Figure eA.39. The voltage source, source impedance ZS, and 
switch model the first gate switching from 0 to 1 at time 0. The driver 
gate cannot supply infinite current; this is modeled by ZS. ZS is usually 
small for a logic gate, but a designer may choose to add a resistor in 
series with the gate to raise ZS and match the impedance of the line. The 
input to the second gate is modeled as ZL. CMOS circuits usually have 
little input current, so ZL may be close to infinity. The designer may also 
choose to add a resistor in parallel with the second gate, between the 
gate input and ground, so that ZL matches the impedance of the line.
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driver
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receiver
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VS td , Z0
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gatelong wiredriver gate
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Figure eA.39 Digital system 
modeled with transmission line
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When the first gate switches, a wave of voltage is driven onto the 
transmission line. The source impedance and transmission line form a 
voltage divider, so the voltage of the incident wave is

 V V
Z

Z Z
i S

S

=
+

0

0
 (eA.18)

At time td, the wave reaches the end of the line. Part is absorbed 
by the load impedance and part is reflected. The reflection coefficient kr 
indicates the portion that is reflected: kr = Vr /Vi, where Vr is the voltage 
of the reflected wave and Vi is the voltage of the incident wave.

 k
Z Z
Z Z

r
L

L

=
−
+

0

0
 (eA.19)

The reflected wave adds to the voltage already on the line. It reaches 
the source at time 2td, where part is absorbed and part is again reflected. 
The reflections continue back and forth, and the voltage on the line 
eventually approaches the value that would be expected if the line were 
a simple equipotential wire.

A.10  ECONOMICS
Although digital design is so much fun that some of us would do it for 
free, most designers and companies intend to make money. Therefore, 
economic considerations are a major factor in design decisions.

The cost of a digital system can be divided into nonrecurring engi-
neering (NRE) costs, and recurring costs. NRE accounts for the cost of 
designing the system. It includes the salaries of the design team, com-
puter and software costs, and the costs of producing the first working 
unit. The fully loaded cost of a designer in the United States in 2021 
(including salary, health insurance, retirement plan, and a computer 
with design tools) was roughly $200,000 per year, so design costs can 
be significant. Recurring costs are the cost of each additional unit; this 
includes components, manufacturing, marketing, technical support, and 
shipping.

The sales price must cover not only the cost of the system but also 
other costs, such as office rental, taxes, and salaries of staff who do not 
directly contribute to the design (such as the janitor and the CEO). After 
all of these expenses, the company should still make a profit.

Example eA.3 BEN TRIES TO MAKE SOME MONEY

Ben Bitdiddle has designed a crafty circuit for counting raindrops. He decides 
to sell the device and try to make some money, but he needs help deciding what 
implementation to use. He decides to use either an FPGA or an ASIC. The 
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development kit to design and test the FPGA costs $1500. Each FPGA costs $17. 
The ASIC costs $600,000 for a mask set and $4 per chip.

Regardless of what chip implementation he chooses, Ben needs to mount the 
packaged chip on a printed circuit board (PCB), which will cost him $1.50 per 
board. He thinks he can sell 1,000 devices per month. Ben has coerced a team of 
bright undergraduates into designing the chip for their senior project so that it 
doesn’t cost him anything to design.

If the sales price has to be twice the cost (100% profit margin), and the product 
life is 2 years, which implementation is the better choice?

Solution Ben figures out the total cost for each implementation over 2 years, as 
shown in Table eA.4. Over 2 years, Ben plans on selling 24,000 devices; the total 
cost is given in Table eA.4 for each option. If the product life is only two years, 
the FPGA option is clearly superior. The per-unit cost is $445,500/24,000 = 
$18.56, and the sales price is $37.13 per unit to give a 100% profit margin. The 
ASIC option would have cost $732,000/24,000 = $30.50 and would have sold 
for $61 per unit.
 

Table eA.4 ASIC vs FPGA costs

Cost ASIC FPGA

NRE $600,000 $1500

Chip $4 $17

PCB $1.50 $1.50

TOTAL $600,000 + (24,000 × $5.50)  
= $732,000

$1500 + (24,000 × $18.50)  
= $445,500

Per unit $30.50 $18.56

Example eA.4 BEN GETS GREEDY

After seeing the marketing ads for his product, Ben thinks he can sell even more 
chips per month than originally expected. If he were to choose the ASIC option, 
how many devices per month would he have to sell to make the ASIC option 
more profitable than the FPGA option?

Solution Ben solves for the minimum number of units, N, that he would need to 
sell in 2 years:

 $ $ $ $600 000 5 50 1500 18 50, ( . ) ( . )+ × = + ×N N
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Solving the equation gives N = 46,039 units, or 1,919 units per month. He would 
need to almost double his monthly sales to benefit from the ASIC solution.
 

Example eA.5 BEN GETS LESS GREEDY

Ben realizes that his eyes have gotten too big for his stomach, and he doesn’t 
think he can sell more than 1,000 devices per month. But he does think the 
product life can be longer than 2 years. At a sales volume of 1,000 devices per 
month, how long would the product life have to be to make the ASIC option 
worthwhile?

Solution If Ben sells more than 46,039 units in total, the ASIC option is the best 
choice. So, Ben would need to sell at a volume of 1,000 per month for at least 47 
months (rounding up), which is almost 4 years. By then, his product is likely to 
be obsolete.
 

Chips are usually purchased from a distributor rather than directly 
from the manufacturer (unless you are ordering tens of thousands 
of units). Digikey (www.digikey.com) and Arrow (www.arrow.com) 
are leading distributors that sell a wide variety of electronics. Jameco 
(www.jameco.com) and All Electronics (www.allelectronics.com) 
have eclectic catalogs that are competitively priced and well suited to 
hobbyists.

http://www.digikey.com
http://www.arrow.com
http://www.jameco.com
http://www.allelectronics.com


Digital Design and Computer Architecture, RISC-V Edition. DOI: 
Copyright ©  Elsevier Inc. All rights reserved.

544
2022

10.1016/B978-0-12-820064-3.00016-7

RISC-V Instruction Set SummaryB
 The inside covers of the textbook have a handy summary of the 
entire RISC-V instruction set.

10.1016/B978-0-12-820064-3.00016-7


Digital Design and Computer Architecture, RISC-V Edition. DOI:
Copyright © 2022 Elsevier Inc. All rights reserved.

10.1016/B978-0-12-820064-3.00017-9 545.e1

eCC Programming

C.1  INTRODUCTION
The overall goal of this book is to give a picture of how computers 
work on many levels, from the transistors by which they are constructed 
all the way up to the software they run. The first five chapters of this 
book work up through the lower levels of abstraction, from transistors 
to gates to logic design. Chapters 6 through 8 jump up to architecture 
and work back down to microarchitecture to connect the hardware with 
the software. This appendix on C programming fits logically between 
Chapters 5 and 6, covering C programming as the highest level of 
abstraction in the text. It motivates the architecture material and links 
this book to programming experience that may already be familiar to 
the reader. This material is placed in the appendix so that readers may 
easily cover or skip it depending on previous experience.

Programmers use many different languages to tell a computer what to 
do. Fundamentally, computers process instructions in machine language 
consisting of 1’s and 0’s, as is explored in Chapter 6. But programming in 
machine language is tedious and slow, leading programmers to use more 
abstract languages to get their meaning across more efficiently. Table eC.1 
lists some examples of languages at various levels of abstraction.

One of the most popular programming languages ever developed is 
called C. It was created by a group including Dennis Ritchie and Brian 
Kernighan at Bell Laboratories between 1969 and 1973 to rewrite the 
UNIX operating system from its original assembly language. By many 
measures, C (including a family of closely related languages such as 
C++, C#, and Objective C) is the most widely used language in exis-
tence. Its popularity stems from a number of factors, including its:

▸ Availability on a tremendous variety of platforms, from supercom-
puters down to embedded microcontrollers

▸ Relative ease of use, with a huge user base

 C.1 Introduction 

 C.2 Welcome to C 

 C.3 Compilation 

 C.4 Variables 

 C.5 Operators 

 C.6 Function Calls 

 C.7 Control-Flow Statements 

 C.8 More Data Types 

 C.9 Standard Libraries 

 C.10 Compiler and Command Line 
Options 

 C.11 Common Mistakes 
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▸ Moderate level of abstraction, providing higher productivity than 
assembly language, yet giving the programmer a good understand-
ing of how the code will be executed

▸ Suitability for generating high-performance programs

▸ Ability to interact directly with the hardware

This chapter is devoted to C programming for a variety of reasons. 
Most importantly, C allows the programmer to directly access addresses in 
memory, illustrating the connection between hardware and software empha-
sized in this book. C is a practical language that all engineers and computer 
scientists should know. Its uses in many aspects of implementation and 
design—for example, software development, embedded systems program-
ming, and simulation—make proficiency in C a vital and marketable skill.

The following sections describe the overall syntax of a C program, 
discussing each part of the program—including the header, function 
and variable declarations, data types, and commonly used functions 
provided in libraries. Chapter 9 (available as a web supplement—
see Preface) describes a hands-on application by using C to program 
SparkFun’s RED-V RedBoard, which contains a RISC-V microcontroller.

SUMMARY

▸ High-level programming: High-level programming is useful at many 
levels of design, from writing analysis or simulation software to pro-
gramming microcontrollers that interact with hardware.

▸ Low-level access: C code is powerful because, in addition to high-
level constructs, it provides access to low-level hardware and memory.

Dennis Ritchie, 1941–2011

Brian Kernighan, 1942–
C was formally introduced 
in 1978 by Brian Kernighan 
and Dennis Ritchie’s classic 
book, The C Programming 
Language. In 1989, the 
American National Standards 
Institute (ANSI) expanded and 
standardized the language, 
which became known as 
ANSI C, Standard C, or C89. 
Shortly thereafter, in 1990, 
this standard was adopted by 
the International Organization 
for Standardization (ISO) 
and the International 
Electrotechnical Commission 
(IEC). ISO/IEC updated the 
standard in 1999 to what is 
called C99, which we will be 
discussing in this text. 

Table eC.1 Languages at roughly decreasing levels of abstraction

Language Description

MATLAB Designed to facilitate heavy use of math functions

Perl Designed for scripting

Python Designed to emphasize code readability

Java Designed to run securely on any computer

C Designed for flexibility and overall system access, 
including device drivers

Assembly Language Human-readable machine language

Machine Language Binary representation of a program
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C.2  WELCOME TO C
A C program is a text file that describes operations for the computer 
to perform. The text file is compiled, converted into a machine-readable 
format, and run or executed on a computer. C Code Example eC.1 is a 
simple C program that prints the phrase “Hello world!” to the console, 
the computer screen. C programs are generally contained in one or more 
text files that end in “.c.” Good programming style requires a file name 
that indicates the contents of the program—for example, this file could 
be called hello.c.

// Write "Hello world!" to the console
#include <stdio.h>

int main(void) {
     printf("Hello world!\n");
}

C Code Example eC.1 SIMPLE C PROGRAM

Console Output
Hello world!

C . 2 . 1   C Program Dissection

In general, a C program is organized into one or more functions. Every 
program must include the main function, which is where the program 
starts executing. Most programs use other functions defined elsewhere 
in the C code and/or in a library. The overall sections of the hello,c  
program are the header, the main function, and the body.

Header: #include <stdio.h>
The header includes the library functions needed by the program. In 
this case, the program uses the printf function, which is part of the 
standard I/O library, stdio.h. See Section C.9 for further details on C’s 
built-in libraries.

Main function: int main(void)
All C programs must include exactly one main function. Execution of 
the program occurs by running the code inside main, called the body of 
main. Function syntax is described in Section C.6. The body of a func-
tion contains a sequence of statements. Each statement ends with a semi-
colon. int denotes that the main function outputs, or returns, an integer 
result that indicates whether the program ran successfully.

C is the language used to 
program such ubiquitous 
systems as Linux, Windows, 
and iOS. C is a powerful 
language because of its 
direct access to hardware. 
As compared with other 
high-level languages—
for example, Perl and 
MATLAB—C does not have 
as much built-in support 
for specialized operations 
such as file manipulation, 
pattern matching, matrix 
manipulation, and graphical 
user interfaces. It also lacks 
features to protect the 
programmer from common 
mistakes, such as writing data 
past the end of an array. Its 
power combined with its lack 
of protection has assisted 
hackers who exploit poorly 
written software to break 
into computer systems. 

While this chapter provides a 
fundamental understanding of 
C programming, entire texts 
are written that describe C in 
depth. One of our favorites 
is the classic text The C 
Programming Language by 
Brian Kernighan and Dennis 
Ritchie, the developers of 
C. This text gives a concise 
description of the nuts and 
bolts of C. Another good text 
is A Book on C by Al Kelley 
and Ira Pohl. 
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Body: printf(“Hello world!\n”);

The body of this main function contains one statement, a call to the 
printf function, which prints the phrase “Hello world!” followed by a 
newline character indicated by the special sequence “\n”. Further details 
about I/O (input/output) functions are described in Section C.9.1.

All programs follow the general format of the simple hello.c pro-
gram. Of course, very complex programs may contain millions of lines 
of code and span hundreds of files.

C . 2 . 2   Running a C Program

C programs can be run on many different machines. This portability is 
another advantage of C. The program is first compiled on the desired 
machine using the C compiler. Slightly different versions of the C compiler 
exist, including cc (C compiler), or gcc (GNU C compiler). Here, we 
show how to compile and run a C program using gcc, which is freely 
available for download. It runs directly on Linux machines and is acces-
sible under the Cygwin environment on Windows machines. It is also  
available for many embedded systems, such as SparkFun’s RED-V 
RedBoard, which includes a RISC-V microcontroller. The general process 
described below of C file creation, compilation, and execution is the 
same for any C program.

 1. Create the text file, for example, hello.c.

 2. In a terminal window, change to the directory that contains the file 
hello.c and type gcc hello.c at the command prompt.

 3. The compiler creates an executable file. By default, the executable is 
called a.out (or a.exe on Windows machines).

 4. At the command prompt, type ./a.out (or ./a.exe on Windows) 
and press return.

 5. “Hello world!” will appear on the screen.

SUMMARY

▸ filename.c: C program files are typically named with a .c extension.

▸ main: Each C program must have exactly one main function.

▸ #include: Most C programs use functions provided by built-in 
libraries. These functions are used by writing #include <library.h> 
at the top of the C file.

▸ gcc filename.c: C files are converted into an executable using a 
compiler such as the GNU compiler (gcc) or the C compiler (cc).

▸ Execution: After compilation, C programs are executed by typing 
./a.out (or ./a.exe) at the command line prompt.
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C.3  COMPILATION
A compiler is a piece of software that reads a program in a high-level  
language and converts it into a file of machine code called an executable. 
Entire textbooks are written on compilers, but we describe them here 
briefly. The overall operation of the compiler is to (1) preprocess the file by 
including referenced libraries and expanding macro definitions, (2) ignore 
all unnecessary information such as comments, (3) translate the high-level 
code into simple instructions native to the processor that are represented 
in binary, called machine language, and (4) compile all the instructions 
into a single binary executable that can be read and executed by the com-
puter. Each machine language is specific to a given processor, so a program  
must be compiled specifically for the system on which it will run. For 
example, the RISC-V machine language is covered in Chapter 6 in detail.

C . 3 . 1   Comments

Programmers use comments to describe code at a high level and clarify 
code function. Anyone who has read uncommented code can attest to its 
importance. C programs use two types of comments: Single-line comments 
begin with // and terminate at the end of the line; multiple-line com-
ments begin with /* and end with */. While comments are critical to the  
organization and clarity of a program, they are ignored by the compiler.

// This is an example of a one-line comment.
/* This is an example
   of a multi-line comment. */

A comment at the top of each C file is useful to describe the file’s author, 
creation and modification dates, and purpose. The comment below 
could be included at the top of the hello.c file.

// hello.c
// 15 Jan 2021 Sarah.Harris@unlv.edu, David_Harris@hmc.edu
//
// This program prints "Hello world!" to the screen

C . 3 . 2  #define

Constants are named using the #define directive and then used by 
name throughout the program. These globally defined constants are also 
called macros. For example, suppose you write a program that allows at 
most 5 user guesses. You can use #define to identify that number.

#define MAXGUESSES 5

The # indicates that this line in the program will be handled by the pre-
processor. Before compilation, the preprocessor replaces each occurrence 
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of the identifier MAXGUESSES in the program with 5. By convention, 
#define lines are located at the top of the file and identifiers are written 
in all capital letters. By defining constants in one location and then using 
the identifier in the program, the program remains consistent, and the 
value is easily modified—it need only be changed at the #define line 
instead of at each line in the code where the value is used.

C Code Example eC.2 shows how to use the #define directive to 
convert inches to centimeters. The variables inch and cm are declared to 
be float, which means they represent single-precision floating-point 
numbers. If the conversion factor (INCH2CM) were used throughout a 
large program, having it declared using #define obviates errors due to 
typos (e.g., typing 2.53 instead of 2.54) and makes it easy to find and 
change (e.g., if more significant digits were required).

Number constants in C default 
to decimal but can also be 
hexadecimal (prefix  "0x") 
or octal (prefix "0")1. Binary 
constants are not defined in 
C99 but are supported by 
some compilers (prefix "0b"). 
For example, the following 
assignments are equivalent:

 char x = 37;
 char x = 0x25;
 char x = 045;
 char x = 0b100101; 

Globally defined constants 
eradicate magic numbers from 
a program. A magic number 
is a constant that shows 
up in a program without a 
name. The presence of magic 
numbers in a program often 
introduces tricky bugs—for 
example, when the number is 
changed in one location but 
not another. 

// Convert inches to centimeters
#include <stdio.h>

#define INCH2CM 2.54

int main(void) {
   float inch = 5.5;       // 5.5 inches
   float cm;

   cm = inch * INCH2CM;
   printf("%f inches = %f cm\n", inch, cm);
}

Console Output
5.500000 inches = 13.970000 cm

C Code Example eC.2 USING #define TO DECLARE CONSTANTS

C . 3 . 3   #include

Modularity encourages us to split programs across separate files and  
functions. Commonly used functions can be grouped together for easy reuse. 
Variable declarations, defined values, and function definitions located in a 
header file can be used by another file by adding the #include prepro-
cesser directive. Standard libraries that provide commonly used functions are 
accessed in this way. For example, the following line is required to use the 
functions defined in the standard input/output (I/O) library, such as printf.

#include <stdio.h>

The “.h” postfix of the include file indicates that it is a header file. While 
#include directives can be placed anywhere in the file before the included 

1 The prefixes for hexadecimal, octal, and binary (0x, 0, and 0b) start with the number 0, 
not the letter O.
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functions, variables, or identifiers are needed, they are conventionally 
located at the top of a C file.

Programmer-created header files can also be included but must use 
quotation marks (" ") around the file name instead of brackets (< >). 
For example, a user-created header file called myfunctions.h would be 
included using the following line.

#include "myfunctions.h"

At compile time, files specified in brackets are searched for in system 
directories. Files specified in quotes are searched for in the same local 
directory where the C file is found. If the user-created header file is 
located in a different directory, the path of the file relative to the current 
directory must be included.

SUMMARY
▸ Comments: C provides single-line comments (//) and multi-line 

comments (/* */).

▸ #define NAME val: the #define directive allows an identifier (NAME) 
to be used throughout the program. Before compilation, all instances 
of NAME are replaced with val.

▸ #include: #include allows common functions to be used in a pro-
gram. For built-in libraries, include the following line at the top of 
the code: #include <library.h>. To include a user-defined header 
file, the name must be in quotes, listing the path relative to the cur-
rent directory as needed: that is, #include "other/myFuncs.h".

C.4  VARIABLES

Variables in C programs have a type, name, value, and memory loca-
tion. A variable declaration states the type and name of the variable. 
For example, the following declaration states that the variable is of type 
char (which is a 1-byte type), and that the variable name is x. The com-
piler decides where to place this 1-byte variable in memory.

char x;

C views memory as a group of consecutive bytes, where each byte of 
memory is assigned a unique number indicating its location or address, 
as shown in Figure eC.1. A variable occupies one or more bytes of mem-
ory; the address of multiple-byte variables is indicated by the lowest 
numbered byte. The type of a variable indicates whether to interpret the 
byte(s) as an integer, floating-point number, or other type. The rest of 
this section describes C’s primitive data types, the declaration of global 
and local variables, and the initialization of variables.

Variable names are case 
sensitive and can be of your 
choosing. However, the 
name may not be any of C’s 
reserved words (i.e., int, 
while, etc.), may not start 
with a number (i.e., int 1x; 
is not a valid declaration), 
and may not include special 
characters such as \, *, ?, 
or -. Underscores (_) are 
allowed. 
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C . 4 . 1   Primitive Data Types

C has a number of primitive, or built-in, data types available. They can be 
broadly characterized as integers, floating-point variables, and characters. An 
integer represents a two’s complement or unsigned number within a finite 
range. A floating-point variable uses IEEE floating-point representation  
to describe real numbers with a finite range and precision. A character 
can be viewed as either an ASCII value or an 8-bit integer.2 Table  eC.2  
lists the size and range of each primitive type. Integers may be 16, 32, 
or 64 bits. They use two’s complement unless qualified as unsigned.  

2  Technically, the C99 standard defines a character as “a bit representation that fits in a 
byte,” without requiring a byte to be 8 bits. However, current systems define a byte as 8 bits.

Memory

Address
(Byte #)

Data
1 byte

1
0

3
2

.
4

.

.

Figure eC.1 C’s view of memory

Table eC.2 Primitive data types and sizes

Type Size (bits) Minimum Maximum

char 8 −2−7 = −128 27 − 1 = 127

unsigned char 8 0 28 − 1 = 255

int machine-dependent

unsigned int machine-dependent

int16_t 16 −215 = −32,768 215 − 1 = 32,767

uint16_t 16 0 216 − 1 = 65,535

int32_t 32 −231 = −2,147,483,648 231 − 1 = 2,147,483,647

uint32_t 32 0 232 − 1 = 4,294,967,295

int64_t 64 −263 263 − 1

uint64_t 64 0 264 − 1

float 32 ±2−126 ±2127

double 64 ±2−1023 ±21022
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The size of the int type is machine dependent and is often the native 
word size of the machine. For example, on a 32-bit processor, the size of 
an int or unsigned int is 32 bits. On a 16-bit processor, an int is usu-
ally 16 bits. However, compilers for 64-bit processors typically use 32 bits 
for ints to reduce subtle bugs porting old code that assumed this size. If 
you care about the size of a data type, use int16_t, int32_t, or int64_t 
to explicitly define the size. (These are signed datatypes; their unsigned 
counterparts are uint16_t, etc.) Floating-point numbers use 32 or 64 bits 
for single- or double-precision, respectively. Characters are 8 bits.

C Code Example eC.3 shows the declaration of variables of dif-
ferent types. As shown in Figure eC.2, x requires one byte of data, 
y requires two, and z requires four. The program decides where these 
bytes are stored in memory, but each type always requires the same 
amount of data. For illustration, the addresses of x, y, and z in this 
example are 1, 2, and 4. Variable names are case-sensitive, so, for exam-
ple, the variable x and the variable X are two different variables. (But it 
would be very confusing to use both in the same program!)

Memory

Address
(Byte #)

Data
1 byte

1
0

3
2

4

Variable Name

x = 42

z = 0

y = -10

5
6

00101010
11110110
11111111
00000000
00000000
00000000
00000000

.

..

7

Figure eC.2 Variable storage in 
memory for C Code Example eC.3

// Examples of several data types and their binary representations
unsigned char x = 42;           // x = 00101010
int16_t y = −10;                    // y = 11111111 11110110
unit32_t z = 2;                     // z = 00000000 00000000 00000000 00000010

C Code Example eC.3 EXAMPLE DATA TYPES

C . 4 . 2   Global and Local Variables

Global and local variables differ in where they are declared and where 
they are visible. A global variable is declared outside of all functions, 
typically at the top of a program, and can be accessed by all functions. 
Global variables should be used sparingly because they violate the prin-
ciple of modularity, making large programs more difficult to read. 
However, a variable accessed by many functions can be made global.

A local variable is declared inside a function and can only be used 
by that function. Therefore, two functions can have local variables with 

The scope of a variable is 
the context in which it can 
be used. For example, for a 
local variable, its scope is 
the function in which it is 
declared. It is out of scope 
everywhere else. 
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the same names without interfering with each other. Local variables are 
declared at the beginning of a function. They cease to exist when the 
function ends and are recreated when the function is called again. They 
do not retain their value from one invocation of a function to the next.

C Code Examples eC.4 and eC.5 compare programs using global 
versus local variables. In C Code Example eC.4, the global variable 
max can be accessed by any function. Using a local variable, as shown 
in C Code Example eC.5, is the preferred style because it preserves the 
well-defined interface of modularity.

// Use a global variable to find and print the maximum of 3 numbers

int max;                       // global variable holding the maximum value

void findMax(int a, int b, int c) {
    max = a;
    if (b > max) {
       if (c > b) max = c;
       else         max = b;
     } else if (c > max) max = c;
}

void printMax(void) {
    printf("The maximum number is: %d\n", max);
}

int main(void) {
    findMax(4, 3, 7);
    printMax();
}

C Code Example eC.4 GLOBAL VARIABLES

// Use local variables to find and print the maximum of 3 numbers

int getMax(int a, int b, int c) {
   int result = a;  // local variable holding the maximum value

   if (b > result) {
       if (c > b) result = c;
       else         result = b;
   } else if (c > result) result = c;

   return result;

}

void printMax(int m) {
   printf("The maximum number is: %d\n", m);
}

int main(void) {
   int max;

   max = getMax(4, 3, 7);
   printMax(max);
}

C Code Example eC.5 LOCAL VARIABLES
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C . 4 . 3   Initializing Variables

A variable needs to be initialized—assigned a value—before it is read. 
When a variable is declared, the correct number of bytes is reserved 
for that variable in memory. However, the memory at those locations 
retains whatever value it had the last time it was used, essentially a ran-
dom value. Global and local variables can be initialized either when they 
are declared or within the body of the program. C Code Example eC.3 
shows variables initialized at the same time they are declared. C Code 
Example eC.4 shows how variables are initialized before their use, but 
after declaration; the global variable max is initialized by the getMax 
function before it is read by the printMax function. Reading from unini-
tialized variables is a common programming error and can be tricky to 
debug.

SUMMARY
▸ Variables: Each variable is defined by its data type, name, and mem-

ory location. A variable is declared as data type name.

▸ Data types: A data type describes the size (number of bytes) and 
representation (interpretation of the bytes) of a variable. Table eC.2 
lists C’s built-in data types.

▸ Memory: C views memory as a list of bytes. Memory stores vari-
ables and associates each variable with an address (byte number).

▸ Global variables: Global variables are declared outside of all func-
tions and can be accessed anywhere in the program.

▸ Local variables: Local variables are declared within a function and 
can be accessed only within that function.

▸ Variable initialization: Each variable must be initialized before it is 
read. Initialization can happen either at declaration or afterward.

C.5  OPERATORS
The most common type of statement in a C program is an expression, 
such as

y = a + 3;

An expression involves operators (such as + or *) acting on one or 
more operands, such as variables or constants. C supports the operators 
shown in Table eC.3, listed by category and in order of decreasing prece-
dence. For example, multiplicative operators take precedence over addi-
tive operators. Within the same category, operators are evaluated in the 
order that they appear in the program.
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Table eC.3 Operators listed by decreasing precedence

Category Operator Description Example

Unary ++ post-increment a++; // a = a+1

−− post-decrement x--; // x = x−1

& memory address of a variable x = &y; // x = the memory 
        // address of y

~ bitwise NOT z = ~a;

! Boolean NOT !x

− negation y = −a;

++ pre-increment ++a; // a = a + 1

−− pre-decrement −−x; // x = x − 1

(type) casts a variable to (type) x = (int)c;  // cast c to an int and 
// assign it to x

sizeof() size of a variable or type in  
bytes

int32_t y;  
x = sizeof(y); // x = 4

Multiplicative * multiplication y = x * 12;

/ division z = 9 / 3; // z = 3

% modulo z = 5 % 2; // z = 1

Additive + addition y = a + 2;

− subtraction y = a − 2;

Bitwise Shift << bitshift left z = 5 << 2; // z = 0b00010100

>> bitshift right x = 9 >> 3; // x = 0b00000001

Relational == equals y == 2

!= not equals x != 7

< less than y < 12

> greater than val > max

<= less than or equal z <= 2

>= greater than or equal y >= 10
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Unary operators, also called monadic operators, have a single oper-
and. Ternary operators have three operands, and all others have two. 
The ternary operator (from the Latin ternarius, meaning consisting of 
three) chooses the second or third operand depending on whether the 
first value is TRUE (nonzero) or FALSE (zero), respectively. C Code 
Example eC.6 shows how to compute y = max(a,b) using the ternary 
operator, along with an equivalent but more verbose if/else statement.

The Truth, the Whole Truth, 
and Nothing But the Truth

C considers a variable to 
be TRUE if it is nonzero and 
FALSE if it is zero. Logical 
and ternary operators, as well 
as control-flow statements 
such as if and while, depend 
on the truth of a variable. 
Relational and logical 
operators produce a result 
that is 1 when TRUE or 0 
when FALSE. 

Table eC.3 Operators listed by decreasing precedence

Category Operator Description Example

Bitwise & bitwise AND y = a & 15;

^ bitwise XOR y = 2 ^ 3;

| bitwise OR y = a | b;

Logical && Boolean AND x && y

|| Boolean OR x || y

Ternary ? : ternary operator y = x ? a : b; // if x is TRUE, 
               // y = a, else y = b

Assignment = assignment x = 22;

+= addition and assignment y += 3;        // y = y + 3

−= subtraction and assignment z −= 10;       // z = z − 10

*= multiplication and assignment x *= 4;        // x = x * 4

/= division and assignment y /= 10;       // y = y / 10

%= modulo and assignment x %= 4;        // x = x % 4

>>= bitwise right-shift and assignment x >>= 5;       // x = x >> 5

<<= bitwise left-shift and assignment x <<= 2;       // x = x << 2

&= bitwise AND and assignment y &= 15;       // y = y & 15

|= bitwise OR and assignment x |= y;        // x = x | y

^= bitwise XOR and assignment x ^= y;        // x = x ^ y

—cont'd
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Simple assignment uses the = operator. C code also allows for com-
pound assignment, that is, assignment after a simple operation such as 
addition (+=) or multiplication (*=). In compound assignments, the vari-
able on the left side is both operated on and assigned the result. C Code 
Example eC.7 shows these and other C operations. Binary values in the 
comments are indicated with the prefix “0b.”

  (a) y = (a > b) ? a : b; // parentheses not necessary, but makes it clearer
  (b) if (a > b) y = a;
        else         y = b;

C Code Example eC.6  (a) TERNARY OPERATOR, AND (b) EQUIVALENT  
if/else STATEMENT

C Code Example eC.7 OPERATOR EXAMPLES

Expression Result Notes

53 / 14 3 Integer division truncates

53 % 14 11 53 mod 14

0x2C && 0xE   // 0b101100 && 0b1110 1 Logical AND

0x2C || 0xE   // 0b101100 || 0b1110 1 Logical OR

0x2C & 0xE    // 0b101100 & 0b1110 0xC  (0b001100) Bitwise AND

0x2C | 0xE    // 0b101100 | 0b1110 0x2E (0b101110) Bitwise OR

0x2C ^ 0xE    // 0b101100 ^ 0b1110 0x22 (0b100010) Bitwise XOR

0xE << 2      // 0b1110 << 2 0x38 (0b111000) Left shift by 2

0x2C >> 3     // 0b101100 >> 3 0x5  (0b101) Right shift by 3

x = 14; 
x += 2;

x = 16

y = 0x2C;     // y = 0b101100  
y &= 0xF;     // y = y & 0b1111

y = 0xC (0b001100)

x = 14; y = 83; 
y = y + x++;

x = 15, y = 97 Increment x after using it

x = 14; y = 83; 
y = y + ++x;

x = 15, y = 98 Increment x before using it
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C.6  FUNCTION CALLS
Modularity is key to good programming. A large program is divided 
into smaller parts called functions that, similar to hardware modules, 
have well-defined inputs, outputs, and behavior. C Code Example eC.8 
shows the sum3 function. The function declaration begins with the 
return type, int, followed by the name, sum3, and the inputs enclosed 
within parentheses (int a, int b, int c). Curly braces {} enclose 
the body of the function, which may contain zero or more statements. 
The return statement indicates the value that the function should return 
to its caller; this can be viewed as the output of the function. A function 
can return only a single value.

// Return the sum of the three input variables
int sum3(int a, int b, int c) {
    int result = a + b + c;
    return result;
}

C Code Example eC.8 sum3 FUNCTION

After the following call to sum3, y holds the value 42.

int y = sum3(10, 15, 17);

Although a function may have inputs and outputs, neither is required. 
C Code Example eC.9 shows a function with no inputs or outputs. 
The keyword void before the function name indicates that nothing is 
returned. void between the parentheses indicates that the function has 
no input arguments.

// Print a prompt to the console
void printPrompt(void) {
    printf("Please enter a number from 1−3:\n");
}

C Code Example eC.9  FUNCTION printPrompt WITH NO INPUTS OR 
OUTPUTS

A function must be declared in the code before it is called. This may be 
done by placing the called function earlier in the file. For this reason, 
main is often placed at the end of the C file after all of the functions it 
calls. Alternatively, a function prototype can be placed in the program 
before the function is defined. The function prototype is the first line 

Functions are also referred to 
as  procedures. 

Nothing between the 
parentheses also indicates no 
input arguments. So, in this 
case, we could have written:

void printPrompt() 
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of the function; it declares the return type, function name, and function 
inputs. For example, the function prototypes for the functions in C Code 
Examples eC.8 and eC.9 are:

int sum3(int a, int b, int c);
void printPrompt(void);

C Code Example eC.10 shows how function prototypes are used. Even 
though the functions themselves are after main, the function prototypes 
at the top of the file allow them to be used in main.

With careful ordering of 
functions, prototypes may 
be unnecessary. However, 
they are unavoidable in 
certain cases, such as when 
function f1 calls f2 and f2 
calls f1. It is good style to 
place prototypes for all of a 
program’s functions near the 
beginning of the C file or in a 
header file. 

#include <stdio.h>

// function prototypes
int sum3(int a, int b, int c);
void printPrompt(void);

int main(void) {

   int y = sum3(10, 15, 20);

   printf("sum3 result: %d\n", y);
   printPrompt();
}

int sum3(int a, int b, int c) {
   int result = a + b + c;
   return result;
}

void printPrompt(void) {
   printf("Please enter a number from 1−3:\n");
}

Console Output
sum3 result: 45
Please enter a number from 1−3:

C Code Example eC.10 FUNCTION PROTOTYPES

The main function is always declared to return an int; this return 
value tells the operating system the reason for program termination. 
A zero indicates normal completion, while a nonzero value signals an 
error condition. If main reaches the end without encountering a return 
statement, it will automatically return 0. Most operating systems do not 
automatically inform the user of the value returned by the program.

C.7  CONTROL-FLOW STATEMENTS
C provides control-flow statements for conditionals and loops. 
Conditionals execute a statement only if a condition is met. A loop 
repeatedly executes a statement as long as a condition is met.

As with variable names, 
function names are case 
sensitive, cannot be any of 
C’s reserved words, may not 
contain special characters 
(except underscore _), and 
cannot start with a number. 
Typically, function names 
include a verb to indicate 
what they do.

Be consistent in how you 
capitalize your function and 
variable names so you don’t 
have to constantly look up 
the correct capitalization. 
Two common styles are to 
camelCase, in which the 
initial letter of each word 
after the first is capitalized 
like the humps of a camel 
(e.g., printPrompt), or to use 
underscores between words 
(e.g., print_prompt). We have 
unscientifically observed that 
reaching for the underscore 
key exacerbates carpal tunnel 
syndrome (my pinky finger 
twinges just thinking about 
the underscore!) and hence 
prefer camelCase. But the 
most important thing is to 
be consistent in style within 
your organization. 
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C . 7 . 1   Conditional Statements

If, if/else, and switch/case statements are conditional statements com-
monly used in high-level languages, including C.

If Statements

An if statement executes the statement immediately following it when the 
expression in parentheses is TRUE (i.e., nonzero). The general format is:

if (expression)
     statement

C Code Example eC.11 shows how to use an if statement in C. When 
the variable aintBroke is equal to 1, the variable dontFix is set to 1. A 
block of multiple statements can be executed by placing curly braces {} 
around the statements, as shown in C Code Example eC.12.

Curly braces, {}, are used to  
group zero or more statements 
into a compound statement 
or block. 

int dontFix = 0;

if (aintBroke = = 1)
    dontFix = 1;

C Code Example eC.11 IF STATEMENT

// If amt >= $2, prompt user and dispense candy
if (amt >= 2) {
   printf("Select candy.\n");
   dispenseCandy = 1;
}

C Code Example eC.12 IF STATEMENT WITH A BLOCK OF STATEMENTS

If/else Statements

If/else statements execute one of two statements depending on a condi-
tion, as shown below. When the expression in the if statement is TRUE, 
statement1 is executed. Otherwise, statement2 is executed.

if (expression)
   statement1
else
   statement2

C Code Example eC.6(b) gives an example if/else statement in C. The 
code sets y equal to a if a is greater than b; otherwise y = b.
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Switch/case Statements

Switch/case statements execute one of several statements depending on 
the conditions, as shown in the general format below.

switch (variable) {
   case (expression1): statement1 break;
   case (expression2): statement2 break;
   case (expression3): statement3 break;
   default: statement4
}

For example, if variable is equal to expression2, execution continues 
at statement2 until the keyword break is reached, at which point it 
exits the switch/case statement. If no conditions are met, the default 
executes.

If the keyword break is omitted, execution begins at the point 
where the condition is TRUE and then falls through to execute the 
remaining cases below it. This is usually not what you want and is a 
common error among beginning C programmers.

C Code Example eC.13 shows a switch/case statement that,  
depending on the variable option, determines the amount of money 
amt to be disbursed. A switch/case statement is equivalent to a series 
of nested if/else statements, as shown by the equivalent code in C Code 
Example eC.14.

// Assign amt depending on the value of option
switch (option) {
   case 1:    amt = 100; break;
   case 2:    amt = 50;    break;
   case 3:    amt = 20;    break;
   case 4:    amt = 10;    break;
   default:  printf("Error: unknown option.\n");
}

C Code Example eC.13 SWITCH/CASE STATEMENT

// Assign amt depending on the value of option
if          (option == 1)  amt = 100;
else if (option == 2)  amt = 50;
else if (option == 3)  amt = 20;
else if (option == 4)  amt = 10;
else printf("Error: unknown option.\n");

C Code Example eC.14 NESTED IF/ELSE STATEMENT
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C . 7 . 2   Loops

While, do/while, and for loops are common loop constructs used in 
many high-level languages, including C. These loops repeatedly execute 
a statement as long as a condition is satisfied.

While Loops

While loops repeatedly execute a statement until a condition is not met, 
as shown in the general format below.

while (condition)
  statement

The while loop in C Code Example eC.15 computes the factorial of 9 = 
9 × 8 × 7 × … × 1. Note that the condition is checked before executing 
the statement. In this example, the statement is a compound statement 
or block, so curly braces are required.

// Compute 9! (the factorial of 9)
int i = 1, fact = 1;

// Multiply the numbers from 1 to 9
while (i < 10) { // while loops check the condition first
   fact *= i;
   i++;
}

C Code Example eC.15 WHILE LOOP

Do/while Loops
Do/while loops are like while loops but the condition is checked only 
after the statement is executed once. The general format is shown 
below. The condition is followed by a semi-colon.

do
   statement
while (condition);

The do/while loop in C Code Example eC.16 queries a user to guess a 
number. The program checks the condition (if the user’s number is equal 
to the correct number) only after the body of the do/while loop executes 
once. This construct is useful when, as in this case, something must be 
done (e.g., the guess retrieved from the user) before the condition is 
checked. The scanf function, which is discussed in Section C.9.1, puts 
the value of the key pressed by a user into the variable guess.
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For Loops
For loops, like while and do/while loops, repeatedly execute a statement  
until a condition is not satisfied. However, for loops add support for a 
loop variable, which typically keeps track of the number of loop execu-
tions. The general format of the for loop is

for (initialization; condition; loop operation)
   statement

The initialization code executes only once, before the for loop 
begins. The condition is tested at the beginning of each iteration of the 
loop. If the condition is not TRUE, the loop exits. The loop operation 
executes at the end of each iteration. C Code Example eC.17 shows the 
factorial of 9 computed using a for loop.

// Query user to guess a number and check it against the correct number.
#define MAXGUESSES 3
#define CORRECTNUM 7

int guess, numGuesses = 0;
do {
   printf("Guess a number between 0 and 9. You have %d more guesses.\n",
              (MAXGUESSES–numGuesses));
   scanf("%d", &guess);       // Read user input
   numGuesses++;
} while ( (numGuesses < MAXGUESSES) & (guess != CORRECTNUM) );
// do loop checks the condition after the first iteration

if (guess == CORRECTNUM)
   printf("You guessed the correct number!\n");

C Code Example eC.16 DO/WHILE LOOP

// Compute 9!
int i; // loop variable
int fact = 1;

for (i = 1; i < 10; i++)
   fact *= i;

C Code Example eC.17 FOR LOOP

Whereas the while and do/while loops in C Code Examples eC.15 and 
eC.16 include code for incrementing and checking the loop variable i and 
numGuesses, respectively, the for loop incorporates those statements into its 
format. A for loop could be expressed equivalently, but less conveniently, as

initialization;
while (condition) {
    statement
    loop operation;
}
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SUMMARY
▸ Control-flow statements: C provides control-flow statements for 

conditional statements and loops.

▸ Conditional statements: Conditional statements execute a statement 
when a condition is TRUE. C includes the following conditional 
statements: if, if/else, and switch/case.

▸ Loops: Loops repeatedly execute a statement until a condition is 
FALSE. C provides while, do/while, and for loops.

C.8  MORE DATA TYPES
Beyond various sizes of integers and floating-point numbers, C includes 
other special data types, including pointers, arrays, strings, and struc-
tures. These data types are introduced in this section along with dynamic 
memory allocation.

C . 8 . 1   Pointers

A pointer is the address of a variable. C Code Example eC.18 shows 
how to use pointers. salary1 and salary2 are variables that can con-
tain integers, and ptr is a variable that can hold the address of an integer. 
The compiler will assign arbitrary locations in RAM for these variables,  
depending on the runtime environment. For the sake of concreteness, 
suppose this program is compiled on a 32-bit system with salary1 at 
addresses 0x70–73, salary2 at addresses 0x74–77, and ptr at 0x78–7B. 
Figure eC.3 shows memory and its contents after the program is executed.

In a variable declaration, a star (*) before a variable name indicates 
that the variable is a pointer to the declared type. In using a pointer vari-
able, the * operator dereferences a pointer, returning the value stored at 
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Figure eC.3 Contents of memory 
after C Code Example eC.18 
executes shown (a) by value and 
(b) by byte using little-endian 
memory
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Pointers are particularly useful when a function needs to modify a 
variable instead of just returning a value. Because functions can’t mod-
ify their inputs directly, a function can make the input a pointer to the 
variable. This is called passing an input variable by reference instead of 
by value, as shown in prior examples. C Code Example eC.19 gives an 
example of passing x by reference so that quadruple can modify the 
variable directly.

// Example pointer manipulations
int salary1, salary2; // 32-bit numbers
int *ptr;                     // a pointer specifying the address of an int variable

salary1 = 67500;          // salary1 = $67,500 = 0x000107AC
ptr = &salary1;            // ptr = 0x0070, the address of salary1
salary2 = *ptr + 1000; /* dereference ptr to give the contents of address 70 = $67,500,
                                    then add $1,000 and set salary2 to $68,500 */

C Code Example eC.18 POINTERS

// Quadruple the value pointed to by a
#include <stdio.h>

void quadruple(int *a) {

   *a = *a * 4;
}

int main(void) {
   int x = 5;
   printf("x before: %d\n", x);
   quadruple(&x);
   printf("x after: %d\n", x);
   return 0;
}

Console Output
x before: 5
x after: 20

C Code Example eC.19 PASSING AN INPUT VARIABLE BY REFERENCE

A pointer to address 0 is called a null pointer and indicates that the 
pointer is not actually pointing to meaningful data. It is written as NULL 
in a program.

the indicated memory address contained in the pointer. The & operator is 
pronounced “address of,” and it produces the memory address of the 
variable being referenced.

Dereferencing a pointer to a 
nonexistent memory location 
or an address outside of 
the range accessible by the 
program will usually cause a 
program to crash. The crash 
is often called a segmentation 
fault. 
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C . 8 . 2   Arrays

An array is a group of similar variables stored in consecutive addresses in 
memory. The elements are numbered from 0 to N − 1, where N is the 
length of the array. C Code Example eC.20 declares an array variable 
called scores that holds the final exam scores for three students. Memory 
space is reserved for three 32-bit integers, that is, 3 × 4 = 12 bytes. 
Suppose the scores array starts at address 0x40. The address of the 0th 
element (i.e., scores[0]) is 0x40, the first element is 0x44, and the second 
element is 0x48, as shown in Figure eC.4. In C, the array variable, in this 
case scores, is a pointer to the 0th element; in other words, scores contains  
the address of the 0th array element. It is the programmer’s responsibility  
not to access elements beyond the end of the array. C has no internal 
bounds checking, so a program that writes beyond the end of an array will 
compile fine but may stomp on other parts of memory when it runs.

Colloquially, the “0th” array 
element is also referred to as 
the “first” array element. 

Figure eC.4 scores array stored 
in memory
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int32_t scores[3];      // array of three 4-byte numbers

C Code Example eC.20 ARRAY DECLARATION

The elements of an array can be initialized either at declaration using curly 
braces {}, as shown in C Code Example eC.21, or individually in the body 
of the code, as shown in C Code Example eC.22. Each element of an array 
is accessed using brackets []. The contents of memory containing the array 
are shown in Figure eC.4. Array initialization using curly braces {} can be 
performed only at declaration and not afterward. for loops are commonly 
used to assign and read array data, as shown in C Code Example eC.23.

int32_t scores[3] = {93, 81, 97}; // scores[0] = 93; scores[1] = 81; scores[2] = 97;

C Code Example eC.21  ARRAY INITIALIZATION AT DECLARATION USING {}
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When an array is declared, the length must be constant so that the com-
piler can allocate the proper amount of memory. However, when the 
array is passed to a function as an input argument, the length need not 
be defined because the function only needs to know the address of the 
beginning of the array. C Code Example eC.24 shows how an array is 
passed to a function. The input argument arr is simply the address of 
the 0th element of an array. Often, the number of elements in an array 
is also passed as an input argument. In a function, an input argument 
of type int[] indicates that it is an array of integers. Arrays of any type 
may be passed to a function.

int32_t scores[3];

scores[0] = 93;
scores[1] = 81;
scores[2] = 97;

C Code Example eC.22 ARRAY INITIALIZATION USING ASSIGNMENT

// User enters 3 student scores into an array
int32_t scores[3];
int i, entered;

printf("Please enter the student's 3 scores.\n");
for (i = 0; i < 3; i++) {
   printf("Enter a score and press enter.\n");
   scanf("%d", &entered);
   scores[i] = entered;
}
printf("Scores: %d %d %d\n", scores[0], scores[1], scores[2]);

C Code Example eC.23 ARRAY INITIALIZATION USING A for LOOP

// Initialize a 5-element array, compute the mean, and print the result.
#include <stdio.h>

// Returns the mean value of an array (arr) of length len
float getMean(int arr[], int len) {
   int i;
   float mean, total = 0;

   for (i=0; i < len; i++)
      total += arr[i];

   mean = total / len;
   return mean;
}
int main(void) {
   int data[4] = {78, 14, 99, 27};

C Code Example eC.24 PASSING AN ARRAY AS AN INPUT ARGUMENT
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An array argument is equivalent to a pointer to the beginning of the 
array. Thus, getMean could also have been declared as

float getMean(int *arr, int len);

Although functionally equivalent, datatype[] is the preferred method 
for passing arrays as input arguments because it more clearly indicates 
that the argument is an array.

A function is limited to a single output, that is, return variable. 
However, by receiving an array as an input argument, a function can essen-
tially output more than a single value by changing the array itself. C Code 
Example eC.25 sorts an array from lowest to highest and leaves the result 
in the same array. The three function prototypes below are equivalent. The 
length of an array in a function declaration (i.e., int vals[100]) is ignored.

void sort(int *vals, int len);
void sort(int vals[], int len);
void sort(int vals[100], int len);

   float avg;

   avg = getMean(data, 4);

   printf("The average value is: %f.\n", avg);
}

Console Output
The average value is: 54.500000.

// Sort the elements of the array vals of length len from lowest to highest
void sort(int vals[], int len) {
   int i, j, temp;

   for (i = 0; i < len; i++) {
      for (j = i + 1; j < len; j++) {
         if (vals[i] > vals[j]) {
             temp = vals[i];
             vals[i] = vals[j];
             vals[j] = temp;
         }
      }
   }
}

C Code Example eC.25 PASSING AN ARRAY AND ITS LENGTH AS INPUTS

Arrays may have multiple dimensions. C Code Example eC.26 uses a 
two-dimensional array to store the grades across eight problem sets for 
ten students. Recall that initialization of array values using {} is allowed 
only at declaration.
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// Initialize 2D array at declaration
 int grades[10][8] = { {100,  107,  99,   101,  100,  104,  109,  117},
                                   {103,  101,  94,   101,  102,  106,  105,  110},
                                   {101,  102,  92,   101,  100,  107,  109,  110},
                                   {114,  106,  95,    101,  100,  102,  102,  100},
                                   {98,    105,  97,   101,  103,  104,  109,  109},
                                   {105,  103,  99,    101,  105,  104,  101,  105},
                                   {103,  101,  100,  101,  108,  105,  109,  100},
                                   {100,  102,  102,  101,  102,  101,  105,  102},
                                   {102,  106,  110,  101,  100,  102,  120,  103},
                                   {99,    107,  98,   101,  109,  104,  110,  108} };

C Code Example eC.26 TWO-DIMENSIONAL ARRAY INITIALIZATION

C Code Example eC.27 shows some functions that operate on the 2D 
grades array from C Code Example eC.26. Multidimensional arrays 
used as input arguments to a function must define all but the first 
dimension. Thus, the following two function prototypes are acceptable:

void print2dArray(int arr[10][8]);
void print2dArray(int arr[][8]);

#include <stdio.h>

// Print the contents of a 10  ×  8 array
void print2dArray(int arr[10][8]) {
  int i, j;

  for (i = 0; i < 10; i++) {          // for each of the 10 students
     printf("Row %d\n", i);
     for (j = 0; j < 8; j++) {
        printf("%d ", arr[i][j]); // print scores for all 8 problem sets
     }
     printf("\n");
  }
}

// Calculate the mean score of a 10  ×  8 array
float getMean(int arr[10][8]) {
   int i, j;
   float mean, total = 0;

   // get the mean value across a 2D array
   for (i = 0; i < 10; i++) {
      for (j = 0; j < 8; j++) {
         total += arr[i][j];           // sum array values
      }
   }
   mean = total / (10 * 8);
   printf("Mean is: %f\n", mean);

   return mean;
}

C Code Example eC.27 OPERATING ON MULTIDIMENSIONAL ARRAYS
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Note that because an array is represented by a pointer to the initial element, 
C cannot copy or compare arrays using the = or = = operators. Instead, you 
must use a loop to copy or compare each element one at a time.

C . 8 . 3   Characters

A character (char) is an 8-bit variable. It can be viewed either as a two’s 
complement number between −128 and 127 or as an ASCII code for a letter, 
digit, or symbol. ASCII characters can be specified as a numeric value (in dec-
imal, hexadecimal, etc.) or as a printable character enclosed in single quotes. 
For example, the letter A has the ASCII code 0x41, B = 0x42, etc. Thus “A” + 
3 is 0x44, or “D.” Table 6.2 lists the ASCII character encodings, and Table 
eC.4 lists characters used to indicate formatting or special characters. 
Formatting codes include carriage return (\r), newline (\n), horizontal tab 
(\t), and the end of a string (\0). \r is shown for completeness but is rarely 
used in C programs. \r returns the carriage (location of typing) to the begin-
ning (left) of the line, but any text that was there is overwritten. \n, instead, 
moves the location of typing to the beginning of a new line.3  The NULL 
character ('\0') indicates the end of a text string and is discussed next in 
Section C.8.4.

C . 8 . 4   Strings

A string is an array of characters used to store a piece of text of bounded 
but variable length. Each character is a byte representing the ASCII code 

3  Windows text files use \r\n to represent end-of-line while UNIX-based systems use \n, 
which can cause nasty bugs when moving text files between systems.

The term “carriage return” 
originates from typewriters 
that required the carriage, the 
contraption that holds the 
paper, to move to the right in 
order to allow typing to begin 
at the left side of the page.  
A carriage return lever, shown 
on the left in the figure below, 
is pressed so that the carriage 
would both move to the right 
and advance the paper by one 
line, called a line feed.

A Remington electric typewriter 
used by Winston Churchill.

http://cwr.iwm.org.uk/server/
show/conMediaFile.71979 

Table eC.4 Special characters

Special Character Hexadecimal Encoding Description

\r 0x0D carriage return

\n 0x0A new line

\t 0x09 tab

\0 0x00 terminates a string

\\ 0x5C backslash

\" 0x22 double quote

\' 0x27 single quote

\a 0x07 bell

http://cwr.iwm.org.uk/server/show/conMediaFile.71979
http://cwr.iwm.org.uk/server/show/conMediaFile.71979
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for that letter, number, or symbol. The size of the array determines the 
maximum length of the string, but the actual length of the string could 
be shorter. In C, the length of the string is determined by looking for the 
NULL terminator (ASCII value 0x00) at the end of the string.

C Code Example eC.28 shows the declaration of a 10-element  
character array called greeting that holds the string "Hello!" For 
concreteness, suppose greeting starts at memory address 0x50. Figure 
eC.5 shows the contents of memory from 0x50 to 0x59 holding the 
string "Hello!" Note that the string uses only the first seven elements 
of the array even though ten elements are allocated in memory.

char greeting[10] = "Hello!";

C Code Example eC.28 STRING DECLARATION

char *greeting = "Hello!";
printf("greeting: %s", greeting);

Console Output
greeting: Hello!

C Code Example eC.29 ALTERNATE STRING DECLARATION

C Code Example eC.29 shows an alternate declaration of the string 
greeting. The pointer greeting holds the address of the first element 
of a 7-element array composed of each of the characters in "Hello!"  
followed by the null terminator. The code also demonstrates how to 
print strings by using the %s (string) format code.

C strings are called null 
terminated or zero terminated 
because the length is 
determined by looking for a 
zero at the end. In contrast, 
languages such as Pascal 
use the first byte to specify 
the string length, up to a 
maximum of 255 characters. 
This byte is called the 
prefix byte and such strings 
are called P-strings. An 
advantage of null-terminated 
strings is that the length 
can be arbitrarily great. An 
advantage of P-strings is that 
the length can be determined 
immediately without 
having to inspect all of the 
characters of the string. 

Unlike primitive variables, a string cannot be set equal to another string 
using the equals operator, =. Each element of the character array must be 
individually copied from the source string to the target string. This is true 
for any array. C Code Example eC.30 copies one string, src, to another, 
dst. The sizes of the arrays are not needed because the end of the src string 
is indicated by the null terminator. However, dst must be large enough so 
that you don’t stomp on other data. strcpy and other string manipulation 
functions are available in C’s built-in libraries (see Section C.9.4).

// Copy the source string, src, to the destination string, dst
void strcpy(char *dst, char *src) {
   int i = 0;

   do {
       dst[i] = src[i];         // copy characters one byte at a time
   } while (src[i++]);        // until the null terminator is found
{

C Code Example eC.30 COPYING STRINGS
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C . 8 . 5   Structures

In C, structures are used to store a collection of data of various types. 
The general format of a structure declaration is

struct name {
   type1 element1;
   type2 element2;
   ...
};

struct is a keyword indicating that it is a structure; name is the structure 
tag name; and element1 and element2 are members of the structure. 
A structure may have any number of members. C Code Example eC.31 
shows how to use a structure to store contact information. The program 
then declares a variable c1 of type struct contact.
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Figure eC.5 The string 
"Hello!" stored in memory

struct contact {
   char name[30];
   int phone;
   float height; // in meters
};

struct contact c1;
strcpy(c1.name, "Ben Bitdiddle");
c1.phone = 7226993;
c1.height = 1.82;

C Code Example eC.31 STRUCTURE DECLARATION

Just like built-in C types, you can create arrays of structures and point-
ers to structures. C Code Example eC.32 creates an array of contacts.
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struct contact classlist[200];
classlist[0].phone = 9642025;

C Code Example eC.32 ARRAY OF STRUCTURES

It is common to use pointers to structures. C provides the member access 
operator –> to dereference a pointer to a structure and access a member 
of the structure. C Code Example eC.33 shows an example of declaring 
a pointer to a struct contact, assigning it to point to the 42nd ele-
ment of classlist from C Code Example eC.32, and using the member 
access operator to set a value in that element.

struct contact *cptr;
cptr = &classlist[42];
cptr –> height = 1.9; // equivalent to: (*cptr).height = 1.9;

C Code Example eC.33  ACCESSING STRUCTURE MEMBERS USING 
POINTERS AND ->

Structures can be passed as function inputs or outputs by value or by 
reference. Passing by value requires the compiler to copy the entire struc-
ture into memory for the function to access. This can require a large 
amount of memory and time for a big structure. Passing by reference  
involves passing a pointer to the structure, which is more efficient. The 
function can also modify the structure being pointed to rather than 
having to return another structure. C Code Example eC.34 shows 
two versions of the stretch function that makes a contact 2 cm taller. 
stretchByReference avoids copying the large structure twice.

struct contact stretchByValue(struct contact c) {
   c.height += 0.02;
   return c;
}
void stretchByReference(struct contact *cptr) {
   cptr −> height += 0.02;
}

int main(void) {

   struct contact George;

   George.height = 1.4; // poor fellow has been stooped over
   George = stretchByValue(George); // stretch for the stars
   stretchByReference(&George);       // and stretch some more
}

C Code Example eC.34 PASSING STRUCTURES BY VALUE OR BY NAME
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C . 8 . 6   typedef

C also allows you to define your own names for data types using the 
typedef statement. For example, writing struct contact becomes 
tedious when it is used often, so we can define a new type named contact 
and use it as shown in C Code Example eC.35.

typedef struct contact {
   char name[30];
   int phone;
   float height;   // in meters
} contact;           // defines contact as shorthand for "struct contact"

contact c1;          // now we can declare the variable as type contact

C Code Example eC.35 CREATING A CUSTOM TYPE USING typedef

typedef can be used to create a new type occupying the same amount 
of memory as a primitive type. C Code Example eC.36 defines byte and 
bool as 8-bit types. The byte type may make it clearer that the purpose 
of pos is to be an 8-bit number rather than an ASCII character. The bool 
type indicates that the 8-bit number is representing TRUE or FALSE. 
These types make a program easier to read than if one simply used char 
everywhere.

typedef unsigned char byte;
typedef char bool;
#define TRUE 1
#define FALSE 0

byte pos = 0x45;
bool loveC = TRUE;

C Code Example eC.36 typedef byte AND bool

C Code Example eC.37 illustrates defining a 3-element vector and a 
3 × 3 matrix type using arrays.

typedef double vector[3];
typedef double matrix[3][3];

vector a = {4.5, 2.3, 7.0};
matrix b = {{3.3, 4.7, 9.2}, {2.5, 4, 9}, {3.1, 99.2, 88}};

C Code Example eC.37 typedef vector AND matrix
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C . 8 . 7   Dynamic Memory Allocation*

In all examples thus far, variables have been declared statically; that is, 
their size is known at compile time. This can be problematic for arrays 
and strings of variable size because the array must be declared large 
enough to accommodate the largest size the program will ever see. An 
alternative is to dynamically allocate memory at run time when the 
actual size is known.

The malloc function from stdlib.h allocates a block of memory 
of a specified size and returns a pointer to it. If not enough memory is 
available, it returns a NULL pointer instead. For example, the following 
code allocates ten 16-bit integers (10 × 2 = 20 bytes). The sizeof oper-
ator returns the size of a type or variable in bytes.

// Dynamically allocate 20 bytes of memory
int16_t *data = malloc(10 * sizeof(int16_t));

C Code Example eC.38 illustrates dynamic allocation and dealloca-
tion. The program accepts a variable number of inputs, stores them in a 
dynamically allocated array, and computes their average. The amount of 
memory necessary depends on the number of elements in the array and 
the size of each element. For example, if an int is a 4-byte variable and 
ten elements are needed, 40 bytes are dynamically allocated. The free 
function deallocates the memory so that it could later be used for other 
purposes. Failing to deallocate dynamically allocated memory is called a 
memory leak and should be avoided.

// Dynamically allocate and deallocate an array using malloc and free
#include <stdlib.h>

// Insert getMean function from C Code Example eC.24.

int main(void) {
   int len, i;
   int *nums;

   printf("How many numbers would you like to enter? ");
   scanf("%d", &len);
   nums = malloc(len*sizeof(int));
   if (nums = = NULL) printf("ERROR: out of memory.\n");
   else {
      for (i = 0; i < 100; i++) {
         printf("Enter number: ");
         scanf("%d", &nums[i]);
      }
      printf("The average is %f\n", getMean(nums, len));
   }
   free(nums);
}

C Code Example eC.38  DYNAMIC MEMORY ALLOCATION  
AND DEALLOCATION
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C . 8 . 8   Linked Lists*

A linked list is a common data structure used to store a variable num-
ber of elements. Each element in the list is a structure containing one 
or more data fields and a link to the next element. The first element in 
the list is called the head. Linked lists illustrate many of the concepts of 
structures, pointers, and dynamic memory allocation.

C Code Example eC.39 describes a linked list for storing computer 
user accounts to accommodate a variable number of users. Each user 
has a user name, password, unique user identification number (UID), 
and a field indicating whether they have administrator privileges. Each 
element of the list is of type userL, containing all of this user informa-
tion along with a link to the next element in the list. A pointer to the 
head of the list is stored in a global variable called users, and is initially 
set to NULL to indicate that there are no users.

The program defines functions to insert, delete, and find a user and 
to count the number of users. The insertUser function allocates space 
for a new list element and adds it to the head of the list. The deleteUser 
function scans through the list until the specified UID is found and then 
removes that element, adjusting the link from the previous element to skip 
the deleted element and freeing the memory occupied by the deleted ele-
ment. The findUser function scans through the list until the specified UID 
is found and returns a pointer to that element, or NULL if the UID is not 
found. The numUsers function counts the number of elements in the list.

#include <stdlib.h>
#include <string.h>

typedef struct userL {
   char uname[80];         // user name
   char passwd[80];       // password
   int uid;                    // user identification number
   int admin;                 // 1 indicates administrator privileges
   struct userL *next;
} userL;

userL *users = NULL;

void insertUser(char *uname, char *passwd, int uid, int admin) {
   userL *newUser;

   newUser = malloc(sizeof(userL));    // create space for new user
   strcpy(newUser->uname, uname);       // copy values into user fields
   strcpy(newUser->passwd, passwd);
   newUser–>uid = uid;
   newUser–>admin = admin;
   newUser–>next = users;                     // insert at start of linked list
   users = newUser;
}

C Code Example eC.39 LINKED LIST
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void deleteUser(int uid) {    // delete first user with given uid
   userL *cur = users;
   userL *prev = NULL;

   while (cur != NULL) {
      if (cur−>uid = = uid) { // found the user to delete
         if (prev = = NULL) users = cur−>next;
         else prev−>next = cur−>next;
         free(cur);
         return; // done
      }
      prev = cur;         // otherwise, keep scanning through list
      cur = cur−>next;
   }
}

userL *findUser(int uid) {
   userL *cur = users;

   while (cur != NULL) {
      if (cur->uid = = uid) return cur;
      else cur = cur−>next;
   }
   return NULL;
}

int numUsers(void) {
   userL *cur = users;
   int count = 0;

   while (cur != NULL) {
      count++;
      cur = cur−>next;
   }
   return count;
}

SUMMARY
▸ Pointers: A pointer holds the address of a variable.

▸ Arrays: An array is a list of similar elements declared using square 
brackets [].

▸ Characters: char types can hold small integers or special codes for 
representing text or symbols.

▸ Strings: A string is an array of characters ending with the null termi-
nator 0x00.

▸ Structures: A structure stores a collection of related variables.

▸ Dynamic memory allocation: malloc is a built-in function in the 
standard library (stdlib.h) for allocating memory as the program 
runs. free deallocates the memory after use.

▸ Linked Lists: A linked list is a common data structure for storing a 
variable number of elements.
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C.9  STANDARD LIBRARIES
Programmers commonly use a variety of standard functions, such as 
printing and trigonometric operations. To save each programmer from 
having to write these functions from scratch, C provides libraries of  
frequently used functions. Each library has a header file and an associated  
object file, which is a partially compiled C file. The header file holds 
variable declarations, defined types, and function prototypes. The object 
file contains the functions themselves and is linked at compile time to 
create the executable. Because the library function calls are already 
compiled into an object file, compile time is reduced. Table eC.5 lists 
some of the most frequently used C libraries, and each is described 
briefly below.

C . 9 . 1   stdio

The standard input/output library stdio.h contains commands for  
printing to a console, reading keyboard input, and reading and writing 
files. To use these functions, the library must be included at the top of the 
C file:

#include <stdio.h>

Table eC.5 Frequently used C libraries

C Library Header File Description

stdio.h Standard input/output library. Includes functions 
for printing or reading to/from the screen or a 
file (printf, fprintf and scanf, fscanf) and to 
open and close files (fopen and fclose).

stdlib.h Standard library. Includes functions for random 
number generation (rand and srand), for 
dynamically allocating or freeing memory 
(malloc and free), terminating the program 
early (exit), and for conversion between strings 
and numbers (atoi, atol, and atof).

math.h Math library. Includes standard math functions 
such as sin, cos, asin, acos, sqrt, log, log10, 
exp, floor, and ceil.

string.h String library. Includes functions to compare, copy, 
concatenate, and determine the length of strings.
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Table eC.6 printf format codes for printing variables

Code Format

%d Decimal

%u Unsigned decimal

%x Hexadecimal

%o Octal

%f Floating-point number (float or double)

%e Floating-point number (float or double) in scientific 
notation (e.g., 1.56e7)

%c Character (char)

%s String (null-terminated array of characters)

// Simple print function
#include <stdio.h>

int num = 42;
int main(void) {
    printf("The answer is %d.\n", num);
}

Console Output:
The answer is 42.

C Code Example eC.40 PRINTING TO THE CONSOLE USING printf

printf

The print formatted function printf displays text to the console. Its 
required input argument is a string enclosed in quotes "". The string 
contains text and optional commands to print variables. Variables to 
be printed are listed after the string and are printed using format codes 
shown in Table eC.6. C Code Example eC.40 gives a simple example of 
printf.

Floating-point formats (floats and doubles) default to printing six 
digits after the decimal point. To change the precision, replace %f with 
%w.df, where w is the minimum width of the number and d is the num-
ber of decimal places to print. Note that the decimal point is included in 
the width count. In C Code Example eC.41, pi is printed with a total 
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of four characters, two of which are after the decimal point: 3.14. e is 
printed with a total of eight characters, three of which are after the dec-
imal point. Because it has only one digit before the decimal point, it is 
padded with three leading spaces to reach the requested width. c should 
be printed with five characters, three of which are after the decimal 
point. But it is too wide to fit, so the requested width is overridden while 
retaining the three digits after the decimal point.

// Print floating-point numbers with different formats
float pi = 3.14159, e = 2.7182, c = 2.998e8;
printf("pi = %4.2f\ne = %8.3f\nc = %5.3f\n", pi, e, c);

Console Output:
pi = 3.14
e    = 2.718
c      = 299800000.000

C Code Example eC.41  FLOATING POINT NUMBER FORMATS FOR 
PRINTING

Because % and \ are used in print formatting, to print these charac-
ters themselves, you must use the special character sequences shown in  
C Code Example eC.42.

// How to print % and \ to the console
printf("Here are some special characters: %% \\ \n");

Console Output:
Here are some special characters: % \

C Code Example eC.42 PRINTING % AND \ USING printf

scanf

The scanf function reads text typed on the keyboard. It uses format 
codes in the same way as printf. C Code Example eC.43 shows how to 
use scanf. When the scanf function is encountered, the program waits 
until the user types a value before continuing execution. The arguments 
to scanf are a string indicating one or more format codes and pointers 
to the variables where the results should be stored.
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// Read variables from the command line
#include <stdio.h>

int main(void)  
{
int a;
    char str[80];
    float f;

    printf("Enter an integer.\n");
    scanf("%d", &a);
    printf("Enter a floating-point number.\n");
    scanf("%f", &f);
    printf("Enter a string.\n");
    scanf("%s", str);    // note no & needed: str is a pointer
}

C Code Example eC.43  READING USER INPUT FROM THE KEYBOARD  
WITH scanf

File Manipulation
Many programs need to read and write files, either to manipulate data 
already stored in a file or to log large amounts of information. In C, 
the file must first be opened with the fopen function. It can then be 
read or written with fscanf or fprintf in a way analogous to reading 
and writing to the console. Finally, it should be closed with the fclose 
command.

The fopen function takes as arguments the file name and a print 
mode. It returns a file pointer of type FILE*. If fopen is unable to open 
the file, it returns NULL. This might happen when one tries to read a 
nonexistent file or write a file that is already opened by another pro-
gram. The modes are:

"w": Write to a file. If the file exists, it is overwritten.

"r": Read from a file.

"a": Append to the end of an existing file. If the file doesn’t exist, it is 
created.

C Code Example eC.44 shows how to open, print to, and close a 
file. It is good practice to always check whether the file was opened 
successfully and to provide an error message if it was not. The exit 
function will be discussed in Section C.9.2. The fprintf function is 
like printf but it also takes the file pointer as an input argument to 
know which file to write. fclose closes the file, ensuring that all of the 
information is actually written to disk and freeing up file system 
resources.

It is idiomatic to open a 
file and check whether 
the file pointer is NULL 
in a single line of code, as 
shown in C Code Example 
eC.44. However, you could 
just as easily separate the 
functionality into two lines:

fptr = fopen("result.txt", "w");
if (fptr == NULL)
 ... 
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#include <stdio.h>
int main(void) {
   FILE *fptr;
   int data;

   // read in data from input file
   if ((fptr = fopen("data.txt", "r")) == NULL) {
      printf("Unable to read data.txt\n");
      exit(1);
   }
   while (!feof(fptr)) { // check that the end of the file hasn't been reached
      fscanf(fptr, "%d", &data);
      printf("Read data: %d\n", data);

   }

   fclose(fptr);

}

data.txt
25 32 14 89

Console Output:
Read data: 25
Read data: 32
Read data: 14
Read data: 89

C Code Example eC.45 READING INPUT FROM A FILE USING fscanf

File Manipulation
Many programs need to read and write files, either to manipulate data 
already stored in a file or to log large amounts of information. In C, 
the file must first be opened with the fopen function. It can then be 
read or written with fscanf or fprintf in a way analogous to reading 
and writing to the console. Finally, it should be closed with the fclose 
command.

The fopen function takes as arguments the file name and a print 
mode. It returns a file pointer of type FILE*. If fopen is unable to open 
the file, it returns NULL. This might happen when one tries to read a 
nonexistent file or write a file that is already opened by another pro-
gram. The modes are:

"w": Write to a file. If the file exists, it is overwritten.

"r": Read from a file.

"a": Append to the end of an existing file. If the file doesn’t exist, it is 
created.

C Code Example eC.44 shows how to open, print to, and close a 
file. It is good practice to always check whether the file was opened 
successfully and to provide an error message if it was not. The exit 
function will be discussed in Section C.9.2. The fprintf function is 
like printf but it also takes the file pointer as an input argument to 
know which file to write. fclose closes the file, ensuring that all of the 
information is actually written to disk and freeing up file system 
resources.

It is idiomatic to open a 
file and check whether 
the file pointer is NULL 
in a single line of code, as 
shown in C Code Example 
eC.44. However, you could 
just as easily separate the 
functionality into two lines:

fptr = fopen("result.txt", "w");
if (fptr == NULL)
 ... 

// Write "Testing file write." to result.txt
#include <stdio.h>
#include <stdlib.h>

int main(void) {
    FILE *fptr;

    if((fptr = fopen("result.txt", "w")) == NULL) {
       printf("Unable to open result.txt for writing.\n");
       exit(1); // exit the program indicating unsuccessful execution
    }
    fprintf(fptr, "Testing file write.\n");
    fclose(fptr);
}

C Code Example eC.44 PRINTING TO A FILE USING fprintf

C Code Example eC.45 illustrates reading numbers from a file named 
data.txt using fscanf. The file must first be opened for reading. The 
program then uses the feof function to check whether it has reached the 
end of the file. As long as the program is not at the end, it reads the next 
number and prints it to the screen. Again, the program closes the file at 
the end to free up resources.
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Other Handy stdio Functions

The sprintf function prints characters into a string, and sscanf reads 
variables from a string. The fgetc function reads a single character 
from a file, while fgets reads a complete line into a string.

fscanf is rather limited in its ability to read and parse complex 
files, so it is often easier to fgets one line at a time and then digest that 
line using sscanf or with a loop that inspects characters one at a time 
using fgetc.

C . 9 . 2   stdlib

The standard library stdlib.h provides general-purpose functions, 
including random-number generation (rand and srand), dynamic mem-
ory allocation (malloc and free, already discussed in Section C.8.7), 
exiting the program early (exit), and number format conversions. To 
use these functions, add the following line at the top of the C file.

#include <stdlib.h>

rand and srand
rand returns a pseudo-random integer. Pseudo-random numbers have 
the statistics of random numbers but follow a deterministic pattern 
starting with an initial value called the seed. To convert the number to 
a particular range, use the modulo operator (%) as shown in C Code 
Example eC.46 for a range of 0 to 9. The values x and y will be random 
but they will be the same each time this program runs. Sample console 
output is given below the code.

#include <stdlib.h>
int x, y;

x = rand();           // x = a random integer
y = rand() % 10;    // y = a random number from 0 to 9
printf("x = %d, y = %d\n", x, y);

Console Output:
x = 1481765933, y = 3

C Code Example eC.46 RANDOM NUMBER GENERATION USING rand

A programmer creates a different sequence of random numbers each 
time a program runs by changing the seed. This is done by calling the 
srand function, which takes the seed as its input argument. As shown in 
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C Code Example eC.47, the seed itself must be random, so a typical C 
program assigns it by calling the time function, which returns the cur-
rent time in seconds.

For historical reasons, the 
time function usually returns 
the current time in seconds 
relative to January 1, 1970 
00:00 UTC. UTC stands 
for Coordinated Universal 
Time, which is the same 
as Greenwich Mean Time 
(GMT). This date is just 
after the UNIX operating 
system was created by a 
group at Bell Labs, including 
Dennis Ritchie and Brian 
Kernighan, in 1969. Similar 
to New Year’s Eve parties, 
some UNIX enthusiasts hold 
parties to celebrate significant 
values returned by time. 
For example, on February 1, 
2009 at 23:31:30 UTC, time 
returned 1,234,567,890. In 
the year 2038, 32-bit UNIX 
clocks will overflow into the 
year 1901. 

// Produce a different random number each run
#include <stdlib.h>
#include <time.h>           // needed to call time()

int main(void) {

   int x;

   srand(time(NULL));     // seed the random number generator
   x = rand() % 10;           // random number from 0 to 9
   printf("x = %d\n", x); 
}

C Code Example eC.47  SEEDING THE RANDOM NUMBER GENERATOR 
USING srand

exit

The exit function terminates a program early. It takes a single argu-
ment that is returned to the operating system to indicate the reason for 
termination. 0 indicates normal completion, while nonzero conveys an 
error condition.

Format Conversion: atoi, atol, atof
The standard library provides functions for converting ASCII strings to inte-
gers or doubles using atoi and atof, as shown in C Code Example eC.48. 
This is particularly useful when reading in mixed data (a mix of strings and 
numbers) from a file or when processing numeric command line arguments, 
as described in Section C.10.3.

// Convert ASCII strings to ints and floats
#include <stdlib.h>

int main(void) {
   int x;
   double z;

   x = atoi("42");
   z = atof("3.822");

   printf("x = %d\tz = %f\n", x, z);
}

Console Output:
x = 42 z = 3.822000

C Code Example eC.48 FORMAT CONVERSION
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C . 9 . 3   math

The math library math.h provides commonly used math functions such 
as trigonometry functions, square root, and logs. C Code Example eC.49 
shows how to use some of these functions. To use math functions, place 
the following line in the C file:

#include <math.h>

// Example math functions
#include <stdio.h>
#include <math.h>

int main(void) {
   float a, b, c, d, e, f, g, h;

   a = cos(0);                // a = 1, note: the input argument is in radians
   b = 2 * acos(0);         // b = pi (acos means arc cosine)
   c = sqrt(144);           // c = 12
   d = exp(2);                // d = e^2 = 7.389056
   e = log(7.389056);     // e = 2 (natural logarithm, base e)
   f = log10(1000);        // f = 3 (log base 10)
   g = floor(178.567);   // g = 178, rounds to next lowest whole number
   h = pow(2, 10);          // h = 2^10 (i.e., 2 raised to the 10th power)

   printf("a = %.0f, b = %f, c = %.0f, d = %.0f, e = %.2f, f = %.0f, g = %.2f, h = %.2f\n",
                a, b, c, d, e, f, g, h);
}

Console Output:
a = 1, b = 3.141593, c = 12, d = 7, e = 2.00, f = 3, g = 178.00, h = 1024.00

C Code Example eC.49 MATH FUNCTIONS

C . 9 . 4   string

The string library string.h provides commonly used string manipula-
tion functions. Key functions include:

// Copy src into dst and return dst
char *strcpy(char *dst, char *src);

// Concatenate (append) src to the end of dst and return dst
char *strcat(char *dst, char *src);

// Compare two strings. Return 0 if equal, nonzero otherwise
int strcmp(char *s1, char *s2);

// Return the length of str, not including the null termination
int strlen(char *str);
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C.10  COMPILER AND COMMAND LINE OPTIONS
Although we have introduced relatively simple C programs, real-world 
programs can consist of tens or even thousands of C files to enable mod-
ularity, readability, and multiple programmers. This section describes 
how to compile a program spread across multiple C files and shows how 
to use compiler options and command line arguments.

C . 1 0 . 1   Compiling Multiple C Source Files

Multiple C files are compiled into a single executable by listing all file 
names on the compile line as shown below. Remember that the group of 
C files still must contain only one main function, conventionally placed 
in a file named main.c.

gcc   main.c   file2.c   file3.c

C . 1 0 . 2   Compiler Options

Compiler options allow the programmer to specify such things as out-
put file names and formats, optimizations, etc. Compiler options are 
not standardized, but Table eC.7 lists ones that are commonly used. 
Each option is typically preceded by a dash (-) on the command line, as 
shown. For example, the “-o” option allows the programmer to specify 
an output file name other than the a.out default. A plethora of options 
exist; they can be viewed by typing gcc --help at the command line.

Table eC.7 Compiler options

Compiler Option Description Example

-o outfile Specifies output file name gcc -o hello hello.c

-S Create assembly language output file (not executable) gcc -S hello.c  
this produces hello.s

-v Verbose mode—prints the compiler results and processes  
as compilation completes

gcc -v hello.c

-Olevel Specify the optimization level (level is typically 0  
through 3), producing faster and/or smaller code at the 
expense of longer compile time

gcc -O3 hello.c

--version List the version of the compiler gcc –version

--help List all command line options gcc --help

-Wall Print all warnings gcc -Wall hello.c
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C . 1 0 . 3   Command Line Arguments

Like other functions, main can also take input variables. However, 
unlike other functions, these arguments are specified at the command 
line. As shown in C Code Example eC.50, argc stands for argument 
count, and it denotes the number of arguments on the command line. 
argv stands for argument vector, and it is an array of the strings found 
on the command line. For example, suppose the program in C Code 
Example eC.50 is compiled into an executable called testargs. When 
the lines below are typed at the command line, argc has the value 4, 
and the array argv has the values {"./testargs", "arg1", "25", 
"lastarg!"}. Note that the executable name is counted as the 0th (i.e., 
left-most) argument. The console output after typing this command is 
shown below C Code Example eC.50.

gcc -o testargs testargs.c
./testargs arg1 25 lastarg!

Programs that need numeric arguments may convert the string argu-
ments to numbers using the functions in stdlib.h.

C.11  COMMON MISTAKES
As with any programming language, you are almost certain to make 
errors while you write nontrivial C programs. Below are descriptions of 
some common mistakes made when programming in C. Some of these 
errors are particularly troubling because they compile but do not func-
tion as the programmer intended.

// Print command line arguments

#include <stdio.h>

int main(int argc, char *argv[]) {
   int i;

   for (i = 0; i < argc; i++)
      printf("argv[%d] = %s\n", i, argv[i]);
}

Console Output
argv[0] = ./testargs
argv[1] = arg1
argv[2] = 25
argv[3] = lastarg!

C Code Example eC.50 COMMAND LINE ARGUMENTS
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Erroneous Code
int a;
printf("Enter an integer:\t");
scanf("%d", a); // missing & before a

Corrected Code
int a;
printf("Enter an integer:\t");
scanf("%d", &a); 

C Code Mistake eC.1 MISSING & IN scanf

Erroneous Code
if (x = 1) // always evaluates as TRUE
   printf("Found!\n");

Corrected Code
if (x = = 1)
   printf("Found!\n"); 

C Code Mistake eC.2 USING = INSTEAD OF = = FOR COMPARISON

Erroneous Code
int array[10];
array[10] = 42;       // index is 0−9

Corrected Code
int array[10];
array[9] = 42; 

C Code Mistake eC.3 INDEXING PAST LAST ELEMENT OF ARRAY

Erroneous Code
// replaces NUM with "= 4" in code
#define NUM = 4

Corrected Code
#define NUM 4 

C Code Mistake eC.4 USING = IN #define STATEMENT

Erroneous Code
int i;
if (i = = 10) // i is uninitialized
   ...

Corrected Code
int i = 10;
if (i = = 10)
   ... 

C Code Mistake eC.5 USING AN UNINITIALIZED VARIABLE

Erroneous Code
#include "myfile.h"

Corrected Code
#include "othercode\myfile.h" 

C Code Mistake eC.6  NOT INCLUDING PATH OF USER-CREATED  
HEADER FILES

Debugging skills are acquired 
with practice, but here are a 
few hints.
● Fix bugs starting with the 

first error indicated by 
the compiler. Later errors 
may be downstream effects 
of this error. After fixing 
that bug, recompile and 
repeat until all bugs (at 
least those caught by the 
compiler!) are fixed.

● When the compiler says 
a valid line of code is 
in error, check the code 
above it (i.e., for missing 
semicolons or braces).

● When needed, split up 
complicated statements 
into multiple lines.

● Use printf to output 
intermediate results.

● When a result doesn’t 
match expectations, start 
debugging the code at the 
first place it deviates from 
expectations.

● Look at all compiler 
warnings. While some 
warnings can be ignored, 
others may alert you to 
more subtle code errors 
that will compile but not 
run as intended. 
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Erroneous Code
char x = 'd';
...
switch (x) {
   case 'u': direction = 1;
   case 'd': direction = 2;
   case 'l': direction = 3;
   case 'r': direction = 4;
   default:  direction = 0;
}
// direction = 0

Corrected Code
char x = 'd';
...
switch (x) {
   case 'u': direction = 1; break;
   case 'd': direction = 2; break;
   case 'l': direction = 3; break;
   case 'r': direction = 4; break;
   default:  direction = 0;
}
// direction = 2 

C Code Mistake eC.8 FORGETTING break IN A switch/case STATEMENT

Erroneous Code
if (ptr == NULL) // missing curly braces
   printf("Unable to open file.\n");
   exit(1);         // always executes

Corrected Code
if (ptr == NULL) {
   printf("Unable to open file.\n");
   exit(1);
} 

C Code Mistake eC.9 MISSING CURLY BRACES {}

Erroneous Code
int main(void) {
   test();
}

void test(void) {
  ...
}

Corrected Code
void test(void) {
   ...
}
int main(void) {
   test();
} 

C Code Mistake eC.10 USING A FUNCTION BEFORE IT IS DECLARED

Erroneous Code
char x = !5;          // logical NOT:  x = 0
char y = 5||2;      // logical OR:     y = 1
char z = 5 && 2;    // logical AND:  z = 1

Corrected Code
char x = ~5;    // bitwise NOT:  x = 0b11111010
char y = 5|2; // bitwise OR:    y = 0b00000111
char z = 5   & 2; // logical AND:  z = 0b00000000 

C Code Mistake eC.7  USING LOGICAL OPERATORS (!, ||, &&) INSTEAD  
OF BITWISE (~, |, &)
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Erroneous Code
int x = 5;      // global declaration of x
int test(void) {
   int x = 3;   // local declaration of x
   ...
}

Corrected Code
int x = 5;     // global declaration of x
int test(void) {
   int y = 3;   // local variable is y
   ...
} 

C Code Mistake eC.11  DECLARING A LOCAL AND GLOBAL VARIABLE 
WITH THE SAME NAME

Erroneous Code
int scores[3];
scores = {93, 81, 97}; // won't compile

Corrected Code
int scores[3] = {93, 81, 97}; 

C Code Mistake eC.12  TRYING TO INITIALIZE AN ARRAY WITH {} AFTER 
DECLARATION

Erroneous Code
int scores[3] = {88, 79, 93};
int scores2[3];
scores2 = scores;

Corrected Code
int scores[3] = {88, 79, 93};
int scores2[3];
for (i = 0; i < 3; i++)
   scores2[i] = scores[i]; 

C Code Mistake eC.13 ASSIGNING ONE ARRAY TO ANOTHER USING =

Erroneous Code
int num;
do {
   num = getNum();
} while (num < 100) // missing ;

Corrected Code
int num;
do {
   num = getNum();
} while (num < 100); 

C Code Mistake eC.14  FORGETTING THE SEMI-COLON AFTER A do/while 
LOOP

Erroneous Code
for (i=0, i < 200, i++)
   ...

Corrected Code
for (i = 0; i < 200; i++)
   ... 

C Code Mistake eC.15  USING COMMAS INSTEAD OF SEMICOLONS IN for 
LOOP
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This appendix has focused on using C on a system such as a per-
sonal computer. Chapter 9 (available as a web supplement) describes 
how C is used to program SparkFun’s RED-V RedBoard—based on 
a RISC-V microcontroller—that can be used in embedded systems. 
Microcontrollers are usually programmed in C because the language 
provides nearly as much low-level control of the hardware as assembly 
language, yet is much more succinct and faster to write.

Erroneous Code
// integer (truncated) division occurs when
// both arguments of division are integers
float x = 9 / 4; // x = 2.0

Corrected Code
// at least one of the arguments of  
// division must be a float to  
// perform floating-point division
float x = 9.0 / 4; // x = 2.25 

C Code Mistake eC.16  INTEGER DIVISION INSTEAD OF FLOATING-POINT 
DIVISION

Erroneous Code
int *y = 77;

Corrected Code
int x, *y = &x;
*y = 77; 

C Code Mistake eC.17 WRITING TO AN UNINITIALIZED POINTER

A common beginner error is to write an entire program (usually with little modularity) 
and expect it to work perfectly the first time. For nontrivial programs, writing modular 
code and testing the individual functions along the way are essential. Debugging becomes 
exponentially harder and more time-consuming with complexity.

Another common error is lacking expectations. When this happens, the programmer can 
only verify that the code produces a result, not that the result is correct. Testing a program 
with known inputs and expected results is critical in verifying functionality. 

C Code Mistake eC.18 GREAT EXPECTATIONS (OR LACK THEREOF)
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An insider’s tale of the development of several generations of Intel’s 
Pentium chips, told by one of the leaders of the project. For those con-
sidering a career in the field, this book offers views into the manage-
ment of huge design projects and a behind-the-scenes look at one of the 
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is the book for you.
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the story is still a page-turner and the insights on project management 
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A reference showing how to design circuits with VHDL.

SystemVerilog IEEE Standard (IEEE STD 1800).
The IEEE standard for the SystemVerilog Hardware Description 
Language; last updated in 2019. Available at ieeexplore.ieee.org.

VHDL IEEE Standard (IEEE STD 1076).
The IEEE standard for VHDL; last updated in 2017. Available at  
ieeexplore.ieee.org.

Wakerly J., Digital Design: Principles and Practices, 5th ed., Pearson, 
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reference book.
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0, 5–6, 20. See also LOW, FALSE
1, 5–6, 20. See also HIGH, TRUE
32-bit datapath, 394
32-bit instructions, 332
64-bit architecture, 373
74xx series logic, 543.e1–2

parts
2:1 mux (74157), 543.e4f
3:8 decoder (74138), 543.e4f
4:1 mux (74153), 543.e4f
AND (7408), 543.e3f
AND3 (7411), 543.e3f
AND4 (7421), 543.e3f
counter (74161, 74163),  

543.e4f
FLOP (7474), 543.e3f
NAND (7400), 543.e3f
NOR (7402), 543.e3f
NOT (7404), 543.e3f
OR (7432), 543.e3f
register (74377), 543.e4f
tristate buffer (74244), 543.e4f
XOR (7486), 543.e3f

#define, 545.e5–6
#include, 545.e6–7. See also Standard 

libraries

A

ABI. See Application Binary Interface 
(ABI)

Abstraction, 2–3
digital. See Digital abstraction

Accumulator, 372
Active low, 72–73
A/D conversion, 542.e37–39
Ad hoc testing, 464
ADCs. See Analog-to-digital converters 

(ADCs)
add instruction, 301, 444, 472–473
Adders, 237–244

carry propagate, 238
carry-lookahead, 239–241
full, 238
half, 238
HDL for, 181–182, 198b, 461b
prefix, 241–243
ripple-carry, 238–239

Addition, 12f, 13b, 16b, 237–244, 301b. 
See also Adders

binary, 12–13
floating point, 261
signed binary, 13–17

Address. See also Memory
physical, 521, 521f
translation, 523–524
virtual, 521. See also Virtual  

memory
Addressing modes, RISC-V, 341–342

base, 341
immediate, 341
PC-relative, 341–342
register, 341

Advanced Micro Devices (AMD),  
300

Advanced microarchitecture, 468–482
branch prediction. See Branch prediction
deep pipelines. See Deep pipelines
heterogeneous multiprocessors. See 

Heterogeneous multiprocessors
homogeneous multiprocessors. See 

Homogeneous multiprocessors
micro-operations. See Microoperations
multiprocessors. See Multiprocessors
multithreading. See Multithreading
out-of-order processor. See Out-of-

order processor
register renaming. See Register 

renaming
single instruction multiple data. See 

Single instruction multiple 
data (SIMD)

superscalar processor. See 
Superscalar processor

AHB. See Advanced High-performance 
Bus (AHB)

AHB-Lite bus, 485
Altera FPGA, 278
ALU. See Arithmetic/logical unit (ALU)
ALU Decoder, 408–409, 409t
ALUControl, 401–402, 457–458
ALUOp, 408
ALUResult, 418
ALUSrc, 404
AMAT. See Average memory access time 

(AMAT)
AMBA. See Advanced Microcontroller 

Bus Architecture (AMBA)
AMD. See Advanced Micro Devices (AMD)

Note: Page numbers followed by “f,” “t,” and “b” refer to figures, tables, and boxes, respectively; page numbers preceded by “e” 
refer to online material.
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AMD64, 373
Amdahl, Gene, 504
Amdahl’s Law, 505
American Standard Code for 

Information Interchange (ASCII), 
545.e8–9, 545.e27–28

Analog I/O, 542.e31–39
A/D conversion, 542.e37–39
D/A conversion, 542.e31–34
pulse-width modulation (PWM), 

542.e34–37
Analog-to-digital converters (ADCs), 

542.e31, 542.e37–39
Analytical engine, 5
and instruction, 309
AND gate, 18–19, 177b

chips (7408, 7411, 7421), 543.e3f
truth table, 18f, 20f
using CMOS transistors, 31

AND-OR (AO) gate, 45
Anode, 25–26
Antidependence, 475
Application-specific integrated circuits 

(ASICs), 543.e9
Architectural state, 344, 369

for RISC-V, 393–394
Architecture, 299

assembly language, 300–308
instructions, 301–302
operands, 302–308

compiling, assembling, and loading, 
344–355

assembling, 350–353
compilation, 348–350
linking, 353–355
loading, 355
memory map, 344–346

evolution of RISC-V architecture, 
363–366

comparison of RISC-V and ARM 
architectures, 365–366

comparison of RISC-V and MIPS 
architectures, 365

RISC-V base instruction sets and 
extensions, 364–365

machine language, 332–344
addressing modes, 341–342
immediate encodings, 340–341
I-type instruction format, 334–336
interpreting, 342–343
R-type instruction format, 332–334
S/B-type instruction format, 

336–338

stored program, 343–344
U/J-type instruction format, 338–340

odds and ends, 355–363
compressed instructions, 362–363
endianness, 355–356
exceptions, 356–360
floating-point instructions, 

361–362
signed and unsigned instructions, 

360–361
programming, 308–332

arrays, 317–320
branching, 311–313
conditional statements, 313–315
function calls, 320–330
getting loopy, 315–317
logical and arithmetic 

instructions, 308–311
memory, 306–308
pseudoinstructions, 330–332

x86 architecture, 366–374
big picture, 373–374
instruction encoding, 371–372
instructions, 369
operands, 367–368
peculiarities, 372–373
registers, 366–367
status flags, 369

Arguments, 320, 545.e24
pass by reference, 545.e22
pass by value, 545.e22

Arithmetic
C operators, 545.e11–15
circuits, 237–256
HDL operators, 183b
RISC-V instructions, 309

Arithmetic/logical unit (ALU), 247–251
implementation of, 247–248
in processor, 401–402, 409b

Arrays, 317–319, 545.e23–27
accessing, 316b, 545.e23
bytes and characters, 317–320
comparison or assignment of,  

545.e27–28
declaration, 319b, 545.e23
indexing, 317, 545.e23–27
initialization, 545.e23b–e24b,  

545.e24b, 545.e25
as input argument, 545.e24b–25b, 

545.e24
multi-dimensional, 545.e25–26

ASCII. See American Standard Code for 
Information Interchange (ASCII)

ASICs. See Application-specific 
integrated circuits (ASICs)

Assembler, 344, 350–351
Assembler directives, 346–348
Assembling, 344–355
Assembly language, RISC-V, 300–332

instructions, 301–302
operands, 302–308
translating high-level code to, 303–332
translating machine language to, 

342b–343b
Assembly language, x86. See x86
Associativity

in Boolean algebra, 60, 61t
in caches, 505–511

Astable circuits, 117b
Asymmetric multiprocessors. See 

Heterogeneous multiprocessors
Asynchronous circuits, 120–121
Asynchronous resettable flip-flops 

definition, 114
HDL, 193b

Asynchronous serial link, 542.e24. See 
also Universal Asynchronous 
Receiver Transmitter (UART)

Average memory access time (AMAT), 
503–505

B

B-type instruction format. See S/B-type 
instruction format

Babbage, Charles, 5
Base addressing, 341
Baud rate, 542.e24–25
BCD. See Binary coded decimal (BCD)
Behavioral modeling, 188
Benchmarks, 397
beq instruction. See Branch if equal 

(beq)
bge instruction. See Branch if greater 

than or equal (bge)
Biased exponent, 258–259
Big-endian memory, 355–356, 356f
Big-endian order in HDL, 176
Binary addition, 12–13. See also Adders; 

Addition
Binary coded decimal (BCD), 260b
Binary encoding, 127–128

for divide-by-3 counter, 129t
for traffic light FSM, 133
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Binary numbers
signed, 13–17
unsigned, 7–9

Binary to decimal conversion, 8b, 9f
Binary to hexadecimal conversion, 10b
Bipolar junction transistors, 24
Bipolar motor drive, 542.e61f
Bipolar signaling, 542.e25
Bipolar stepper motor, 542.e59f,  

542.e60–63
AIRPAX LB82773-M1, 542.e62f
direct drive current, 542.e62f

Bistable element, 107–108
Bit, 6

dirty, 519
least significant, 11, 12f
most significant, 11, 12f
sign, 13–14
use, 515–516
valid, 509

Bit cells, 267
DRAM, 268–269
ROM, 268
SRAM, 269

Bit swizzling, 186
Bitline, 267
Bitwise operators, 175–176
Block, 505
Block offset, 513–514
Block size (b), 505–506
Blocking and nonblocking assignments, 

197, 203–207
blt instruction. See Branch if less than (blt)
BlueSMiRF silver module, 542.e53–54
Bluetooth wireless communication,  

542.e53–54
BlueSMiRF silver module, 542.e53–54
classes,  542.e53t

bne instruction. See Branch if not equal 
(bne)

Boole, George, 6
Boolean algebra, 58–64

axioms, 59
equation simplification, 63–64
theorems, 59–62

Boolean equations, 56–58
product-of-sums (POS) form, 58
sum-of-products (SOP) form, 56–58

Boolean logic, 6. See also Boolean 
algebra; Logic gates

Boolean theorems, 59–62
associativity, 60
combining, 60

commutativity, 60
complements, 60
consensus, 60
covering, 60
De Morgan’s, 61
distributivity, 60
idempotency, 60
identity, 59
involution, 60
null element, 59–60

Branch if equal (beq), 311
Branch if greater than or equal (bge), 

311, 316b
Branch if less than (blt), 360
Branch if not equal (bne), 311–312
Branch instructions, 311
Branch misprediction penalty, 451, 470
Branch prediction, 470–472
Branch target address (BTA), 337,  

430–431, 432f
Branch target buffer, 470–471
Branching, 311–313

conditional, 311–312
unconditional, see Jump

Breadboards, 543.e20
BTA. See Branch target address (BTA)
Bubble, 18, 61–62

pushing, 61–62, 67–68
Bubble, in pipeline, 448
Buffers, 18

lack of, 115
tristate, 72, 73

Bugs, 173–174
in C code, 545.e44–48

Bus, 54
tristate, 73f

Bypassing, 446. See also Forwarding
Byte, 11–12, 317–320. See also 

Characters
least significant, 11
most significant, 11

Byte offset, 508
Byte-addressable memory, 306–307

big-endian, 355
little-endian, 355

C

C programming, 545.e1–48
common mistakes. See Common 

mistakes in C

conditional statements. See 
Conditional statements

control-flow statements. See Control 
flow statements

data types. See Data types
executing a program, 545.e3
function calls. See Function calls
loops. See Loops
operators. See Operators
simple program, 545.e3
standard libraries. See Standard 

libraries
variables. See Variables in C

Caches, 505–520
address fields

block offset, 513
byte offset, 508
set bits, 508
tag, 508

advanced design, 516–520
multiple level, 516–518
organizations, 515–516

direct mapped, 507–511
fully associative, 512
multi-way set associative, 

511–512
parameters

block size (b), 513–514
capacity (C), 505
degree of associativity (N), 505
number of blocks (B), 505, 

512–514
number of sets (S), 505

performance of
capacity, 518
compulsory, 518
conflict, 512, 518
hit, 502
hit rate, 503–505
miss, 502, 518
miss rate, 503–505
miss rate vs. cache parameters, 

518–519
penalty, 513
reducing, 518–519

replacement policy, 527–529
status bits

dirty bit (D), 528
use bit (U), 528–529
valid bit (V), 525

write policy, 519–520
write-back, 519, 519b
write-through, 519, 519b
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CAD. See Computer-aided design (CAD)
Callee, 320
Callee save rule, 326
Callee-saved registers, 325
Caller save rule, 326
Caller-saved registers, 325
Canonical form. See Sum-of-products 

(SOP) form; Product-of-sums 
(POS) form

Capacitors, 26
Capacity, of cache, 505
Capacity miss, 518
Carry propagate adder (CPA). See 

Carry-lookahead adder (CLA); 
Prefix adders; Ripple-carry adder

Carry-lookahead adder (CLA), 239–241, 
240f

case statement, in HDL, 199–200. See 
also Switch/case statement

casez, case?, in HDL, 203b
Cathode, 25–26
Cathode ray tube (CRT), 542.e47–48. 

See also VGA (Video Graphics 
Array) monitor

horizontal blanking interval,  
542.e47–48

vertical blanking interval, 542.e47–48
Character LCDs, 542.e44–47
Characters (char), 317–319, 542.e44–47

arrays. See also Strings
C type, 545.e27

Chips, 26
multiprocessors, 479–482

Chopper constant current drive, 542.e62
Circuits

74xx series. See 74xx series logic
application-specific integrated 

(ASICs), 543.e9
astable, 117b
asynchronous, 120–121
combinational. See Combinational 

logic
definition of, 53–54
delay, 86–90
glitches in, 90–93
multiple-output, 66b
priority, 66
sequential. See Sequential logic
synchronous, 120–121
synchronous sequential, 121
synthesized, 174f, 176f, 177f
timing, 86–93, 139–155

CISC. See Complex instruction set 
computer

CLA. See Carry-lookahead adder (CLA)
CLBs. See Configurable logic blocks  

(CLBs)
Clock cycles per instruction (CPI). See 

Cycles per instruction (CPI)
Clock period, 140, 398
Clock skew, 146–149, 468–469
Clustered multiprocessors, 481–482
CMOS. See Complementary Metal-

Oxide-Semiconductor gates 
(CMOS)

Combinational composition, 54–55
Combinational logic, 172b

design, 53–56
Boolean algebra, 58–64
Boolean equations, 56–58
building blocks, 81–86
delays, 86–90
don’t cares, 79–80
Karnaugh maps (K-maps), 73–81
multilevel, 67–71
precedence, 56
timing, 86–93
two-level, 67–68
X (contention). See Contention 

(X)
X (don’t cares). See Don’t care 

(X)
Z (floating). See Floating (Z)

HDLs. See Hardware description 
languages (HDLs)

Combining theorem, 60
Command line arguments, 545.e44
Comments

in RISC-V assembly, 302
in C, 302, 545.e5
in SystemVerilog, 178
in VHDL, 178

Common mistakes in C, 545.e44–48
Comparators, 245–246
Comparison

in hardware. See Arithmetic/logical 
unit (ALU); Comparators

processor performance, 397–398
using ALU, 249

Compiler, in C, 348–350, 545.e4,  
545.e43

Complementary Metal-Oxide-
Semiconductor gates (CMOS), 
23–32

Complements theorem, 60
Complex instruction set computer 

(CISC) architectures, 302, 366, 
469–470

Complexity management, 2–5
abstraction, 2–3
discipline, 3–4
hierarchy, 4
modularity, 4
regularity, 4

Compressed instructions, 362–363
Compulsory miss, 518
Computer-aided design (CAD), 127, 

171, 246
Concurrent signal assignment statement, 

177, 182
Condition flags, 369
Condition mnemonics, 332
Conditional assignment, 179–180
Conditional branches, 311, 312b
Conditional operator, 179
Conditional signal assignments, 179
Conditional statements, 313–315

in RISC-V assembly
if, 313
if/else, 313–314
switch/case, 314–315

in C, 545.e17–19
if, 545.e17
if/else, 545.e17
switch/case, 545.e18

in HDL, 199–200
case, 199–200
casez, case?, 203
if, if/else, 200–203

Configurable logic blocks (CLBs), 167, 
278. See also Logic elements (LEs)

Conflict miss, 518
Consensus theorem, 60, 62b
Constants

in RISC-V assembly, 302–308. See 
also Immediates

in C, 545.e5–6
Contamination delay, 86–90. See also 

Short path
Contention (x), 67b, 71–72
Context switching, 478
Continuous assignment statements, 177, 

191
Control hazard, 446, 450–453
Control signals, 81, 399, 406f, 407–410, 

422–435 
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Control unit, 394. See also ALU 
Decoder; Main Decoder; Instr 
Decoder

of multicycle RISC-V processor, 
422–432

of pipelined RISC-V processor, 
439–456

of single-cycle RISC-V processor, 
398–415

Control-flow statements
conditional statements. See 

Conditional statements
loops. See Loops

CoreMark, 397
Counters, 261–263

divide-by-3, 129t
Covering theorem, 60
CPA. See Carry propagate adder (CPA)
CPI. See Cycles per instruction (CPI)
Critical path, 87–88, 412–414, 414f
Cross-coupled inverters, 108, 269

bistable operation of, 108f
Cycle time. See Clock period
Cycles per instruction (CPI), 398, 413, 

437, 454, 468
Cyclic paths, 118
Cyclone IV FPGA, 278–283

D

D flip-flops. See Flip-flops
D latch. See Latches
D/A conversion, 542.e31–34
DACs. See Digital-to-analog converters 

(DACs)
Data hazard, 446–450
Data memory, 395, 467b
Data segment, 345–346
Data types, 545.e21–35

arrays. See Arrays
characters. See Characters (char)
dynamic memory allocation. See 

Dynamic memory allocation 
(malloc, free)

linked list. See Linked list
pointers. See Pointers
strings. See Strings
structures. See Structures (struct)
typedef, 545.e31

Datapath
multicycle processor, 416–438

I-type ALU instructions, 433–434
jal instruction, 433–434
lw instruction, 417–419
R-type instructions, 421
sw instruction, 420–421

pipelined processor, 441–443
single-cycle processor, 399–407

I-type ALU instructions, 410–411
jal instruction, 411–412
lw instruction, 400–402
R-type instructions, 404–405
sw instruction, 403–404

Datasheets, 543.e9–13
DC motors, 542.e55–59

H-bridge, 542.e55–58, 542.e56t
shaft encoder, 542.e58f, 542.e54–55, 

542.e58–59
DC transfer characteristics, 22, 23f, 

45f. See also Direct current (DC) 
transfer characteristics; Noise 
margins

DDR. See Double-data rate memory (DDR)
De Morgan, Augustus, 61b
De Morgan’s theorem, 61
DE-9 cable, 542.e26f
Decimal numbers, 7
Decimal to binary conversion, 9b
Decimal to hexadecimal conversion, 11b
Decode stage, 439
Decoders

definition of, 84–86
HDL for

behavioral, 200b
parameterized, 217b

logic using, 85–86
seven-segment. See Seven-segment 

display decoder
Deep pipelines, 468–469
Delay, logic gates. See also Propagation 

delay, Contamination Delay
in HDL (simulation only), 186–187

DeleteUser function, 545.e33
Dennard, Robert, 268b
Destination register (rd), 333
Device driver, 542.e3, 542.e10–14
Device under test (DUT), 218
Dhrystone, 397
Dice, 26
Dielectric, 27
Digital abstraction, 5–7, 20–24

Digital circuits. See Logic
Digital signal processors (DSPs), 254, 257b
Digital system implementation,  

543.e1–37
74xx series logic. See 74xx series logic
application-specific integrated 

circuits (ASICs), 543.e9
assembly of, 543.e19–23
breadboards, 543.e20
datasheets, 543.e9–13
economics, 543.e35–37
logic families, 543.e15–16
packaging, 543.e19–23
printed circuit boards, 543.e20–23
programmable logic, 543.e2–9

Digital-to-analog converters (DACs), 
542.e31–34

DIMM. See Dual inline memory module 
(DIMM)

Diodes, 25–26
p-n junction, 26f

DIPs. See Dual-inline packages (DIPs)
Direct current (DC) transfer 

characteristics, 22
Direct mapped cache, 506–511
Direct voltage drive, 542.e63
Dirty bit (D), 519, 528
Discipline

dynamic, 140. See also Timing 
analysis

static, 140. See also Noise margins
Discrete-valued variables, 5
Distributivity theorem, 60
Divide-by-3 counter

design of, 127, 128f, 128t, 129f
HDL for, 208b

Divider, 255–256
Division

circuits, 254–256
Do/while loops, in C, 545.e19
Don’t care (X), 66–67, 79–80, 203
Dopant atoms, 25
Double, C type, 545.e8t
Double-precision formats, 259–260
DRAM. See Dynamic random access 

memory (DRAM)
Dual-inline packages (DIPs), 26b, 543.e1
DUT. See Device under test (DUT)
Dynamic branch predictors, 470–471
Dynamic data segment, 346
Dynamic discipline, 140. See also Timing 

analysis
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Dynamic memory allocation (malloc, 
free), 545.e40

Dynamic power, 32
Dynamic random access memory 

(DRAM), 266, 268–269, 268f

E

Economics, 543.e35–37
Edge-triggered flip-flop. See Flip-flops
EEPROM. See Electrically erasable 

programmable read only memory 
(EEPROM)

EFLAGS register, 369
EIP. See Extended instruction pointer (EIP)
Electrically erasable programmable read 

only memory (EEPROM), 272
Embedded I/O (input/output) systems, 

542.e1–43
A/D conversion, 542.e37–39
analog I/O, 542.e31–39
D/A conversion, 542.e31–34
digital I/O, 542.e5–10
general-purpose I/O (GPIO),  

542.e5–10
interrupts, 542.e39–43
LCDs. See Liquid Crystal Displays 

(LCDs)
microcontroller peripherals,  

542.e43
motors. See Motors
serial I/O, 542.e14–29
timers, 542.e29–31
VGA monitor. See VGA (Video 

Graphics Array) monitor
Enabled flip-flops, 113–114
Enabled registers, 194. See also 

Flip-flops
Endianness, 355–356
EPROM. See Erasable programmable 

read only memory (EPROM)
Equality comparator, 245
Equation minimization

using Boolean algebra, 63b
using Karnaugh maps. See Karnaugh 

maps (K-maps)
Erasable programmable read only 

memory (EPROM), 543.e2
Ethernet, 73, 542.e15

Exceptions, 356–360
exception-related instructions, 358
execution modes and privilege levels, 

356–357
handler, 357–358

Execution time, 397
exit, 545.e41
Extended instruction pointer (EIP), 367

F

factorial function call, 327–329
stack during, 329

Factoring state machines, 132–135
False, 6, 18, 56–58, 58f, 109–114
Fast Fourier Transform (FFT), 257b
FDIV. See Floating-point division  

(FDIV)
FE310-G002 system-on-chip, 542.e5
FFT. See Fast Fourier Transform (FFT)
Field programmable gate arrays 

(FPGAs), 542.e23f, 542.e49f, 
276, 543.e7–9

driving VGA cable, 542.e49f
in SPI interface, 542.e19, 542.e19–20

File manipulation, in C, 545.e38–39
Finite state machines (FSMs), 121–139, 

207–209, 423
complete multicycle control, 434f
deriving from circuit, 135b–138b
divide-by-3 FSM, 127b–128b, 208b
factoring, 132–135
in HDL, 207–209
LE configuration for, 280b–281b
Mealy FSM, 130–132
Moore FSM, 130–132
snail/pattern recognizer FSM, 

130b–131b, 210b
state encodings, 127–128. See also 

Binary encoding; One-cold 
encoding; One-hot encoding

state transition diagram, 122f, 123f
traffic light FSM, 121–127

Fixed-point numbers, 256–257
Flags, 248
Flash memory, 272. See also Solid state 

drive (SSD)
Flip-flops, 112, 112–113, 113–114, 114, 

114–116, 191. See also Registers

back-to-back, 111, 143–146, 195. 
See also Synchronizers

comparison with latches, 116–117
enabled, 113–114
HDL for, 451. See also Registers
metastable state of. See Metastability
register, 112–113
resettable, 114
scannable, 265
shift register, 169
transistor count, 112b
transistor-level, 114–116

Float, C type, 545.e6
print formats of, 545.e36t

Floating (Z), 72–73
Floating output node, 115
Floating-gate transistor, 272. See also 

Flash memory
Floating-point division (FDIV)

bug, 174, 261b
Floating-point instructions, 361–362
Floating-point numbers, 257–261

addition, 261
formats, single-and double-precision, 

quad-precision, 259–260
in programming. See Double, C type; 

Float, C type
rounding, 260–261
special cases

infinity, 259
NaN, 259

Floating-point unit (FPU), 261b
For loops, 315–316, 545.e20
Format conversion (atoi, atol, atof), 

545.e41
Forwarding, 446–448. See also  

Hazards
FPGAs. See Field programmable gate 

arrays (FPGAs)
FPU. See Floating-point unit (FPU)
Frequency shift keying (FSK), 542.

e53–54
and GFSK waveforms, 542.e53f

Front porch, 542.e48
FSK. See Frequency shift keying (FSK)
FSMs. See Finite state machines (FSMs)
Full adder, 54, 180–181, 182b, 198b, 

238
using always/process statement, 238

Fully associative cache, 512
funct3 field, 333b, 334
funct7 field, 332b, 333
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Function calls, 320–330, 545.e15–16
additional arguments and local 

variables, 330
arguments, 330
leaf, 326
multiple registers, loading and 

storing, 365–366
naming conventions, 545.e16
with no inputs or outputs, 320–321, 

545.e15
nonleaf, 326–327
preserved registers, 324–326
prototypes, 545.e16
recursive, 327–329
return, 320–321, 545.e15
stack, use of, 322–324. See also 

Stack
Fuse-programmable ROM, 271

G

Gates
AND, 18–19, 31f
buffer, 18
multiple-input, 19–20
NAND, 18, 29–30, 30f
NOR, 19, 30f, 109–110
NOT, 18, 29f
OR, 19
transistor-level. See Transistors
XNOR, 19b
XOR, 19

General-purpose I/O (GPIO), 542.e5–10
switches and LEDs example, 542.

e13b–14b
Generate signal, 239–241
GenWaves function, 542.e33–34
Glitches, 90–93
Global data segment, 345
GND. See Ground (GND)
GPIO. See General-purpose I/O (GPIO)
GPUs. See Graphics processing units 

(GPUs)
Graphics accelerators, 480–481
Graphics processing units (GPUs), 472
Gray, Frank, 74b
Gray codes, 74b
Ground (GND), 20

symbol for, 29

H

Half adder, 238
Hard disk, 502–504. See also  Hard drive
Hard drive, 502, 520. See also Hard 

disk; Solid state drive (SSD); 
Virtual memory

Hardware description languages 
(HDLs), 171–223. See also 
SystemVerilog; VHDL (VHSIC 
Hardware Description Language)

2:1 multiplexer, 463b
adder, 461b
combinational logic, 172b, 175–188

bitwise operators, 175–176
blocking and nonblocking 

assignments, 203–207
case statements, 199–200
conditional assignment, 179–180
delays, 186–187

data memory, 467b
data types, 211–215
flip-flop, 191–192, 192b
history of, 172–173
If statements, 200–203

internal variables, 180–182
numbers, 183
operators and precedence,  

182–183, 183b
reduction operators, 178

immediate extension, 430–431
instruction memory, 466b–467b
modules, 171–172
parameterized modules, 215–218
processor building blocks, 461–464
register file, 461b
resettable flip-flop, 192–194, 193b, 

194f, 462b
resettable flip-flop with enable,  

194–195, 194b, 195f, 463b
sequential logic, 191–196, 207
simulation and synthesis, 173–175
single-cycle RISC-V processor, 

456–467
structural modeling, 188–190
testbench, 218–222, 464–468
top-level module, 466b

Hardware handshaking, 542.e25
Hardware multithreaded processor, 479
Hardware reduction, 68–69. See also 

Equation minimization

Hazard unit, 446–448
Hazards. See also Hazard unit

control hazards, 446, 450–452
data hazards, 446–448
pipelined processor, 443–454
read after write (RAW), 444, 475
solving

control hazards, 450–452
forwarding, 446–448

stalls, 448–450
write after read (WAR), 475
write after write (WAW), 476

H-bridge control, 542.e56f
HDL. See Hardware description 

languages (HDLs); SystemVerilog; 
VHDL

Heap, 346
Heterogeneous multiprocessors, 

480–481
Hexadecimal numbers, 9–11
Hexadecimal to binary and decimal 

conversion, 9b
Hierarchy, 4
HIGH, 6
High-level programming languages, 308, 

545.e5
compiling, assembling, and loading, 

344–355
translating into assembly, 304b

High-performance microprocessors,  
468

Hit, 502
Hit rate, 503–505
Hold time constraint, 142–143

with clock skew, 146–149
Hold time violations, 143, 143–144, 

145b–146b, 148b–149b
Homogeneous multiprocessors, 479–480
Hopper, Grace, 346b

I

I-type instruction format, 334–336
I/O. See Input/output (I/O) systems
IA-32 architecture. See x86
IA-64, 370t
ICs. See Integrated circuits (ICs)
Idempotency theorem, 60
Identity theorem, 59
Idioms, 175



Index556

IEEE. See Institute of Electrical and 
Electronics Engineers (IEEE)

If statements
in C, 545.e17
in HDL, 200–203
in RISC-V assembly, 313, 313b

If/else statements, 308
in C, 545.e17
in HDL, 200–203
in RISC-V assembly, 314b

ILP. See Instruction level parallelism (ILP)
IM. See Instruction memory
Immediate addressing, 341
Immediate encodings, 340–341
Immediate extension, 406b, 412b
Immediate field (imm), 334–336
Immediate instructions (I-type 

instructions), see I-type 
instruction format

Immediates, 304–306, 365–366. See also 
Constants

Implicit leading one, 258
Information, amount of, 6
Initializing

arrays in C, 545.e23b, 545.e24b, 
545.e24b

variables in C, 545.e11
Input/Output (I/O) systems, 542.e1–43

device driver, 542.e3, 542.e10–14
embedded I/O systems. See 

Embedded I/O (input/output) 
systems

I/O registers, 542.e3
memory-mapped I/O, 542.e1–3
personal computer I/O systems. See 

Personal computer (PC) I/O 
systems

Input/output elements (IOEs), 278
Institute of Electrical and Electronics 

Engineers (IEEE), 173–174, 258
Instr Decoder, 423
Instruction Decoder. See Instr Decoder
Instruction encoding, x86, 369, 370t
Instruction formats, RISC-V, 332–340

I-type, 334–336
R-type, 332–334
S/B-type, 336–338
U/J-type, 338–340

Instruction formats, x86, 369
Instruction level parallelism (ILP), 476
Instruction memory, 395, 440–441, 

466b–467b

Instruction register (IR), 416–417, 
423–424

Instruction set, 299. See also 
Architecture

Instructions, RISC-V, 299
branch instructions, 311
branching, 311–313
logical, 309
multiply instructions, 310–311
shift instructions, 309–310

Instructions, x86, 366–374
Instructions per cycle (IPC), 398, 472
Integrated circuits (ICs), 543.e19
Intel. See x86
Intel processors, 366
Intel x86. See x86
Interrupts, 356, 542.e39–43
Invalid logic level, 184
Inverters, 18, 117, 176b. See also NOT 

gate
cross-coupled, 107–108, 108f
in HDL, 176b, 196–197

Investigation of the Laws of Thought, 
An (Boole), 6

Involution theorem, 60
IOEs. See Input/output elements (IOEs)
IPC. See Instructions per cycle (IPC)
IR. See Instruction register (IR)
IRWrite, 416–417, 423–424

J

j instruction, 312, 313b
J-type instruction format. See U/J-type 

instruction format
jal instruction, 320–321
jalr instruction, 321
Java, 308. See also Language
jr instruction, 320–321
Jump instruction. See j instruction

K

K-maps. See Karnaugh maps (K-maps)
Karnaugh, Maurice, 73–74
Karnaugh maps (K-maps), 73–81, 92

with “don’t cares”, 79–80
logic minimization using, 73–81
prime implicants, 75–79
seven-segment display decoder, 

77b–79b
KB. See Kilobyte (KB)
Kib. See  Kibibit (Kib/Kibit)
KiB. See Kibibyte (KiB)
Kibibit (Kib/Kibit), 12
Kibibyte (KiB), 12
Kilobit (Kb/Kbit), 12
Kilobyte (KB), 12

L

LAB. See Logic array block (LAB)
Language. See Instructions

assembly, 300–308
machine, 332–344
mnemonic, 301

Last-in-first-out (LIFO) queue, 322. See 
also Stack

Latches, 109–111
comparison with flip-flops, 107–108, 

116–117
D, 111–112
SR, 109–111
transistor-level, 114–116

Latency, 155, 439, 448
Lattice, silicon, 25f, 31
LCDs. See Liquid crystal displays (LCDs)
Leaf function, 326
Leakage current, 33–34
Least recently used (LRU) replacement, 515

two-way associative cache with, 
515–516, 515f

Least significant bit (lsb), 11, 12f
Least significant byte (LSB), 11, 12f, 

306–307
LEDs. See Light-emitting diodes (LEDs)
LEs. See Logic elements (LEs)
Level-sensitive latch. See Latches
LIFO. See Last-in-first-out (LIFO) queue
Light-emitting diodes (LEDs), 542.e7, 

543.e18–19
Line options, compiler and command, 

348–350, 545.e43–44
Linked list, 545.e33
Linker, 344, 353
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Linking, 344
Linux, 545.e4
Liquid crystal displays (LCDs), 542.

e43–44
Literal, 56, 94

loading, 344–355
Little-endian bus order in HDL, 176
Little-endian memory addressing, 356
Load word (lw), 417–419
Loading literals, 345
Loads. See Load word (lw)
Local variables, 330
Locality, 500
Logic

bubble pushing, 69–71
combinational. See Combinational 

logic
families, 23, 543.e10, 543.e15–16
gates. See Gates
hardware reduction, 68–69
multilevel. See Multilevel 

combinational logic
programmable, 543.e2–9
sequential. See Sequential logic
transistor-level. See Transistors
two-level, 67–68

Logic array block (LAB), 279
Logic arrays, 275–284. See also Field 

programmable gate arrays (FPGAs)
transistor-level implementation, 

283–284
Logic elements (LEs), 278

of Cyclone IV, 278f, 279
functions built using, 280b–281b

Logic families, 23, 543.e10, 543.e15–16
compatibility of, 24t
logic levels of, 23
specifications, 543.e17t

Logic gates, 17–20, 543.e1
AND. See AND gate
AND-OR (AO) gate, 45
with delays in HDL, 187b
multiple-input gates, 19–20
NAND. See NAND gate
NOR. See NOR gate
NOT. See NOT gate
OR. See OR gate
OR-AND-INVERT (OAI) gate, 45
XNOR. See XNOR gate
XOR. See XOR gate

Logic levels, 20–21
Logic simulation, 173–174

Logic synthesis, 174–175
Logical instructions, 309
Logical shifter, 252
Lookup tables (LUTs), 82–83, 273
Loops, 315–317, 545.e19–20

in C
for, 545.e20
do/while, 545.e19
while, 545.e19

in RISC-V assembly
for, 315–316
while, 315

Lovelace, Ada, 343b
LOW, 6
Low Voltage CMOS Logic (LVCMOS), 

23
Low Voltage TTL Logic (LVTTL), 23
lsb. See Least significant bit (lsb)
LSB. See Least significant byte (LSB)
LUTs. See Lookup tables (LUTs)
LVCMOS. See Low Voltage CMOS 

Logic (LVCMOS)
LVTTL. See Low Voltage TTL Logic 

(LVTTL)
lw instruction, 417–419

M

MAC. See Multiply-accumulate (MAC)
Machine code. See Machine language
Machine language, 332–344

addressing modes, 341–342
interpreting, 342–343
I-type instructions, 334–336
R-type instructions, 332–334
S/B-type instructions, 336–338
stored program, 343–344, 343f
translating to assembly language, 

342b–343b
U/J-type instructions, 338–340

Magnitude comparator, 245
Main Decoder, 408, 411t
Main FSM, 422–432, 436f
main function in C, 545.e3
Main memory, 501–503
malloc function, 545.e40
Mantissa, 258
Masuoka, Fujio, 272b
math.h, C library, 545.e35t, 545.e42

Max-delay constraint. See Setup time 
constraint

Maxterms, 56
Mb. See Megabit (Mb/Mbit), Mebibit 

(Mib/Mibit)
Mbit. See Megabit (Mb/Mbit), Mebibit 

(Mib/Mibit)
MCUs. See Microcontroller units (MCUs)
Mealy machines, 121, 121f, 130–132

state transition and output table, 132t
state transition diagrams, 131f
timing diagrams for, 133f

Mean time between failure (MTBF), 151
Mebibit (Mib/Mibit), 12
Medium-scale integration (MSI) chips, 

543.e2
Megabit (Mb/Mbit), 12. See also 

Mebibit (Mib/Mibit)
Memory, 317. See also Memory arrays

access time, 503–505
addressing modes, 306–308, 368t
area and delay, 269–270
big-endian, 355
byte-addressable, 306-307, 307b, 355
bytes and characters, 317–320
HDL for, 313b, 317f, 466b–467b
hierarchy, 502f
little-endian, 356
logic using, 272–273
main, 502
operands in, 306, 310–311
physical, 521
ports, 267
protection, 527. See also Virtual memory
types, 267–268

DDR, 269–270
DRAM, 269–270
flash, 272
register file, 270–271
ROM, 271–272
SRAM, 269–270

virtual, 503. See also Virtual memory
Memory address computation, 307–308, 

401–402, 425f
data flow during, 402f, 425f

Memory arrays, 265–275. See also 
Memory

bit cell, 267
HDL for, 273b, 274b, 275f, 

466b–467b
logic using, 272–273
organization, 267
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Memory hierarchy, 503
Memory instructions, 306–308,  

317–320, 334–336, 400–402
encodings, 334–335

Memory interface, 499
Memory map, RISC-V, 344–346,  

542.e2f
Memory performance. See Average 

Memory Access Time (AMAT)
Memory protection, 527
Memory systems, 499

performance analysis, 503–505
Memory-mapped I/O, 542.e1–3,  

542.e7
address decoder, 542.e1–3, 542.e2
communicating with I/O devices, 

542.e2b–3b
hardware, 542.e2f, 542.e3

MemWrite, 403, 404f
Metal-oxide-semiconductor field effect 

transistors (MOSFETs), 24
switch models of, 28f

Metastability, 149–150
metastable state, 108, 149
resolution time, 149–150, 152–155
synchronizers, 150–152

Mib. See Mebibit (Mib/Mibit)
Mibit. See Mebibit (Mib/Mibit)
Micro-operations (micro-ops), 469–470
Microarchitecture, 300, 393, 396. See 

also Architecture
advanced. See Advanced 

microarchitecture
architectural state. See Architectural 

state
description of, 393–394
design process, 394–396
evolution of RISC-V, 482–485
HDL representation, 456–468

generic building blocks, 461–464
single-cycle processor, 457
testbench, 464–468

multicycle processor. See Multicycle 
RISC-V processor

performance analysis, 397–398. See 
also Performance analysis

pipelined processor. See Pipelined 
RISC-V processor

real-world perspective, 482–485
single-cycle processor. See Single-

cycle RISC-V processor
Microcontroller, 542.e3, 542.e31

Microcontroller peripherals, 542.e43
Bluetooth wireless communication, 

542.e53–54
character LCD, 542.e44–47

control, 542.e47b
parallel interface, 542.e44,  

542.e45f
motor control, 542.e54–64
VGA monitor, 542.e45–52

Microcontroller units (MCUs), 542.e3
Micro-operations, 469–470

designers, 468
high-performance, 468

Microprocessors, 1, 11b, 299, 393
architectural state of, 395

Millions of instructions per second,  
439

Min-delay constraint. See Hold time 
constraint

Minterms, 56
Miss, 502–505, 518

capacity, 518
compulsory, 518
conflict, 511

Miss penalty, 513
Miss rate, 503–505

and access times, 504t
Misses

cache, 502
capacity, 518
compulsory, 518
conflict, 518

page fault, 521–522
Mnemonics, 301, 301b
ModR/M byte, 371–372
Modularity, 4
Modules, in HDL

behavioral and structural, 171–172
parameterized modules, 215–218

Moore, Gordon, 28b
Moore machines, 121–132

state transition and output table, 
131t

state transition diagrams, 131f
timing diagrams for, 133f

Moore’s law, 28b
MOS transistors. See Metal-oxide-

semiconductor field effect 
transistors (MOSFETs)

MOSFET. See Metal-oxide-
semiconductor field effect 
transistors (MOSFETs)

MOSFETs. See Metal-oxide-
semiconductor field effect 
transistors (MOSFETs)

Most significant bit (msb), 11, 12f
Most significant byte (MSB), 11, 12f, 

306–307
Motors

DC, 542.e54–59
H-bridge, 542.e55–58
servo, 542.e54, 542.e58–60
stepper, 542.e54, 542.e60–64

msb. See Most significant bit (msb)
MSB. See Most significant byte (MSB)
MSI chips. See Medium-scale integration 

(MSI) chips
MTBF. See Mean time between failure 

(MTBF)
Multicycle processor, 415–438

control, 422–432, 436f
datapath, 416–422

beq instruction, 421–422
I-type ALU instructions, 
lw instruction, 417–419
R-type instructions, 421–422
sw instruction, 420–421

instructions, 410–412
performance, 435–438

Multicycle microarchitectures, 396
Multilevel combinational logic, 67–71. 

See also Logic
Multilevel page tables, 529–530
Multiple-output circuit, 66b
Multiplexers, 81–84

definition of, 81
HDL for

behavioral model of, 179b
parameterized N-bit, 216b
structural model of, 188b

logic using, 82–84
symbol and truth table, 81f

Multiplicand, 253
Multiplication. See Multiplier
Multiplier, 253

HDL for, 254
Multiply instructions, 310–311
Multiprocessors, 479–482

chip, 479
heterogeneous, 479
homogeneous, 479

Multithreaded processor, 479
Multithreading, 478–479
Mux. See Multiplexers
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N

NaN. See Not a number (NaN)
NAND (7400), 543.e3f
NAND gate, 19

CMOS, 29–30
Nested if/else statement, 314–315,  

545.e18
Nibbles, 11–12
nMOS transistors, 26–29, 27b
Noise margins, 21–22, 21f

calculating, 21b–22b
Nonarchitectural state, 393–394, 396, 416
Nonblocking and blocking assignments, 

197, 203–207
Nonleaf function calls, 326–327
Nonpreserved registers, 324, 327–329
nop, 331–332, 444–445
NOR gate, 19–20, 61, 543.e3f

chip (7402), 543.e3f
CMOS, 30b
pseudo-nMOS logic, 31
truth table, 20f

Not a number (NaN), 259
NOT gate, 18

chip (7404), 543.e3f
CMOS, 29

Noyce, Robert, 24b
Null element theorem, 59–60
Number conversion

binary to decimal, 8b
binary to hexadecimal, 9–11
decimal to binary, 9b, 11b
decimal to hexadecimal, 11b
hexadecimal to binary and decimal, 

9b, 10b
taking the two’s complement, 14–16

Number systems, 7–17
binary, 7–17
comparison of, 16–17, 17t
estimating powers of two, 12b
fixed-point, 256–257, 256f
floating-point, 257–261

addition, 260f, 261
special cases, 259

hexadecimal, 9–11, 10t
negative and positive, 13–14
sign/magnitude, 13–14
signed, 13–17
two’s complement, 14–16
unsigned, 7–13

O

Odds and ends, 355–363
endianness, 355–356
exceptions, 356–360
nop, 331–332

OFF, 24, 28
Offset, 307, 400–401, 418
ON, 24, 28
One-bit dynamic branch predictor, 471
One-cold encoding, 128
One-hot encoding, 127–128
One-time programmable (OTP), 543.e2
op field, 333
Opcode. See op field
Operands

RISC-V, 302
constants/immediates, 304–306
memory, 306–308
register set, 304
registers, 303–304

x86, 367–369
Operation code. See op field
Operators

in C, 316
in HDL, 176b

bitwise, 175–176
precedence, 183b
reduction, 178
table of, 183b
ternary, 179b

OR gate, 19
OR-AND-INVERT (OAI) gate, 194
or instruction, 309
OTP. See One-time programmable (OTP)
Out-of-order execution, 477f
Out-of-order processor, 473–476
Output dependence, 476
Overflow

with addition, 13
detection, 248–249

Oxide, 26–27

P

Packages, chips, 543.e19–20
Page fault, 521–522
Page number, 523

Page offset, 523
Page table, 522–523
Pages, 521–522
Paging, 528
Parallel I/O, 542.e14–15
Parallelism, 155–158
Parity gate. See XOR gate
Partial products, 253
Pass by reference, 545.e22
Pass by value, 545.e22
Pass gate. See Transmission gates
PC. See Program counter (PC)
PC Logic, 415
PC-relative addressing, 341–342
PCBs. See Printed circuit boards (PCBs)
PCI. See Peripheral Component 

Interconnect (PCI)
PCSrc, 406–407, 409, 411
PCWrite, 419
Perfect induction, proving theorems 

using, 62b
Performance analysis, 397–398. See also 

Average Memory Access Time 
(AMAT)

multicycle processor, 436–437
pipelined processor, 439–456
processor comparison, 438b
single-cycle processor, 412–414

Peripherals, 542
Peripherals devices. See Input/output 

(I/O) systems
Phase locked loop (PLL), 542.e50–53
Physical memory, 503
Physical page number (PPN), 523
Physical pages, 522
Pipelined processor, 439–456

abstract view of, 441f
control unit, 443, 453
datapath, 441–443
description, 439–456
hazards, 443–453
performance analysis, 454–456
throughput, 439–440

Pipelined microarchitecture. See 
Pipelined processor

Pipelining, 156–157. See also Pipelined 
processor

PLAs. See Programmable logic arrays 
(PLAs)

Plastic leaded chip carriers (PLCCs), 
543.e19–20

Platters, 520–521
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PLCCs. See Plastic leaded chip carriers 
(PLCCs)

PLDs. See Programmable logic devices 
(PLDs)

PLL. See Phase locked loop (PLL)
pMOS transistors, 26–29, 27f
Pointers, 542.e9, 545.e21–22, 545.e33
POS. See Product-of-sums (POS) form
Positive edge-triggered flip-flop, 112
Power consumption, 32–34
PPN. See Physical page number (PPN)
Prefix adders, 241–243
Prefix tree, 243
Preserved registers, 324–326, 325t
Prime implicants, 63–81
Printed circuit boards (PCBs), 543.e20–23
printf, 545.e36–37
Priority

circuit, 66–67
encoder, 100–101, 103

Procedure calls. See Function calls
Processor performance comparison, 

438b, 455b
multicycle processor, 436–437
pipelined processor, 454–456
single-cycle processor, 415b

Processor-memory gap, 502
Product-of-sums (POS) form, 58
Program counter (PC), 308, 343–344, 

402
Programmable logic arrays (PLAs), 

275–276, 543.e2, 543.e6–7
transistor-level implementation, 

283–284
Programmable logic devices (PLDs), 

543.e6–7
Programmable read only memories 

(PROMs), 271, 543.e2–6
Programming

arrays. See Arrays
branching. See Branching
in C. See C programming
conditional statements, 313–315
constants. See Constants; Immediates
function calls. See Function calls
getting loopy. See Loops
logical and arithmetic instructions, 

309
loops. See Loops
memory, 317–320
in RISC-V, 308
shift instructions, 309–310, 333–335, 

335f

PROMs. See Programmable read only 
memories (PROMs)

Propagate signal, 239
Propagation delay, 86–90. See also 

Critical path
Pseudo-nMOS logic, 31–32, 31f

NOR gate, 31f
ROMs and PLAs, 283–284

Pseudoinstructions, 330–332, 358b
Pulse-Width Modulation (PWM), 542

analog output with, 542.e31
duty cycle, 542.e35
signal, 542.e35f

PWM. See Pulse-Width Modulation 
(PWM)

Q

Quiescent supply current, 33–34

R

R-type instruction, 35–37
Race conditions, 117b–118b, 118f
RAM. See Random access memory (RAM)
rand, 545.e40–41
Random access memory (RAM),  

267–269, 272–273
RAW hazard. See Read after write 

(RAW) hazard
rd field. See Destination register (rd)
Read after write (RAW) hazard, 444, 

475. See also Hazards
Read only memory (ROM), 267, 

269–271
transistor-level implementation, 284

Read/write head, 520–521
ReadData bus, 402, 403f
Receiver gate, 20–21
Recursive function calls, 327–329
Reduced instruction set computer (RISC)

architecture, 302, 469–470
Reduction operators, 178
Register file (RF)

HDL for, 461–464
in pipelined RISC-V processor (write 

on falling edge), 441–442

RISC-V register descriptions, 303
schematic, 270–271

Register renaming, 476–478
Register set, 304. See also Register file (RF)
R-type (register-type) instruction, 

332–334
Registers. See RISC-V registers; Flip-

flops; x86 registers
preserved and nonpreserved, 324–326

Regularity, 4
RegWrite, 402
Replacement policies, 527–529
Resettable flip-flops, 114
Resettable registers, 192–193
Resolution time, 149–150. See also 

Metastability
derivation of, 152–155

Return value, 320
RF. See Register file (RF)
Ring oscillator, 313b, 335f
Ripple-carry adder, 238–239, 241b
RISC architecture. See Reduced 

instruction set computer (RISC) 
architecture

RISC-V architecture, evolution of, 
363–366

comparison of RISC-V and ARM 
architectures, 365–366

comparison of RISC-V and MIPS 
architectures, 365

RISC-V Base Instruction Sets and 
Extensions, 364–365

RISC-V instructions, 299
addressing modes, 341–342
branch instructions, 311–313
immediate encodings, 340–341
interpreting, 342–343
logical instructions, 309
multiply instructions, 310–311
shift instructions, 309–310
formats

I-type instructions, 334–336
R-type instructions, 332–334
S/B-type instructions, 336–338
U/J-type instructions, 338–340

instruction set, 302
memory instructions, 306–308
miscellaneous instructions, 355–356
pseudoinstructions, 330–332
stored program, 343–344

RISC-V microprocessor, 393–467
data memory, 395
instruction memory, 395
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multicycle, 396, 415–438
pipelined, 396, 439–456
program counter, 394
register file, 395
single-cycle, 396, 398–415
state elements of, 393–394

RISC-V processors. See RISC-V 
microprocessors

RISC-V registers, 303–304
program counter, 341, 343–344, 394
register file, 394–395
register set, 304–305

RISC-V single-cycle HDL, 456–467
building blocks, 461–463
controller, 458b–460b
datapath, 460b–461b
testbench, 464–468

Rising edge, 86
ROM. See Read only memory (ROM)
Rotations per minute (RPM), 542.e55
Rotators, 251–253
Rounding modes, 260–261
RPM. See Rotations per minute (RPM)
rs1 field. See Source register 1 (rs1)
rs2 field. See Source register 2 (rs2)
RS-232, 542.e25
RV32IMAC instruction set, 484–486

S

S-type instruction format. See S/B-type 
instruction format

S/B-type instruction format, 336–338
Sampling, 139
Sampling rate, 542.e31
SATA. See Serial ATA (SATA)
Scalar processor, 472–473
Scan chains, 265
scanf, 545.e37
Scannable flip-flop, 265
Schematics, rules of drawing, 29, 65
SCK. See Serial Clock (SCK)
SDI. See Serial Data In (SDI)
SDO. See Serial Data Out (SDO)
SDRAM. See Synchronous dynamic 

random access memory (SDRAM)
Segment descriptor, 372
Segmentation, 373
Selected signal assignment statements, 

180b

Semiconductors, 25
industry, sales, 1

Sequencing overhead, 141–142,  
147–149, 157–158, 455–456

Sequential building blocks. See 
Sequential logic

Sequential logic, 107, 261–265
counters, 261–263
finite state machines. See Finite state 

machines (FSMs)
flip-flops, 112–113. See also 

Registers
latches, 107–117

D, 111–112
SR, 109–111

registers. See Registers
shift registers, 263–265
timing of. See Timing analysis

Serial Clock (SCK), 542.e15
Serial communication, with PC, 

542.–e27
Serial Data In (SDI), 542.e15
Serial Data Out (SDO), 542.e15
Serial I/O, 542.e14–29

SPI. See Serial peripheral interface 
(SPI)

UART. See Universal Asynchronous 
Receiver Transmitter (UART)

Serial Peripheral Interface (SPI), 542.e4, 
542.e15–22

connection between FE310 controller 
and FPGA, 542.e19–20

ports
Serial Clock (SCK), 542.e15
Serial Data In (SDI), 542.e15
Serial Data Out (SDO), 542.e15

waveforms, 542.e15
Servo motor, 542.e60b, 542.e54,  

542.e58–60
Set bits, 508
Setup time constraint, 141–142

with clock skew, 146–149
Seven-segment display decoder, 77b–79b

with don’t cares, 80b
HDL for, 199b

Shaft encoder, 542.e58f, 542.e54,  
542.e58–59

Shift instructions, 309–310, 310f
Shift registers, 263–265
Shifters, 251–253
Short path, 87–90
Sign bit, 13–14
Sign extension, 16

Sign/magnitude numbers, 13–14, 
256–257

Signed binary numbers, 13–17
Signed instructions, 360–361
Signed multiplier, 215
Silicon dioxide (SiO2), 26–27
Silicon lattice, 25
SIMD. See Single instruction multiple 

data (SIMD)
simple function, 320–321
Simple programmable logic devices 

(SPLDs), 277
Simulation waveforms, 174

with delays, 187f
Single instruction multiple data (SIMD), 

473
Single-cycle processor, 398–415, 457

control, 407–410
controller, 458b
datapath, 399–407

addi instruction, 410–411
beq instruction, 421–422
jal instruction, 411–412
lw instruction, 400–402
R-type instructions, 404–405
sw instruction, 403–404

decoders, 459b
HDL for, 457–467
instructions, 410–412
performance, 412–415

Single-cycle microarchitecture. See 
Single-cycle processor

Single-pole double-throw switches 
(SPDT switches), 543.e17–18

Single-pole single-throw switches (SPST 
switches), 543.e17–18

Single-precision formats, 259–260. See 
also Floating-point numbers

SiO2. See Silicon dioxide (SiO2)
Skew. See Clock skew
Slash notation, 54f
Small-scale integration (SSI) chips, 543.e1
SMP. See Symmetric multiprocessing 

(SMP)
Solid state drive (SSD), 502. See also 

Flash memory; Hard drive
SOP. See Sum-of-products (SOP) form
Source register 1 (rs1), 332f, 333
Source register 2 (rs2), 332f, 333
sp. See Stack pointer (sp)
SparkFun’s RED-V RedBoard, 542
Spatial locality, 500, 514b
Spatial parallelism, 155–156
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SPDT switches. See Single-pole double-
throw switches (SPDT switches)

SPEC, 397
SPECINT2000, 438
SPI. See Serial Peripheral Interface (SPI)
SPLDs. See Simple programmable logic 

devices (SPLDs)
SPST switches. See Single-pole single-

throw switches (SPST switches)
Squashing, 476
SR latches, 109–111, 110f
SRAM. See Static random access 

memory (SRAM)
srand, 545.e40–41
SSD. See Solid state drive (SSD)
SSI chips. See Small-scale integration 

(SSI) chips
Stack, 322–324. See also Function calls

preserved registers, 324–326
during recursive function call, 

327–329
stack frame, 324–325
stack pointer (SP), 329
storing additional arguments on, 330
storing local variables on, 330

Stalls, 448–450. See also Hazards
Standard libraries, 545.e35–43

file manipulation, 545.e38–39
printf, 545.e36–37
scanf, 545.e37

math, 545.e42
stdio, 545.e35–40
stdlib, 545.e40–42

exit, 545.e41
format conversion (atoi, atol, 

atof), 545.e41
rand, srand, 545.e40–41

string, 545.e42–43
State encodings, FSM, 127–128,  

132–135. See also Binary 
encoding; One-cold encoding; 
One-hot encoding

State machine circuit. See Finite state 
machines (FSMs)

State variables, 107
Static branch prediction, 470–472
Static discipline, 22–24
Static power, 32
Static random access memory (SRAM), 

268–269
Status flags, 369. See also Condition flags
stdio.h, C library, 545.e35. See also 

Standard libraries

stdlib.h, C library, 545.e40. See also 
Standard libraries

Stepper motors, 542.e54, 542.e60–64
bipolar stepper motor, 542.e60–64, 

half-step drive, 542.e60–61
two-phase-on drive, 542.e60–61
wave drive, 542.e62–63

Store/branch instructions (S/B-type 
instructions). See S/B-type 
instruction format

Stored program, 343–344
string.h, C library, 545.e42–43
Strings, 319, 545.e27–28. See also 

Characters (char)
struct. See Structures (struct)
Structural modeling, 171–172, 188–190
Structures (struct), 545.e29–30
sub instruction, 301
Substrate, 26–27
Subtraction, 15, 244–245
Subtractor, 244–245
Sum-of-products (SOP) form, 56–58
Superscalar processor, 472–473
Supply voltage, 56–58. See also VDD
sw instruction, 307–308
Swap space, 528
Switch/case statements

in C, 545.e18
in HDL. See case statement, in HDL
in RISC-V assembly, 314–315

Switches, 543.e17–18
Symbol table, 351–353
Symmetric multiprocessing (SMP), 

479–480. See also Homogeneous 
multiprocessors

Synchronizers, 150–152
Synchronous circuits, 120–121
Synchronous dynamic random access 

memory (SDRAM), 269–270
DDR, 269–270

Synchronous logic, design, 117–121
Synchronous resettable flip-flops, 114
Synchronous sequential circuits,  

118–120, 120b. See also Finite 
state machines (FSMs)

timing specification. See Timing analysis
SystemVerilog, 171–223. See also 

Hardware description languages 
(HDLs)

accessing parts of busses, 186b, 190b
bad synchronizer with blocking 

assignments, 207b
bit swizzling, 186

blocking and nonblocking 
assignment, 197, 203–207

case statements, 199–200, 203b
combinational logic using, 175–188, 

196–207, 215–218
comments, 178
conditional assignment, 179–180
data types, 211–215
decoders, 200b, 217
delays (in simulation only), 187b
divide-by-3 FSM, 208b
finite state machines (FSMs), 207–209

Mealy FSM, 211b
Moore FSM, 208–210

full adder, 182b
history of, 173b
if statements, 200–203
internal signals, 180–182
inverters, 176b, 197b
latches, 196
logic gates, 175–188
multiplexers, 179b, 188b, 216b
multiplier, 215
numbers, 183
operators, 182–183
parameterized modules, 215–218

N-bit multiplexers, 216b
N-input AND gate, 218b
N:2N decoder, 217b

priority circuit, 202b
using don’t cares, 203b

reduction operators, 178
registers, 191

enabled, 194
resettable, 192–193

sequential logic using, 191–196, 
207–209

seven-segment display decoder,  
77b–79b

simulation and synthesis,  
173–175

structural models, 188–190
synchronizer, 195b
testbench, 218–222

self-checking, 220b
simple, 219b
with test vector file, 221b–222b

tristate buffer, 185b
truth tables with undefined and 

floating inputs, 185b, 186t
using always/process, 198b
using nonblocking assignments, 206
z’s and x’s, 184–186, 203b
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T

Tag, 508
Taking the two’s complement, 15
Temporal locality, 500, 505, 509
Temporal parallelism, 155–156
Temporary registers, 303b
Ternary operators, 179b, 545.e13
Testbench, 464–468
Testbenches, HDLs, 218

self-checking, 219
simple, 219
with testvectors, 221b–222b

Text Segment, 345, 355
Thin small outline package (TSOP),  

543.e19–20
Thread level parallelism (TLP), 478
Threshold voltage, 27–28
Throughput, 155, 396, 439, 479
Timers, 542.e29–31
Timing

of combinational logic,  
86–87

delay. See Contamination delay
glitches. See Glitches

of sequential logic, 139–155
analysis. See Timing analysis
clock skew. See Clock skew
dynamic discipline, 139
metastability. See Metastability
resolution time. See Resolution 

time
system timing. See Timing 

analysis
Timing analysis, 143b–145b

calculating cycle time. See Setup time 
constraint

with clock skew. See Clock skew
hold time constraint. See Hold time 

constraint
max-delay constraint. See Setup time 

constraint
min-delay constraint. See Hold time 

constraint
multicycle processor, 437b
pipelined processor, 452
setup time constraint. See Setup time 

constraint
single-cycle processor, 415b

TLB. See Translation lookaside buffer 
(TLB)

TLP. See Thread level parallelism (TLP)

Transistor-Transistor Logic (TTL), 23, 
543.e15

Transistors, 24–32
bipolar, 24
CMOS, 24–32
gates made from, 29, 29–31, 30, 

30, 31
latches and flip-flops, 114–115
MOSFETs, 24
nMOS, 26–29
pMOS, 26–29

pseudo-nMOS, 31–32
ROMs and PLAs, 283
transmission gate, 31

Translating and starting a program, 344f
Translation lookaside buffer (TLB), 

525–526, 526–527
Transmission gates, 31
Transmission lines, 543.e23–35

characteristic impedance (Z0),  
543.e24, 543.e33

derivation of, 543.e33–34
matched termination, 543.e24–26
mismatched termination, 543.e27–29
open termination, 543.e26
reflection coefficient (kr), 543.e33–34

derivation of, 543.e33–34
series and parallel terminations,  

543.e30–32
short termination, 543.e27
when to use, 543.e30

Transparent latch. See Latches: D
Traps, 356
Tristate buffer, 72, 185b

HDL for, 184
multiplexer built using, 82, 89b–90b

True, 6, 18, 56, 68, 72, 109–110, 114, 
127–128, 178, 180, 203

Truth tables, 17–18
ALU decoder, 408–409, 412t
with don’t cares, 66–67, 79–80, 203
multiplexer, 81–84
seven-segment display decoder, 

77b–79b
SR latch, 132–135
with undefined and floating inputs, 

185b
TSOP. See Thin small outline package 

(TSOP)
TTL. See Transistor-Transistor Logic 

(TTL)
Two-bit dynamic branch predictor, 471
Two-cycle latency of LDR, 448

Two-level logic, 67–68
Two’s complement numbers, 14–16
typedef, 459b, 545.e31

U

U. See Use bit (U)
U-type instruction format. See U/J-type 

instruction format
U/J-type instruction format, 338–340
UART. See Universal Asynchronous 

Receiver Transmitter (UART)
Unconditional branches, 311
Undefined instruction exception, 356
Unicode, 317b
Unit under test (UUT), 218b
Unity gain points, 22
Universal Asynchronous Receiver 

Transmitter (UART), 542.e23–29
hardware handshaking, 542.e25

Universal Serial Bus (USB), 275,  
542.e15, 542.e24

Unsigned instructions, 360–361
Unsigned multiplier, 215b, 360
Unsigned numbers, 16
Upper immediate/jump instructions  

(U/J-Type instructions), 338–340
USB. See Universal Serial Bus (USB)
Use bit (U), 515–516
UUT. See Unit under test (UUT)

V

V. See Valid bit (V)
Valid bit (V), 509
Variables in C, 545.e7–11

global and local, 545.e9–10
initializing, 545.e11
primitive data types, 545.e8–9

VCC, 21b. See also Supply voltage; VDD
VDD, 20–21, 30b. See also Supply 

voltage
Vector processor, 472b–473b
Verilog. See SystemVerilog
Very High Speed Integrated Circuits 

(VHSIC), 173b. See also VHDL 
(VHSIC Hardware Description 
Language)
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VGA (Video Graphics Array) monitor, 
542.e47–53

connector pinout, 542.e49f
driver for, 542.e50b–53b

VHDL, 171–223
accessing parts of busses, 190b
bad synchronizer with blocking 

assignments, 207b
bit swizzling, 186b
blocking and nonblocking 

assignment, 197, 203–207
case statements, 199–200, 217
combinational logic using, 175, 

196–207, 220–222
comments, 178
conditional assignment, 179–180
data types, 211–215
decoders, 200
delays (in simulation), 186–187
divide-by-3 FSM, 208b
finite state machines (FSMs), 393

Mealy FSM, 211b
Moore FSM, 209, 210b

full adder, 182b
using always/process, 198b
using nonblocking assignments, 

208
history of, 173b
if statements, 200–203
internal signals, 182b
inverters, 176, 196–197
latches, 196
logic gates, 177b
multiplexer, 179b, 188–189, 216b
multiplier, 215b
N-bit multiplexers, 216b
N-input AND gate, 218b
N:2N decoder, 217
numbers, 183
operators, 182–183
parameterized modules, 215
priority circuit, 203b
reduction operators, 178
using don’t cares, 203b
reduction operators, 178
registers, 191

enabled, 194
resettable, 192–193

sequential logic using, 191–196, 
 207

seven-segment display decoder,  
222

simulation and synthesis, 173–175
structural models, 188–190
synchronizer, 195
testbench, 218–222

self-checking, 220b
simple, 219
with test vector file, 221b–222b

tristate buffer, 185b
truth tables with undefined and 

floating inputs, 185b, 203
z’s and x’s, 184–186

VHSIC. See VHDL
VHSIC Hardware Description 

Language. See VHDL
Video Graphics Array (VGA). See VGA 

(Video Graphics Array) monitor
Virtual address, 521

space, 527
Virtual memory, 503, 520–530

address translation, 521–522
cache terms comparison, 522
memory protection, 527
multilevel page tables, 529–530
page fault, 521–522
page number, 523
page offset, 523
page table, 524–525
pages, 521–522
replacement policies, 529–530
translation lookaside buffer (TLB), 

525–526
write policy, 519–520

Virtual page number (VPN), 524
Virtual pages, 521–522
VPN. See Virtual page number (VPN)
VSS, 21b

W

Wafers, 26
Wall, Larry, 18b

WAR hazard. See Write after read 
(WAR) hazard

WAW hazard. See Write after write 
(WAW) hazard

Weak pull-up, 31
Weird number, 16
While loops, 315, 545.e19
White space, 178
Whitmore, Georgiana, 5b
Wire, 65
Wireless communication, Bluetooth, 

542.e53–54
Wordline, 267
Write after read (WAR) hazard, 475. See 

also Hazards
Write after write (WAW) hazard, 476
Write policy, 519–520

write-back, 519
write-through, 519

X

X. See Contention (x); Don’t care (X)
x86

architecture, 366–374
big picture, 373–374
branch conditions, 371t
instruction encoding, 371–372
instructions, 369
memory addressing modes, 368t
operands, 367–368
peculiarities, 372–373
registers, 366–367
status flags, 369

Xilinx FPGA, 278
XNOR gate, 19b
XOR gate, 19

Z

Z. See Floating (Z)



RISC-V Instruction Set Summary

funct7 rs2 rs1 rd op R-Typefunct3

imm11:0 rs1 rd op

imm11:5 rs2 rs1 imm4:0 op

imm31:12 rd op

funct3

funct3

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

imm20,10:1,11,19:12 rd op

I-Type

S-Type

B-Type

U-Type

J-Type

31:25 24:20 19:15 14:12 11:7 6:0

funct2 fs2 fs1 fd op
2 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R4-Typefunct3fs3
5 bits

Figure B.1 RISC-V 32-bit instruction formats

Table B.1 RV32I: RISC-V integer instructions

op funct3 funct7 Type Instruction Description Operation
0000011 (3) 000 – I lb    rd,  imm(rs1) load byte rd =  SignExt([Address]7:0)

0000011 (3) 001 – I lh    rd,  imm(rs1) load half rd =  SignExt([Address]15:0)

0000011 (3) 010 – I lw    rd,  imm(rs1) load word rd =          [Address]31:0

0000011 (3) 100 – I lbu   rd,  imm(rs1) load byte unsigned rd =  ZeroExt([Address]7:0)

0000011 (3) 101 – I lhu   rd,  imm(rs1) load half unsigned rd =  ZeroExt([Address]15:0)

0010011 (19) 000 – I addi  rd,  rs1, imm add immediate rd =  rs1 +   SignExt(imm)

0010011 (19) 001 0000000* I slli  rd,  rs1, uimm shift left logical immediate rd =  rs1 <<  uimm

0010011 (19) 010 – I slti  rd,  rs1, imm set less than immediate rd = (rs1 <   SignExt(imm))

0010011 (19) 011 – I sltiu rd,  rs1, imm set less than imm. unsigned rd = (rs1 <   SignExt(imm))

0010011 (19) 100 – I xori  rd,  rs1, imm xor immediate rd =  rs1 ^   SignExt(imm)

0010011 (19) 101 0000000* I srli  rd,  rs1, uimm shift right logical immediate rd =  rs1 >>  uimm

0010011 (19) 101 0100000* I srai  rd,  rs1, uimm shift right arithmetic imm. rd =  rs1 >>> uimm

0010011 (19) 110 – I ori   rd,  rs1, imm or immediate rd =  rs1 |   SignExt(imm)

0010011 (19) 111 – I andi  rd,  rs1, imm and immediate rd =  rs1 &   SignExt(imm)

0010111 (23) – – U auipc rd,  upimm add upper immediate to PC rd = {upimm, 12'b0} + PC 

0100011 (35) 000 – S sb    rs2, imm(rs1) store byte [Address]7:0 = rs27:0

0100011 (35) 001 – S sh    rs2, imm(rs1) store half [Address]15:0 = rs215:0

0100011 (35) 010 – S sw    rs2, imm(rs1) store word [Address]31:0 = rs2

0110011 (51) 000 0000000 R add   rd,  rs1, rs2 add rd =  rs1 +   rs2

0110011 (51) 000 0100000 R sub   rd,  rs1, rs2 sub rd =  rs1 —   rs2

0110011 (51) 001 0000000 R sll   rd,  rs1, rs2 shift left logical rd =  rs1 <<  rs24:0

0110011 (51) 010 0000000 R slt   rd,  rs1, rs2 set less than rd = (rs1 <   rs2)

0110011 (51) 011 0000000 R sltu  rd,  rs1, rs2 set less than unsigned rd = (rs1 <   rs2)

0110011 (51) 100 0000000 R xor   rd,  rs1, rs2 xor rd =  rs1 ^   rs2

0110011 (51) 101 0000000 R srl   rd,  rs1, rs2 shift right logical rd =  rs1 >>  rs24:0

0110011 (51) 101 0100000 R sra   rd,  rs1, rs2 shift right arithmetic rd =  rs1 >>> rs24:0

0110011 (51) 110 0000000 R or    rd,  rs1, rs2 or rd =  rs1 |   rs2

0110011 (51) 111 0000000 R and   rd,  rs1, rs2 and rd =  rs1 &   rs2

0110111 (55) – – U lui   rd,  upimm load upper immediate rd = {upimm, 12’b0}

1100011 (99) 000 – B beq   rs1, rs2, label branch if = if (rs1 == rs2) PC = BTA

1100011 (99) 001 – B bne   rs1, rs2, label branch if ≠ if (rs1 ≠  rs2) PC = BTA

1100011 (99) 100 – B blt   rs1, rs2, label branch if < if (rs1 <  rs2) PC = BTA

1100011 (99) 101 – B bge   rs1, rs2, label branch if ≥ if (rs1 ≥  rs2) PC = BTA

1100011 (99) 110 – B bltu  rs1, rs2, label branch if < unsigned if (rs1 <  rs2) PC = BTA

1100011 (99) 111 – B bgeu  rs1, rs2, label branch if ≥ unsigned if (rs1 ≥  rs2) PC = BTA

1100111 (103) 000 – I jalr  rd,  rs1, imm jump and link register PC = rs1 + SignExt(imm), rd = PC + 4

1101111 (111) – – J jal   rd,  label jump and link PC = JTA,                rd = PC + 4

• imm:  signed immediate in imm11:0

• uimm:  5-bit unsigned immediate in imm4:0

• upimm:  20 upper bits of a 32-bit immediate, in imm31:12

• Address:  memory address: rs1 + SignExt(imm11:0)
• [Address]:  data at memory location Address
• BTA:  branch target address: PC + SignExt({imm12:1, 1'b0})
• JTA:  jump target address: PC + SignExt({imm20:1, 1'b0})
• label:  text indicating instruction address
• SignExt: value sign-extended to 32 bits
• ZeroExt: value zero-extended to 32 bits
• csr:  control and status register

    *Encoded in instr31:25, the upper seven bits of the immediate field



Table B.2 RV64I: Extra integer instructions

op funct3 funct7 Type Instruction Description Operation
0000011 (3) 011 – I ld    rd, imm(rs1) load double word rd = [Address]63:0

0000011 (3) 110 – I lwu   rd, imm(rs1) load word unsigned rd = ZeroExt([Address]31:0)

0011011 (27) 000 – I addiw rd, rs1, imm add immediate word rd = SignExt((rs1 + SignExt(imm))31:0)

0011011 (27) 001 0000000 I slliw rd, rs1, uimm shift left logical immediate word rd = SignExt((rs131:0 <<  uimm)31:0) 

0011011 (27) 101 0000000 I srliw rd, rs1, uimm shift right logical immediate word rd = SignExt((rs131:0 >>  uimm)31:0) 

0011011 (27) 101 0100000 I sraiw rd, rs1, uimm shift right arith. immediate word rd = SignExt((rs131:0 >>> uimm)31:0)

0100011 (35) 011 – S sd    rs2, imm(rs1) store double word [Address]63:0 = rs2

0111011 (59) 000 0000000 R addw  rd, rs1, rs2 add word rd = SignExt((rs1 + rs2)31:0)

0111011 (59) 000 0100000 R subw  rd, rs1, rs2 subtract word rd = SignExt((rs1 — rs2)31:0)

0111011 (59) 001 0000000 R sllw  rd, rs1, rs2 shift left logical word rd = SignExt((rs131:0 <<  rs24:0)31:0) 

0111011 (59) 101 0000000 R srlw  rd, rs1, rs2 shift right logical word rd = SignExt((rs131:0 >>  rs24:0)31:0) 

0111011 (59) 101 0100000 R sraw  rd, rs1, rs2 shift right arithmetic word rd = SignExt((rs131:0 >>> rs24:0)31:0)

In RV64I, registers are 64 bits, but instructions are still 32 bits. The term “word” generally refers to a 32-bit value. In RV64I, immediate shift instructions use 
6-bit immediates: uimm5:0; but for word shifts, the most significant bit of the shift amount (uimm5) must be 0. Instructions ending in “w” (for “word”) operate 
on the lower half of the 64-bit registers. Sign- or zero-extension produces a 64-bit result.

Table B.3 RVF/D: RISC-V single- and double-precision floating-point instructions

op funct3 funct7 rs2 Type Instruction Description Operation
1000011 (67) rm fs3,      fmt – R4 fmadd  fd,fs1,fs2,fs3 multiply-add fd =   fs1 * fs2 + fs3

1000111 (71) rm fs3,      fmt – R4 fmsub  fd,fs1,fs2,fs3 multiply-subtract fd =   fs1 * fs2 — fs3

1001011 (75) rm fs3,      fmt – R4 fnmsub fd,fs1,fs2,fs3 negate multiply-add fd = —(fs1 * fs2 + fs3)

1001111 (79) rm fs3,      fmt – R4 fnmadd fd,fs1,fs2,fs3 negate multiply-subtract fd = —(fs1 * fs2 – fs3)

1010011 (83) rm 00000, fmt – R fadd   fd,fs1,fs2 add fd =   fs1 + fs2

1010011 (83) rm 00001, fmt – R fsub   fd,fs1,fs2 subtract fd =   fs1 — fs2

1010011 (83) rm 00010, fmt – R fmul   fd,fs1,fs2 multiply fd =   fs1 * fs2

1010011 (83) rm 00011, fmt – R fdiv   fd,fs1,fs2 divide fd =   fs1 / fs2

1010011 (83) rm 01011, fmt 00000 R fsqrt  fd,fs1 square root fd = sqrt(fs1)

1010011 (83) 000 00100, fmt – R fsgnj  fd,fs1,fs2 sign injection fd = fs1, sign =  sign(fs2)

1010011 (83) 001 00100, fmt – R fsgnjn fd,fs1,fs2 negate sign injection fd = fs1, sign = —sign(fs2)

1010011 (83) 010 00100, fmt – R fsgnjx fd,fs1,fs2 xor sign injection fd = fs1,
sign = sign(fs2) ^ sign(fs1) 

1010011 (83) 000 00101, fmt – R fmin   fd,fs1,fs2 min fd = min(fs1, fs2)

1010011 (83) 001 00101, fmt – R fmax   fd,fs1,fs2 max fd = max(fs1, fs2)

1010011 (83) 010 10100, fmt – R feq    rd,fs1,fs2 compare = rd = (fs1 == fs2)

1010011 (83) 001 10100, fmt – R flt    rd,fs1,fs2 compare < rd = (fs1 <  fs2)

1010011 (83) 000 10100, fmt – R fle    rd,fs1,fs2 compare ≤ rd = (fs1 ≤     fs2)

1010011 (83) 001 11100, fmt 00000 R fclass rd,fs1 classify rd = classification of fs1

RVF only
0000111 (7) 010 – – I flw       fd, imm(rs1) load float fd = [Address]31:0
0100111 (39) 010 – – S fsw       fs2,imm(rs1) store float [Address]31:0 = fd

1010011 (83) rm 1100000 00000 R fcvt.w.s  rd, fs1 convert to integer rd = integer(fs1)

1010011 (83) rm 1100000 00001 R fcvt.wu.s rd, fs1 convert to unsigned integer rd = unsigned(fs1)

1010011 (83) rm 1101000 00000 R fcvt.s.w  fd, rs1 convert int to float fd = float(rs1)

1010011 (83) rm 1101000 00001 R fcvt.s.wu fd, rs1 convert unsigned to float fd = float(rs1)

1010011 (83) 000 1110000 00000 R fmv.x.w   rd, fs1 move to integer register rd = fs1

1010011 (83) 000 1111000 00000 R fmv.w.x   fd, rs1 move to f.p. register fd = rs1

RVD only
0000111 (7) 011 - – I fld       fd, imm(rs1) load double fd = [Address]63:0
0100111 (39) 011 – – S fsd       fs2,imm(rs1) store double [Address]63:0 = fd

1010011 (83) rm 1100001 00000 R fcvt.w.d  rd, fs1 convert to integer rd = integer(fs1)

1010011 (83) rm 1100001 00001 R fcvt.wu.d rd, fs1 convert to unsigned integer rd = unsigned(fs1)

1010011 (83) rm 1101001 00000 R fcvt.d.w  fd, rs1 convert int to double fd = double(rs1)

1010011 (83) rm 1101001 00001 R fcvt.d.wu fd, rs1 convert unsigned to double fd = double(rs1)

1010011 (83) rm 0100000 00001 R fcvt.s.d  fd, fs1  convert double to float fd = float(fs1)

1010011 (83) rm 0100001 00000 R fcvt.d.s  fd, fs1 convert float to double fd = double(fs1)

fs1, fs2, fs3, fd: floating-point registers. fs1, fs2, and fd are encoded in fields rs1, rs2, and rd; only R4-type also encodes fs3.  fmt: precision of computational 
instruction (single=002, double=012, quad=112). rm: rounding mode (0=to nearest, 1=toward zero, 2=down, 3=up, 4=to nearest (max magnitude), 7=dynamic). 
sign(fs1): the sign of fs1.
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